11.1

2. $u_{x x}+u_{y y}=\left(2 x \cdot \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1}\right)_{x}+\left(2 y \cdot \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1}\right)_{y}=2\left(x^{2}+y^{2}\right)^{-1}-\left(2 x^{2}+2 y^{2}\right) \cdot\left(x^{2}+y^{2}\right)^{-2}=0$.
3. The statement of this problem is somewhat unclear in whether they mean $\left(u_{x x}\right)^{2}+\left(u_{y y}\right)^{2}=0$ (the more likely one) or $\left(u^{2}\right)_{x x}+\left(u^{2}\right)_{y y}=0$, so either interpretation would be considered correct. With the first interpretation it is obvious that all function in the stated form satisfy that $u_{x x}=u_{y y}=0$. With the second there would need to be additional constraints on a, b, c, d for it to work.
4. The general solution is $u=x F(t)+G(t)$, hence one can let $u=t^{2}+x\left(1-t^{2}\right)$.
5. $u_{t t}=(g(x+c t)+g(x-c t))_{t}=c\left(g^{\prime}(x+c t)-g^{\prime}(x-c t)\right), u_{x x}=c^{-1}(g(x+c t)-g(x-c t))_{x}=$ $c^{-1}\left(g^{\prime}(x+c t)-g^{\prime}(x-c t)\right)$.
6. $\left(e^{a t} \sin b x\right)_{t}=a e^{a t} \sin b x,\left(e^{a t} \sin b x\right)_{x x}=-b^{2} e^{a t} \sin b x$, hence $a=-k b^{2}$.
7. $\left(u_{x}\right)_{t}=1-3 u_{x}$, hence $u_{x}=\frac{1}{3}+e^{-3 t} f(x)$ for some arbitrary function f, hence $u(x, t)=\frac{x}{3}+e^{-3 t} F(x)+$ $G(t)$ for arbitrary function F (which is the anti-derivative of f) and G.
8. To sketch wave profile, pick some k, A, D or c, sketch $u(x, t)$ for different values of t, and if u is complex-valued you can sketch either the real or imaginary part.

Dispersion relations: a) $\omega=-i D k^{2}$. b) $\omega= \pm c k$. c) $\omega=-k^{3}$. d) $\omega=k^{2}$. e) $\omega=c k$.
14. Dispersion relation is $\omega=\left(-1+\delta k^{2}-k^{4}\right) i$ hence this is diffusive. When $\delta=k^{2}+1 / k^{2}$ the solution has growth rate 0 . When $k^{2}+1 / k^{2}>\delta$ the solution decays.

21.2

1. From equation (1.7) in the text we have $\frac{d}{d t} \int_{a}^{b} u A d x=\left.A \phi\right|_{a}-\left.A \phi\right|_{b}$. Differentiate with respect to b (or use some other argument, for example as in the textbook), we have $A u_{t}=-A_{x} \phi-A \phi_{x}$, hence $u_{t}+\phi_{x}=-A^{\prime} \phi / A$.
2. By chain rule, $u_{x}=u_{\xi}, u_{t}=-c u_{\xi}+u_{\tau}$, hence the equation (1.12) becomes $u_{\tau}=-\lambda u$, hence the general solution is $u=e^{-\lambda \tau} F(\xi)=e^{-\lambda t} F(x-c t)$.
3. $u_{t}+c u_{x}=-\lambda u$. If $w=u e^{\lambda t}, u=w e^{-\lambda t}$ hence $u_{t}+c u_{x}=w_{t} e^{-\lambda t}-\lambda w e^{-\lambda t}+c w_{x} e^{-\lambda t},-\lambda u=-\lambda w e^{-\lambda t}$, hence $w_{t}+c w_{x}=0$.
4. By method of characteristics $u_{t}+x t u_{x}=0$ has characteristics $x=C e^{t^{2} / 2}$, hence the general solution is $u=F\left(x e^{-t^{2} / 2}\right)$. Together with the initial value condition we know that $F=f$ hence $u=f\left(x e^{-t^{2} / 2}\right)$. The general solution of $u_{t}+x u_{x}=e^{t}$ is $u=e^{t}+F\left(x e^{-t}\right)$, so with the initial condition, the solution should be $u=e^{t}+f\left(x e^{-t}\right)-1$.

6 (b). The characteristics are $x=C t$, and the general solution is $u=e^{-2 t} F(x / t)$. Use the initial condition we get $F=e^{2} f$, hence $u=e^{-2(t-1)} f(x / t)$.
7. The general solution is $u=e^{-\lambda t} F(x-c t)$. The initial-boundary condition tells us that $F(x)=0$ for $x>0$ and $e^{-\lambda t} F(-c t)=g(t)$ for $t>0$, hence $F(x)=\left\{\begin{array}{ll}0 & x>0 \\ e^{\lambda x / c} g(x / c) & x \leq 0\end{array}\right.$.
12. By the method of characteristics, $u(x, t)=F(x-c t) e^{(\alpha t-u) / \beta}$. Set $t=0$ we have $F(x)=f(x) e^{f / \beta}$ hence $u(x, t)=f(x-c t) e^{(\alpha t-u+f(x-c t)) / \beta}$.
14. Characteristics are $x=C e^{-u t}$ hence $u=F\left(x e^{u t}\right)$. Together with the initial condition we get $u=x e^{u t}$. A solution does not exist for all t. For example, there doesn't exist any u at point $x=t=1$ because $s<e^{s}$ for all $s \in \mathbb{R}$.

31.3

2. $\frac{d}{d t} \int_{0}^{l} u^{2} d x=\int_{0}^{l} 2 u u_{t} d x=\int_{0}^{l} 2 k u u_{x x} d x=\left.2 k u u_{x}\right|_{0} ^{l}-\int_{0}^{l} 2 k\left(u_{x}\right)^{2} d x \leq 0$, hence $\int_{0}^{l} u^{2} d x \leq \int_{0}^{l} u_{0}^{2} d x$ for $t \geq 0$.
3. Let $w=u-g+(x / l)(h-g)$, then $w(0, t)=w(l, t)=0, u_{t}=k u_{x x}$ will imply $w_{t}=k w_{x x}-g^{\prime}+$ $(x / l)\left(h^{\prime}-g^{\prime}\right)$.
4. The steady state satisfy $0=k u_{x x}-h u$ and $u(0)=u(1)=1$, hence $u=\frac{e^{(h / k)^{1 / 2}(x-1 / 2)}+e^{(h / k)^{1 / 2}(1 / 2-x)}}{e^{(h / k)^{1 / 2} / 2}+e^{-(h / k)^{1 / 2} / 2}}$.
5. $u_{t}=w_{t} e^{\alpha x-\beta t}-\beta w e^{\alpha x-\beta t}=w_{t} e^{\alpha x-\beta t}-\beta u, u_{x}=w_{x} e^{\alpha x-\beta t}+\alpha u, u_{x x}=w_{x x} e^{\alpha x-\beta t}+\alpha w_{x} e^{\alpha x-\beta t}+$ $\alpha w_{x} e^{\alpha x-\beta t}+\alpha^{2} u$, hence $0=u_{t}-D u_{x x}+c u_{x}+\lambda u=\left(w_{t}-D w_{x x}\right) e^{\alpha x-\beta t}+(c-2 D \alpha) w_{x} e^{\alpha x-\beta t}+(\lambda-\beta-$ $\left.D \alpha^{2}+c \alpha\right) u$, so when $\alpha=c /(2 D)$ and $\beta=\lambda-D \alpha^{2}+c \alpha=\lambda+c^{2} /(4 D), 0=w_{t}-D w_{x x}$.
6. The steady state doesn't depend on the initial condition. It is $u=\frac{1}{2 k} x(1-x)$.
7. The flux is $D u_{x}+u^{2} / 2$. Replace $u=\psi_{x}$ we have $\psi_{x t}=D \psi_{x x x}+\psi_{x} \psi_{x x}$. Integrate along x we have $\psi_{t}=D \psi_{x x}+\left(\psi_{x}\right)^{2} / 2+F(t)$. Replace ψ_{t} with $\psi_{t}+\int_{0}^{t} F(s) d s$ we can get rid of F. Now let $\psi=-2 D \ln v$ we get $-2 D v_{t} / v=-2 D^{2}\left(v_{x x} v-\left(v_{x}\right)^{2}\right) / v^{2}+2 D^{2}\left(v_{x}\right)^{2} / v^{2}$, hence $v_{t}=D v_{x x}$.

$4 \quad 1.4$

3. For $u_{t}=D u_{x x}-c u_{x}$, the time independent solution satisfies $0=D u_{x x}-c u_{x}$. So the solution is $u=$ $C_{1}+C_{2} e^{c x / D}$. For $u_{t}=D u_{x x}-c u_{x}+r u$, the time independent case reduces to $0=D u_{x x}-c u_{x}+r u$, the characteristic polynomial is $D \lambda^{2}-c \lambda+r=0$ whose roots are $r=\frac{c \pm \sqrt{c^{2}-4 D r}}{2 D}$. Hence, when $c^{2}=4 D r$ the general solution is $u=\left(C_{1}+C_{2} x\right) e^{\frac{c x}{2 D}}$, when $c^{2}>4 D r$ the general solution is $u=C_{1} e^{\frac{x c+x \sqrt{c^{2}-4 D r}}{2 D}}+C_{2} e^{\frac{x c-x \sqrt{c^{2}-4 D r}}{2 D}}$, when $c^{2}<4 D r$ the general solution is $u=C_{1} e^{\frac{x c}{2 D}} \cos \left(\frac{x \sqrt{4 D r-c^{2}}}{2 D}\right)+C_{2} e^{\frac{x c}{2 D}} \sin \left(\frac{x \sqrt{4 D r-c^{2}}}{2 D}\right)$.
4. $u=a x+b$ then $u_{x x}=0$.
$u=a \ln r+b$ then $u_{x x}+u_{y y}=a\left(\frac{x}{r^{2}}\right)_{x}+a\left(\frac{y}{r^{2}}\right)_{y}=a\left(\frac{r^{2}-2 x^{2}+r^{2}-2 y^{2}}{r^{4}}\right)=0$.
$u=\frac{a}{\rho+b}$ then $u_{x x}+u_{y y}+u_{z z}=a\left(\left(\frac{x}{\rho^{3}}\right)_{x}+\left(\frac{y}{\rho^{3}}\right)_{y}+\left(\frac{z}{\rho^{3}}\right)_{z}\right)=0$.
5. (a) $\frac{d}{d t} \int_{a}^{b} 2 \pi r u d r=2 \pi a\left(-\left.D u_{r}\right|_{a}\right)-2 \pi b\left(-\left.D u_{r}\right|_{b}\right)$. Differentiate on b we get $\left.b u_{t}\right|_{b}=\left.D b u_{r r}\right|_{b}+\left.D u_{r}\right|_{b}$, hence $u_{t}=D u_{r r}+\frac{D}{r} u_{r}=D \frac{1}{r}\left(r u_{r}\right)_{r}$.
(b) $\frac{d}{d t} \int_{a}^{b} 4 \pi r^{2} u d r=4 \pi a^{2}\left(-\left.D u_{r}\right|_{a}\right)-4 \pi b^{2}\left(-\left.D u_{r}\right|_{b}\right)$. Differentiate on b then you get the differential equation.

$5 \quad 1.5$

1. You can do it however you want, for example, in the 3 rd equation on page 51 , add a term $-\int_{a}^{b} \rho_{0} g d x$ to the right.
2. Verification is by chain rule. Sketch $u=\frac{1}{2}\left(\frac{1}{1+(x-t)^{2}}+\frac{1}{1+(x+t)^{2}}\right)$.
3. The initial condition is $u_{n}(x, 0)=\sin \frac{n \pi x}{l},\left(u_{n}\right)_{t}(x, 0)=0$. The frequency is $\frac{c n}{2 l}$, they decrease as l increases and as c (tension) increases.
4. $\frac{d}{d t} E=\int_{0}^{l}\left(\rho_{0} u_{t} u_{t t}+\tau_{0} u_{x} u_{t x}\right) d x=\tau_{0} \int_{0}^{1}\left(u_{t} u_{x x}+u_{x} u_{t x}\right) d x=\left.\tau_{0} u_{t} u_{x}\right|_{0} ^{l}=0$.
5. $I_{x}+C V_{t}+G V=0$, so $I_{x x}+C V_{x t}+G V_{x}=0$. Substitute $V_{x}=-L I_{t}+R I$, we get that I satisfy the telegraph equation. The fact that V satisfy telegraph equation follows analogously. When $R=G=0$ the speed of wave is $(L C)^{-1 / 2}$.

$6 \quad 1.7$

1. $\operatorname{div}(\operatorname{grad} u)=\operatorname{div}\left(\left(u_{x}, u_{y}, u_{x}\right)\right)=u_{x x}+u_{y y}+u_{z z}$.

7 Quiz 1:

$u_{t}+(x+1) u_{x}=1, u(x, 0)=\sin x$.
Characteristics are $x=C e^{t}-1$. Hence $u=t+F\left((x+1) e^{-t}\right)$, hence $F(x)=\sin (x-1)$ and $u=$ $t+\sin \left((x+1) e^{-1}-1\right)$.

$8 \quad 1.7$

3. This is divergence theorem. The heat generated in Ω equals the heat flowing out at the boundary.
4. Let $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$, then $\operatorname{div}(w \phi)=\left(w \phi_{1}\right)_{x}+\left(w \phi_{2}\right)_{y}+\left(w \phi_{3}\right)_{z}=\left(w_{x} \phi_{1}+w_{y} \phi_{2}+w_{z} \phi_{3}\right)+w\left(\left(\phi_{1}\right)_{x}+\right.$ $\left.\left(\phi_{2}\right)_{y}+\left(\phi_{3}\right)_{z}\right)=\phi \cdot \operatorname{gradw}+w \operatorname{div} \phi$. Let $\phi=\operatorname{gradu}$ then Green's identity follows from this and the divergence theorem.
5. $\lambda=\frac{\int_{\Omega} u \Delta u d V}{\int_{\Omega} u^{2} d v}=-\frac{\int_{\Omega}\|g r a d u\|^{2} d V}{\int_{\Omega}|u|^{2} d V}<0$,
6. Let $w=u+v$ where v is 0 at the boundary, then $\int_{\Omega}|g r a d w|^{2} d V=\int_{\Omega}|g r a d u|^{2} d V+\int_{\Omega}|g r a d v|^{2} d V+$ $2 \int_{\Omega} g r a d u \cdot g r a d v d V$. By 4 and the assumption, the last term is 0 , hence $\int_{\Omega}|g r a d w|^{2} d V \geq \int_{\Omega}|g r a d u|^{2} d V$.
7. Use $c \rho u_{t}=\operatorname{div} \phi$.

$9 \quad 1.8$

1. Maximum are at $r=2, \theta=\pi / 4,5 \pi / 4$, minimum are at $r=2, \theta=3 \pi / 4,7 \pi / 4$.
2. $u=\left(x^{2}+y^{2}\right) / 4-a^{2} / 4$.
3. The solution is spherical symmetric because the function and the boundary conditions are both spherical symmetric, i.e. $u=u(\rho)$. Hence $\Delta u=1$ reduces to $u_{\rho \rho}+\frac{2}{\rho} u_{\rho}=1$, hence $\left(\rho^{2} u_{\rho}\right)_{\rho}=\rho^{2}$, hence $\rho^{2} u_{\rho}=\frac{1}{3} \rho^{3}+C_{1}, u^{\prime}=\frac{1}{3} \rho+\frac{C_{1}}{\rho^{2}}$, hence $u=\frac{1}{6} \rho^{2}-\frac{C_{1}}{\rho}+C_{2}$. Apply the boundary condition one gets $u=\frac{1}{6} \rho^{2}+\frac{b^{3}}{3 \rho}-\frac{1}{6} a^{2}-\frac{b^{3}}{3 a}$.
4. $u=\operatorname{Aatan}(x)+B$, solve for constants A and B using the boundary condition.
5. $u=A \log r+B . u=\frac{10}{\log 2} \log r$.
6. Use chain rule.
7. $\operatorname{curl} E=0$ implies that such a potential exists. $\Delta V=\operatorname{divgrad} V=\operatorname{div} E=0$.

$10 \quad 1.9$

1. This is a parabolic equation. $u=F(k x-t)+(x+k t) G(k x-t)$, or you can write it in other equivalent ways.
2. Let $p=2 x+t, q=t$, then $u_{x}=2 u_{p}, u_{x x}=4 u_{p p}, u_{t}=u_{p}+u_{q}, u_{x t}=2 u_{p p}+2 u_{p q}$, hence the equation becomes $u_{p}=4 u_{q p}$, hence $u=F(2 x+t) e^{t / 4}+G(t)$.
3. It is hyperbolic. Under the change of variable, by chain rule, $u_{x}=\frac{4}{x} u_{\tau}, u_{x x}=\frac{16}{x^{2}} u_{\tau \tau}-\frac{4}{x^{2}} u_{\tau}$, $u_{x t}=\frac{4}{x} u_{\tau \xi}+\frac{4}{x} u_{\tau \tau}$, so $0=x u_{x x}+4 u_{x t}=-\frac{4}{x} u_{\tau}-16 u_{\tau \xi}$, hence $u=e^{-\xi / 4} f(\tau)+g(\xi)$.
4. Use chain rule and product rule.
5. Elliptic. Find the eigenvalues of matrix $\left[\begin{array}{cc}1 & -3 \\ -3 & 12\end{array}\right]$.
6. Parabolic. The general solution calculation is similar to 3 above.
7. a) Elliptic when $x y>1$ and hyperbolic when $x y<1$. b) Elliptic.

Midterm 1

1. Solve the following initial or initial/boundary value problems:
(1) $u_{t}=x u_{x}, u(x, 0)=x^{2}$. Here u is a function of x and t. (25 points)
(2) $u_{t}+u_{x}=\sin x, u(x, 0)=0$ for $x \geq 0, u(0, t)=t$ for $t \geq 0$. Here u is a function of x and t. (15 points)

Answer: (1) General solution is $u=F\left(x e^{t}\right)$, hence $u=x^{2} e^{2 t}$.
(2) General solution is $u=-\cos x+F(x-t)$, so $u=-\cos x-(x-t)+1$ when $x \leq t$, and $u=-\cos x+\cos (x-t)$ when $x \geq t$.
2. (1) Find the general solution of $u_{t t}=u_{t x}$. (15 points)
(2) Find the solution of the initial value problem: $u_{t t}=u_{t x}, u(x, 0)=0, u_{t}(x, 0)=x$. (10 points)

Answer: (1) $u_{t}=f(x+t)$, so $u=F(x+t)+G(x)$ where F and G are arbitrary functions.
(2) $F(x)+G(x)=0, F^{\prime}(x)=x$, so $u=\frac{1}{2}(x+t)^{2}-x^{2}$.
3. Consider the 1 dimensional advection-diffusion equation: $u_{t}=u_{x}+u_{x x}$.
(1) Use change of coordinate of the form $p=x-C t, q=t$ to reduce it to the 1 dimensional heat equation. (13 points)
(2) Recall that the solution of initial value problem of 1-dimensional heat equation: $v_{t}=v_{x x}$ when $t>$ $0, v(x, 0)=f(x)$ can be given by the Poisson integral representation:

$$
v(x, t)=\int_{-\infty}^{\infty} f(y) G(x-y, t) d y, \text { where } G(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

Can you write down the analogous formula for the following initial value problem: $u_{t}=u_{x}+u_{x x}$ when $t>$ $0, u(x, 0)=f(x) ?(10$ points $)$
(3) Consider the following problem with periodic boundary condition: $u_{t}=u_{x}+u_{x x}$ when $0<x<$ $1, u(0, t)=u(1, t), u_{x}(0, t)=u_{x}(1, t)$. Show that $I(t)=\int_{0}^{1} u^{2}(x, t) d x$ is a non-increasing function by calculating $\frac{d}{d t} I$. (7 points)

Answer: (1) $u_{t}=-C u_{p}+u_{q}, u_{x}=u_{p}, u_{x x}=u_{p p}$, hence when $C=-1, u_{q}=u_{p p}$.
(2) $u(x, t)=\int-\infty^{\infty} f(y) G(x+t-y, t) d y$.
(3) $\frac{d}{d t} I=\int_{0}^{1} 2 u u_{t} d x=\int_{0}^{1} 2 u u_{x}+2 u u_{x x} d x=\left.u^{2}\right|_{0} ^{1}+\left.2 u u_{x}\right|_{0} ^{1}-\int_{0}^{1} 2\left(u_{x}\right)^{2} d x \leq 0$.
4. Consider the equation $u_{x x}+u_{y y}=x^{2}+y^{2}$ on $\mathbb{R}^{2} \backslash(0,0)$. Find all radial symmetric solutions (In other words, all solutions of the form $\left.u(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right)\right)$. You may want to use the fact that the Laplace operator in polar coordinate (r, θ) is $\Delta=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}$. (5 points)

Answer: $u_{r r}+u_{r} / r=r^{2}$, so $\left(r u_{r}\right)_{r}=r^{3}, r u_{r}=A+\frac{1}{4} r^{4}, u_{r}=A / r+\frac{1}{4} r^{3}$, and $u(r)=B+A \log r+\frac{1}{16} r^{4}$.

$11 \quad 2.1$

2. $|u|=\left|\int_{\mathbb{R}} \phi(y) G(x-y, t) d y\right| \leq \int_{\mathbb{R}}|\phi(y) G(x-y, t)| d y \leq M \int_{\mathbb{R}} G(x-y) d y=M$, where G is the heat kernel.
3. $u\left(x_{0}, t\right)=\int_{\mathbb{R}} \phi(y) G\left(x_{0}-y, t\right) d y=u_{0} \int_{0}^{\infty} G\left(x_{0}-y, t\right) d y=u_{0} \int_{-\infty}^{x_{0}} G(s, t) d s=u_{0}\left(\int_{-\infty}^{0} G(s, t) d s+\right.$ $\left.\int_{0}^{x_{0}} G(s, t) d s\right)$. We know $\int_{-\infty}^{0} G(s, t) d s=1 / 2, \int_{0}^{x_{0}} G(s, t) d s=\int_{0}^{x_{0} / s q r t t} G(s, 1) d t$ which converges to 0 as $t \rightarrow \infty$, hence $\lim _{t \rightarrow \infty} u\left(x_{0}, t\right)=u_{0} / 2=1 / 2$.

$12 \quad 2.2$

3. The solution of the latter Cauchy problem is $u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \phi(s) d s$, and the solution of the first Cauchy problem is the partial derivative of the solution of the latter Cauchy problem in t direction which by fundamental theorem of calculus is $\frac{1}{2}(\phi(x-c t)+\phi(x+c t))$.

13 Quiz 2

$u_{t t}=4 u_{x x}+e^{x+t}, u_{t}(x, 0)=0, u(x, 0)=\sin x$.
Solution: By Dahamel's principle, $u_{t t}=\frac{1}{2}(\sin (x-2 t)+\sin (x+2 t))+\int_{0}^{t} \frac{1}{4} \int_{x-2 t+2 s}^{x+2 t-2 s} e^{r+s} d r d s=\frac{1}{2}(\sin (x-$ $2 t)+\sin (x+2 t))+\frac{1}{4} \int_{0}^{t} e^{x+2 t-s}-e^{x-2 t+3 s} d s=\frac{1}{2}(\sin (x-2 t)+\sin (x+2 t))+\frac{1}{4}\left(e^{x+2 t}-e^{x+t}\right)-\frac{1}{12}\left(e^{x+t}-e^{x-2 t}\right)$.

$14 \quad 2.3$

3. $\left|u^{1}-u^{2}\right|=\left|\left(\frac{1}{2}\left(f^{1}(x-c t)+f^{1}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g^{1}(s) d s\right)-\left(\frac{1}{2}\left(f^{2}(x-c t)+f^{2}(x+c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g^{2}(s) d s\right)\right| \leq$ $\left|\frac{1}{2}\left(\left(f^{1}-f^{2}\right)(x-c t)+\left(f^{1}-f^{2}\right)(x+c t)\right)\right|+\left|\frac{1}{2 c} \int_{x-c t}^{x+c t}\left(g^{1}-g^{2}\right)(s) d s\right|=\delta_{1}+\delta_{2} T$. It shows that this Cauchy problem is stable and well posed.

$15 \quad 2.4$

2. Do odd extension of the initial condition, one gets $u(x, t)=\frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty} e^{\frac{-(x-y)^{2}}{4 k t}}-e^{\frac{-(x+y)^{2}}{4 k t}} d y$.

$16 \quad 2.5$

1. By Duhamel's principle, $u(x, t)=\int_{0}^{t} \frac{1}{2 c} \int_{x-c(t-\tau)}^{x+c(t-\tau)} \sin s d s d \tau=-\frac{1}{2 c} \int_{0}^{t} \cos (x+c(t-\tau))-\cos (x-c(t-\tau)) d \tau=$ $\frac{1}{2 c^{2}}(\sin (x+c t)+\sin (x-c t)-2 \sin (x))$.

$17 \quad 2.6$

4. $\mathcal{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=\int_{0}^{\infty} e^{-s t}\left(\int_{0}^{t} f(\tau) d \tau\right) d t=\int_{0}^{\infty}\left(\int_{\tau}^{\infty} e^{-s t} d t\right) f(\tau) d \tau=\frac{1}{s} \int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau=\frac{\mathcal{L}(f)}{s}$.
5. Let $v=L u$ in the t direction, we have $s v-u_{0}=v_{x x}, v_{x}(0, s)=v(0, s)$, because we want bounded solution, $v=-\frac{u_{0}}{s(1+\sqrt{s})} e^{-\sqrt{s} x}+\frac{u_{0}}{s}$, hence $u=-u_{0} L^{-1}\left(\frac{1}{s(1+\sqrt{s})} e^{-\sqrt{s} x}\right)+u_{0}$.

Remark: for those who know complex analysis, we can evaluate $L^{-1}\left(\frac{1}{s(1+\sqrt{s})} e^{-\sqrt{s} x}\right)$ using the inverse formula on pp. 107 of the textbook. The answer is $-\frac{1}{2 \pi i} \int_{0}^{\infty} e^{-s t}\left(\frac{1}{-s(1+i \sqrt{s})} e^{-\sqrt{s} i x}-\frac{1}{-s(1-i \sqrt{s})} e^{\sqrt{s} i x}\right) d s=$ $-\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (\sqrt{s} i x)+\sqrt{s} \cos (\sqrt{s} i x)}{s(1+s) e^{s t}} d s$.

$18 \quad 2.7$

5. $\mathcal{F} u=\int_{-\infty}^{\infty} e^{-|x|+i \xi x} d x=\frac{2}{1+\xi^{2}}$. So, $\mathcal{F}^{-1}\left(\frac{1}{\left(1+\xi^{2}\right)^{2}}\right)=\frac{1}{4} u * u=\frac{1}{4} \int_{-\infty}^{\infty} e^{-|y|-|x-y|} d y=\frac{1}{4}\left(|x| e^{-|x|}+e^{-|x|}\right)$.
6. Do Fourier transform in the x direction, let $v=\mathcal{F} u$, we have $v_{t}=-D s^{2} v+c i s v$, so $v(s, t)=$ $(\mathcal{F} \phi)(s) e^{\left(-D s^{2}+c i s\right) t}$, and $u(x, t)=\mathcal{F}^{-1}\left((\mathcal{F} \phi)(s) e^{\left(-D s^{2}+c i s\right) t}\right)=\phi * \mathcal{F}^{-1}\left(e^{\left(-D s^{2}+c i s\right) t}\right)=\phi *\left(\frac{1}{\sqrt{4 \pi D t}} e^{-(x-c t)^{2} /(4 D t)}\right)$.

19 Solution of other exercise problems

2.2.6u(x,t) $=\frac{1}{2}\left(e^{-|x-c t|}+e^{-|x+c t|}\right)+\frac{1}{2 c}(\sin (x+c t)-\sin (x-c t))$.
2.3.4. I don't see a 2.3 .4 in my textbook?
2.5.3. $u(x, t)=\int_{0}^{t} w(x, t-\tau ; \tau) d \tau=\int_{0}^{t} f(x-c t+c \tau, \tau) d \tau$.
2.5.4. Use 2.5.3, $u(x, t)=\int_{0}^{t}(x-2 t+2 \tau) e^{-\tau} d \tau=(x-2 t)\left(1-e^{-t}\right)-2 t e^{-t}+2-2 e^{-t}=x-2 t+2-x e^{-t}-2 e^{-t}$.
2.6.10. Do Laplace transform in t direction, let $v=L(u)$, then $s^{2} v=c^{2} v_{x x}-g s^{-1}$, with boundary condition $v(x, s) \nrightarrow \infty$ as $x \rightarrow \infty, v(0, s)=0$. So $v(x, s)=\frac{g}{s^{3}}\left(e^{-s x / c}-1\right), u=\frac{g}{2}\left(x^{2} / c^{2}-2 t x / c\right)$ when $x<t c$ and $-\frac{g}{2} t^{2}$ when $x>t c$. Note that when you use the table on page 114, all functions are 0 for $t<0$ or $s<0$.
2.6.11. Do Laplace transform in t direction, $v=L u, s v=v_{y y}$, so $v(x, y, s)=C(x, s) e^{-\sqrt{s} y}$. Use the other boundary conditions one gets $C(0, s)=1 / s, s C(x, s)+C_{x}(x, s)=0$, so $C(x, s)=e^{-x s} / s$. The result can now be obtained from Table 2.1.
2.7.11. Use the hint, write v as in Example 2.18, then integrate the differential form $v d y$. You can also use Fourier transform directly to get a solution but without the arbitrary constant C.
2.7.16. (a) $\omega=k^{3}$.
(b) Let $v=F u$, suppose the initial condition is $u(x, 0)=f(x)$, then $v_{t}+i s^{3} v=0$, so $v(s, t)=F(f) e^{-i s^{3} t}$, $u=f * K(x, t)$ where $K(x, t)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-i s^{3} t-i s x} d s=\frac{1}{2 \pi} t^{-1 / 3} A i\left(\frac{x}{t^{1 / 3}}\right)$.

Midterm 2

1. (1) Find the inverse Fourier transform of $\cos (x) e^{-|x|}$. (6 points)
(2) Find the Laplace transform of $\cos (x) e^{-x}$. (6 points)
(3) Find the convolution between e^{x} and $e^{-x^{2}}$. (6 points)

Solution: (1) $\frac{1}{2 \pi}\left(\int_{0}^{\infty} \frac{1}{2}\left(e^{i x}+e^{-i x}\right) e^{-x} e^{-i s x} d x+\int_{-\infty}^{0} \frac{1}{2}\left(e^{i x}+e^{-i x}\right) e^{x} e^{-i s x} d x\right)=\frac{1}{2 \pi}\left(\frac{2}{1+(s+1)^{2}}+\frac{2}{1+(s-1)^{2}}\right)$.
(2) $\int_{0}^{\infty} \cos x e^{-x-x s} d x=\frac{1+s}{(1+s)^{2}+1}$.
(3) $\int_{-\infty}^{\infty} e^{x-y} e^{-y^{2}} d y=e^{x+1 / 4} \sqrt{\pi}$.
2. Consider the initial-boundary value problem

$$
u_{t}=u_{x x}, u(x, 0)=\sin x, u_{x}(0, t)=1
$$

on the region $x>0, t>0$.
(1) Reduce it to a problem of the form

$$
v_{t}=v_{x x}+f(x, t), v(x, 0)=g(x), v_{x}(0, t)=0
$$

by adding a function to u.(10 points)
(2) Find the solution of the original initial-boundary value problem about u. (22 points)

Solution: (1) Let $v=u-\sin x$, then $v_{t}=v_{x x}-\sin x, v(x, 0)=0, v_{x}(0, t)=0$.
(2) $u(x, t)=\sin x-\int_{0}^{t} \int_{0}^{\infty} \sin y(G(x+y, t-\tau)+G(x-y, t-\tau)) d y d \tau$, where $G(x, t)=\frac{1}{\sqrt{4 \pi}} e^{-x^{2} /(4 t)}$.
3. Consider the following problem:

$$
u_{t t}=u_{x x}-4 u, u(0, t)=u(1, t)=0, u(x, 0)=f(x)
$$

on the region $0<x<1, t>0$.
(1) For any integer n, find a solution of $u_{t t}=u_{x x}-4 u, u(0, t)=u(1, t)=0$ of the form $u=\phi(t) \sin (n \pi x)$. (10 points)
(2) Find the solution of the original problem for $f(x)=\sin (\pi x)-\sin (3 \pi x)$. (10 points)

Solution: (1) $u=\left(A \cos \left(\sqrt{n^{2} \pi^{2}+4} t\right)+B \cos \left(\sqrt{n^{2} \pi^{2}+4} t\right)\right) \sin (n \pi x)$.
(2) $u=\cos \left(\sqrt{\pi^{2}+4} t\right) \sin (\pi x)-\cos \left(\sqrt{9 \pi^{2}+4} t\right) \sin (3 \pi x)$.
4. Find the bounded solution of the following problem:

$$
u_{t t}=u_{x x}, u_{t}(x, 0)=u(x, 0)=0, u_{x}(0, t)=u(0, t)+\sin t
$$

on the region $x>0, t>0$. You may want to use the Laplace transform or the general solution of 1-d wave equations. (16 points)

Solution 1: $u=F(t-x)+G(t+x), u_{t}(x, 0)=u(x, 0)=0$ implies that we can set $F=0$ on $(-\infty, 0]$ and $G=0$. The boundary condition is saying that $F^{\prime}=-F-\sin t$ so $F(s)=-\int_{0}^{s} \sin r e^{r-s} d r$,
$u=\left\{\begin{array}{ll}-\int_{0}^{t-x} \sin r e^{r-t+x} d r & t>x \\ 0 & t \leq x\end{array}\right.$.
Solution 2: Laplace transform in t direction, $v=L u$, then $s^{2} v=v_{x x}, v(x, s)=C(s) e^{-x s},-s C=$ $C+L(\sin t)$, so $v=-L(\sin t) \frac{1}{1+s} e^{-x s}, u=-\left(\sin t * e^{-t+x}\right) H(t-x)$.
5. Find the bounded solution of $u_{x x}+u_{y y}=u, u(x, 0)=f(x)$ on the region $y>0$. You may want to use the Fourier or Laplace transform. (14 points)

Solution 1: Do Fourier transform in the x direction, let $v=F(u)$, then $-s^{2} v+v_{y y}=v, u(x, y)=$ $f * F^{-1}\left(e^{-\sqrt{s^{2}+1} y}\right)$.

Solution 2: Do Laplace transform in the y direction, let $v=L(u)$, then $v_{x x}+s^{2} v-s f-g=v$, where $g(x)=u_{y}(x, 0)$. Because v should decay as $s \rightarrow \infty, v=F^{-1}\left(\frac{1}{s^{2}-\xi^{2}-1}(s F(f)+F(g))\right)$. Furthermore, boundedness implies that there shouldn't be a pole when $s^{2}-\xi^{2}-1=0$, which is only possible when $F(g)=-\sqrt{\xi^{2}+1} F(f)$, hence $u=L^{-1}\left(f * F^{-1}\left(\frac{1}{s+\sqrt{\xi^{2}+1}}\right)\right)$.

20 Quiz 3

Find the Laplace transform of $f(x)=\left\{\begin{array}{ll}\sin (\pi x) & 0<x<1 \\ 0 & x>1\end{array}\right.$.
Solution: $L f=\int_{0}^{1} \sin (\pi x) e^{-s x} d x=-\frac{i}{2} \int_{0}^{1}\left(e^{-s x+i \pi x}+e^{-s x-i \pi x}\right) d x=\frac{i}{2}\left(\frac{e^{-s+i \pi}-1}{s-i \pi}+\frac{e^{-s-i \pi}-1}{s+i \pi}\right)$.

21 Quiz 4

$u_{t t}+u_{x x}=u_{t}, u_{x}(0, t)=u(1, t)=0, u(x, 0)=f(x)$.
Solution: Eigenfunctions are $\cos (\pi(n+1 / 2) x)$, so the result is $2 \sum_{n=0}^{\infty}\left(\int_{0}^{1} f(s) \cos (\pi(n+1 / 2) s) d s\right) \cos (\pi(n+$ $1 / 2) x) e^{\left(1 / 2-\sqrt{\pi^{2}(1 / 2+n)^{2}+1 / 4}\right)}$.

$22 \quad 3.1$

1. a) b) d) are straightforward.
c) $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin x d x$.
e) $u(x, t)=\sum_{n} \frac{2}{n c \pi} \int_{0}^{\pi} f(x) \sin x d x \sin n c t \sin n t$.

$23 \quad 4.1$

4. $u(x, t)=\sum_{n} 2\left(\int_{0}^{1} f(s) \sin (n \pi s) d s\right) e^{-t}\left(\cos \left(t \sqrt{n^{2} \pi^{2} / 4-1}\right)+\left(n^{2} \pi^{2} / 4-1\right)^{-1 / 2} \sin \left(t \sqrt{n^{2} \pi^{2} / 4-1}\right)\right) \sin (n \pi x)$.
5. (a) $u=0$. (b) $u(x, t)=\sum_{n} \frac{2}{l}\left(\int_{0}^{l} f(s) \sin (n \pi s / l) d s\right) e^{-k n^{2} \pi^{2} / l^{2}+h t} \sin (n \pi x / l)$.

$24 \quad 4.2$

4. When $\lambda<0, y(x)=C_{1} e^{x \sqrt{-\lambda}}+C_{2} e^{-x \sqrt{-\lambda}}$, so the boundary condition is $C_{1}+C_{2}+2 \sqrt{-\lambda} C_{1}-2 \sqrt{-\lambda} C_{2}=0$, $3\left(e^{2 \sqrt{-\lambda}} C_{1}+e^{-2 \sqrt{-\lambda}} C_{2}\right)+2\left(\sqrt{-\lambda} e^{2 \sqrt{-\lambda}} C_{1}-2 \sqrt{-\lambda} e^{-2 \sqrt{-\lambda}} C_{2}\right)=0$, so there is a non-zero solution iff $\sqrt{-\lambda}$ is the solution of $e^{4 t}=1+\frac{8 t}{3-4 t-4 t^{2}}$. By taking derivatives and intermediate value theorem there is a unique such t in $(0,1 / 2) .0$ is not an eigenvalue. There are infinite positive eigenvalues by Sturm Liouville theory.
5. The boundary condition is not symmetric e.g. $y_{1}(a)=y_{1}(b)=y_{2}(a)=y_{2}(b)=y_{2}^{\prime}(a)=2 y_{2}^{\prime}(b)=1$, $y_{1}^{\prime}(a)=y_{1}^{\prime}(b)=0$. It is not self adjoint either. For u, v satisfying the boundary conditions, $\int_{a}^{b}-u^{\prime \prime} v=$ $v^{\prime} u-\left.v u^{\prime}\right|_{a} ^{b}+\int_{a}^{b}-u v^{\prime \prime}$, and $v^{\prime} u-\left.v u^{\prime}\right|_{a} ^{b}$ can not be guaranteed to be 0 .

$25 \quad 4.3$

1. If $u=X(x) T(t)$, the first pde can be separated into $-\left(x^{2} X^{\prime}\right)^{\prime} /\left(x^{2} X\right)=T^{\prime \prime} / T=\lambda$. If one let $u=X(x) Y(y)$ in the second PDE, it becomes $X^{\prime \prime} Y+\left(x^{2}+2 x y+y^{2}\right) X Y^{\prime \prime}=0$, and is not separable.
2. If y is an eigenfunction with eigenvalue $\lambda, \lambda=\frac{-\int_{1}^{\pi} y\left(x^{2} y^{\prime}\right)^{\prime} d x}{\int_{1}^{\pi} y^{2} d x}=\frac{-\int_{1}^{\pi} x^{2} y^{\prime 2} d x}{\int_{1}^{\pi} y^{2} d x} \geq 0$.

The differential equation is the Cauchy-Euler equation, hence eigenfunctions are $x^{-1 / 2} \sin \left(\frac{\sqrt{4 \lambda_{n}-1}}{2} \log x\right)$, and $\lambda_{n}=\frac{1}{4}+\frac{n^{2} \pi^{2}}{(\log \pi)^{2}}$.

$26 \quad 4.4$

7. In θ direction the eigenfunctions are $\Theta_{n}(\theta)=\sin ((2 n+1) \theta)$, with corresponding eigenvalues $(2 n+1)^{2}$. So $u(r, \theta)=\frac{4}{\pi} \sum_{n=0}^{\infty}\left(\int_{0}^{\pi / 2} f(s) \sin ((2 n+1) s) d s\right)(r / R)^{2 n+1} \sin ((2 n+1) \theta)$.
8. There is a typo and the h should be the same as g. This is the divergence theorem.

27 Final exam

1. Find the general solution of the following PDE:
(1) $u_{x}=e^{x} u_{t}$. (15 points)
(2) $u_{t t}=6 u_{x x}+1$. (10 points)

Answer: (1) $u=F\left(t+e^{x}\right)$. (2) $u=\frac{t^{2}}{2}+F(x+\sqrt{6} t)+G(x-\sqrt{6} t)$.
2. Solve the Laplace equation $\Delta u=u_{x x}+u_{y y}=0$ on the unit disc D with Dirichlet boundary condition $\left.u\right|_{\partial D}(x, y)=x^{3}$, here ∂D is the boundary of the unit disc, which is the unit circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$. (15 points)

Answer: $u(1, \theta)=\cos ^{3} \theta=\cos \theta(\cos 2 \theta+1) / 2=\cos 3 \theta / 4+3 \cos \theta / 4$, so $u(r, \theta)=r^{3} \cos 3 \theta / 4+3 r \cos \theta / 4=$ $x^{3} / 4+3 x\left(1-y^{2}\right) / 4$.
3. Solve the following initial value problem:
$u_{t}=u_{x x}+2 u_{x}+g(x), u(x, 0)=f(x)$, on the region $t>0$. (15 points)
Answer: $u=\frac{1}{\sqrt{4 \pi t}} \int_{\mathbb{R}} f(s) e^{-\frac{(x+2 t-s)^{2}}{4 t}} d s+\int_{0}^{t} \frac{1}{\sqrt{4 \pi \tau}} \int_{\mathbb{R}} g(s) e^{-\frac{(x+2 \tau-s)^{2}}{4 \tau}} d s d \tau$.
4. Find bounded solution for the following initial-boundary value problem: $u_{t t}+u_{x x}-u_{x}-u=0, u(0, t)=u(1, t)=0, u(x, 0)=f(x)$, on the region $0<x<1, t>0$. (15 points)

Answer: $u=\sum_{n=1}^{\infty} 2 \int_{0}^{1} f(s) e^{-s / 2} \sin (n \pi s) d s e^{x / 2} \sin (n \pi x) e^{-\sqrt{n^{2} \pi^{2}+3 / 4} t}$.
5. Find the bounded solution for the following initial-boundary value problem:
$u_{t}=u_{x x}, u(0, t)=u(\pi, t)=0, u_{t}(x, 0)=\sin (3 x)$, on the region $0<x<\pi, t>0$. (15 points)
Answer: $u(x, t)=-\frac{1}{9} \sin (3 x) e^{-9 t}$.
6. Find the solution for the following initial-boundary value problem:
$u_{t t}=2 u_{x x}, u(x, 0)=u_{t}(x, 0)=0, u_{x}(0, t)=f(t)$, on the region $x>0, t>0$. (15 points)
Answer: $u=\left\{\begin{array}{ll}\int_{0}^{x-t \sqrt{2}} f(-s / \sqrt{2}) d s & x<t \sqrt{2} \\ 0 & x \geq t \sqrt{2}\end{array}\right.$.

