1 1.1
2. Upy + Uyy = (295. %(gcQ 4 y2)—1)w =+ (2y . %(ﬁ + y2)_1)y — 2(x2 + y2)—1 _ (2952 + 2y2) . (x2 + y2)_2 =0.

4. The statement of this problem is somewhat unclear in whether they mean (uy;)% + (uy,)* = 0 (the
more likely one) or (u?),, + (u?),, = 0, so either interpretation would be considered correct. With the first
interpretation it is obvious that all function in the stated form satisfy that uz, = uy, = 0. With the second
there would need to be additional constraints on a, b, ¢, d for it to work.

5. The general solution is u = zF(t) + G(t), hence one can let u = 2 + z(1 — t2).

6. uy = (g(x +ct) + gla —ct))y = c(g’(x +ct) — g'(x — ct)), e = ¢ Hg(w + ct) — g(x — ct)), =
g (@ + ct) — g/ (w — o).

7. (e¥sinbx); = ae sinbz, (e sinbx),, = —b%*e* sinbx, hence a = —kb?.

8. (ug): = 1—3ug, hence u, = £+e~% f(z) for some arbitrary function f, hence u(z,t) = £ +e 3 F(z)+
G(t) for arbitrary function F' (which is the anti-derivative of f) and G.

12. To sketch wave profile, pick some k, A, D or ¢, sketch u(x,t) for different values of ¢, and if u is
complex-valued you can sketch either the real or imaginary part.

Dispersion relations: a) w = —iDk?. b) w = *ck. ¢) w = —k3. d) w = k2. e) w = ck.

14. Dispersion relation is w = (—1 + §k? — k*)i hence this is diffusive. When ¢ = k? + 1/k? the solution
has growth rate 0. When k% + 1/k? > § the solution decays.

2 1.2

1. From equation (1.7) in the text we have f: uAdx = A¢|, — Ag|p. Differentiate with respect to b (or use
some other argument, for example as in the textbook), we have Au; = —A,¢p— A, hence us+¢, = —A’¢/A.

3. By chain rule, uy = u¢, us = —cug + u,, hence the equation (1.12) becomes u, = —Au, hence the
general solution is u = e AT F(§) = e MF(x — ct).

At

4. up+cuy, = —du. If w = ue, u = we™™ hence u;+cu, = we M —Awe M4cwze M, —Au = —Awe M,

hence wy + cw, = 0.

5. By metglod of characteristics u; + xtu, = 0 has characteristics x = Cet’/ 2. hence the genera£ solution
is u = F(xe " /?). Together with the initial value condition we know that F = f hence u = f(ze~*/2). The
general solution of u; + xu, = et is u = ! + F(xze™!), so with the initial condition, the solution should be
u=-e"+ f(ze™?) — 1.

6(b). The characteristics are * = Ct, and the general solution is u = e~2*F(2/t). Use the initial condition
we get F' = e2f, hence u = e 201 f(x/t).

7. The general solution is u = e *'F(x — ct). The initial-boundary condition tells us that F(z) = 0 for
0 x>0

x>0 and e MF(—ct) = g(t) for t > 0, hence F(z) = {e/\x/cg(x/c) 2 <0



12. By the method of characteristics, u(z,t) = F(x — ct)e(®*=%/P. Set t = 0 we have F(x) = f(x)el/?
hence u(x,t) = f(x — ct)elet—uvtf@=ct))/5,

14. Characteristics are x = Ce™ " hence u = F(ze""). Together with the initial condition we get

u = xe“. A solution does not exist for all . For example, there doesn’t exist any u at point x = ¢t = 1
because s < e® for all s € R.

3 1.3
2. % fol widr = fol Quudr = fol 2kutiypdr = 2kuu,|) — fol 2k (uz)?dx < 0, hence fol wlder < fol uddx for t > 0.

3. Let w =wu—g+ (x/l)(h — g), then w(0,t) = w(l,t) = 0, us = kug, will imply w; = kwye — g’ +
(/DR —g').

e(h/R) 2 (@=1/2) | (n/B)1/2(1/2—2)
e(h/I)1/2/2 4 o—(h/k)1/2/2

4. The steady state satisfy 0 = kug, — hu and 4(0) = u(1) = 1, hence u =
5. up = wpe®® Pt — Buwe® Pt = e Pt — Bu, uy = wee® TP + au, Upy = Werpe® B + quw e Pt
Qw,e® =Pt 4 a%u, hence 0 = uy — Dy, + cuy + A = (w; — Dwg,)e®® Pt + (¢ — 2Da)w, e Pt + (N — B —
Da? + ca)u, so when o = ¢/(2D) and B =\ — Da? + ca = A+ ¢2/(4D), 0 = w; — Dwg.

6. The steady state doesn’t depend on the initial condition. It is u = ﬁx(l —x).

10. The flux is Du, + u2/2. Replace v = 1, we have ¥+ = Dgpr + ¥3t,,. Integrate along z we have
Yy = Dtpgs + (1) /2 + F(t). Replace vy with 1, + fot F(s)ds we can get rid of F.. Now let ¢ = —2DInv we
get —2Dv; /v = —2D*(vgpv — (v5)?) /0% + 2D?(v,)? /v, hence vy = Dug,.

4 1.4

3. For u; = Dug, — cug, the time independent solution satisfies 0 = Dug, — cug,. So the solution is u =
C1+C2e“/P . For uy = Dugy — cuy +ru, the time independent case reduces to 0 = Dug, — cug, +ru, the char-

acteristic polynomial is DA2 — e\ +r = 0 whose roots are r = ¢Eve=4Dr V‘;EM. Hence, when ¢ = 4Dr the general

. . cx . . zctxy/c2— T ze—x\/c2 — I3
solution is u = (C} + Cax)e>b, when ¢ > 4Dr the general solution is u = Cle% + CgeTw,
when ¢? < 4Dr the general solution is u = Cje2b cos(“’ivzlzDD’“*ﬁ) + Che3b sin(ziv‘%)g*cz).

9. u = ax + b then ug, = 0.

r2—2z24r% -2y ) =0

u=alnr+b then u,, + uyy = a(%). +a(%)y = a( -

u = 555 then uer +uyy +uze = al(55)e + (55)y + (55)2) = 0.

12. (a) 4 f: 2rrudr = 2ma(—Du,|q) — 27b(—Du,.|p). Differentiate on b we get bug|, = Dbuyr|p + Duy|p,
hence vy = Duyy + gu,. = DX (ruy),.

(b) % ff 4rriudr = 4na®(—Du,|q) — 47b*(—Du,|p). Differentiate on b then you get the differential equa-
tion.



5 1.5

1. You can do it however you want, for example, in the 3rd equation on page 51, add a term — ff pogdx to
the right.

3. Verification is by chain rule. Sketch u = %(1—5—(%1—1&)2 + H_(lert)Q ).

4. The initial condition is u,(x,0) = sin 7%, (u,)¢(2,0) = 0. The frequency is §, they decrease as I

l
increases and as ¢ (tension) increases.
ip— [ de =10 [ dx = b=0
5. £E = [ (pouwstiy + Totugtse)de = 7o [; (Wilias + Ualies)dT = Tousuglh = 0.

9. I, + CV; + GV =0, so I, + CV + GV, = 0. Substitute V, = —LI; + RI, we get that I satisfy the
telegraph equation. The fact that V satisfy telegraph equation follows analogously. When R = G = 0 the
speed of wave is (LC)~'/2.

6 1.7

1. div(gradu) = div((ug, Uy, Ug)) = Upg + Uyy + Uss.

7 Quiz 1:
ut + (x + Duy = 1, u(x,0) = sinz.
Characteristics are z = Ce' — 1. Hence u = ¢t + F((z + 1)e™ "), hence F(z) = sin(x — 1) and u =

t+sin((z + 1)e”! —1).

8 1.7

3. This is divergence theorem. The heat generated in 2 equals the heat flowing out at the boundary.

4. Let ¢ = (¢1, @2, ¢3), then div(we) = (wh1)s + (Wh2)y + (WP3): = (Wad1 +wWyd2 + w.¢3) + w((P1)2 +
(P2)y+(¢3):) = ¢-gradw+wdive. Let ¢ = gradu then Green’s identity follows from this and the divergence
theorem.

5.\ = JoulAudV [, |lgradul||?dV
’ T Jqutdv Jo lul?dv

<0,

6. Let w = u + v where v is 0 at the boundary, then [, [gradw|*dV = [, |gradul*dV + [, |gradv]*dV +
2 [, gradu - gradvdV . By 4 and the assumption, the last term is 0, hence [, |[gradw[*dV > |, |gradul*dV .

7. Use cpuy = dive.

9 1.8

1. Maximum are at r = 2, § = /4, 57 /4, minimum are at r = 2, § = 3w /4, Tr/4.



2. u= (2% +y?)/4 — a?/4.

4. The solution is spherical symmetric because the function and the boundary conditions are both
spherical symmetric, i.e. u = u(p). Hence Au = 1 reduces to u,, + %up = 1, hence (p*u,), = p?, hence

pPu, = %p3 + Oy, v = %p + %, hence u = %pQ — % + C3. Apply the boundary condition one gets
1.2 b

u:%pQ—l———ga — 33"
5. u = Aatan(z) + B, solve for constants A and B using the boundary condition.
6. u= Alogr+ B. u= %logr.

8. Use chain rule.

9. curlF = 0 implies that such a potential exists. AV = divgradV = divE = 0.

10 1.9

1. This is a parabolic equation. u = F'(kx—t)+(x+kt)G(kx—t), or you can write it in other equivalent ways.

2. Let p=2x+1t, g =t, then uy = 2up, Ugy = 4Upp, Ut = Up + Uq, Uzt = 2Upp + 2Upg, hence the equation
becomes u,, = 4u,,, hence u = F(2z + t)e!/* + G(t).

3. It is hyperbolic. Under the change of variable, by chain rule, u, = %UT, Upy = %UTT — I%uﬁ

Uyt = %UTS + %UTT, 50 0 = 2y, + 4uy = —%UT — 16u,¢, hence u = e—§/4f(r) +g(8).

4. Use chain rule and product rule.

5. Elliptic. Find the eigenvalues of matrix [ _13 I; ]

6. Parabolic. The general solution calculation is similar to 3 above.

7. a) Elliptic when 2y > 1 and hyperbolic when zy < 1. b) Elliptic.



Midterm 1
1. Solve the following initial or initial/boundary value problems:

(1) wy = 2uy, u(z,0) = 22, Here u is a function of z and t. (25 points)
(2) ug +uy =sinz, u(x,0) =0 for x > 0, u(0,t) = ¢ for ¢t > 0. Here u is a function of « and ¢. (15 points)
Answer: (1) General solution is u = F(xe'), hence u = z2e?’.
(2) General solution is u = — cosz+F(z—t), sou = —cosx—(x—t)+1 when z < ¢, and u = — cos z+cos(z—t)
when z > ¢.

2. (1) Find the general solution of us = us,. (15 points)
(2) Find the solution of the initial value problem: sy = ut,, u(z,0) = 0, us(x,0) = 2. (10 points)

Answer: (1) uy = f(z +1t), so u= F(x +1t) + G(x) where F' and G are arbitrary functions.
(2) F(z) +G(z) =0, F'(z) =z, s0 u= 3(z +t)? — 2°.

3. Consider the 1 dimensional advection-diffusion equation: u; = uz; + Ugy.
Use change of coordinate of the form p = x — C't, ¢ = t to reduce it to the 1 dimensional heat equation.

1)
13 points)
)
v

(
(
(2) Recall that the solution of initial value problem of 1-dimensional heat equation: v; = v, when t >
0,v(z,0) = f(z) can be given by the Poisson integral representation:

v(z,t) = / f()G(x — y,t)dy, where G(z,t) = \/4%6_% .

Can you write down the analogous formula for the following initial value problem: u; = u; + ug, when t >
0,u(z,0) = f(x)? (10 points)

(3) Consider the following problem with periodic boundary condition: w; = u; + Uz, when 0 < z <
1,u(0,t) = u(1,t),u,(0,t) = uy(1,t). Show that I(t) = fol u?(x,t)dz is a non-increasing function by calcu-
lating 27. (7 points)

Answer: (1) uy = —Cup + Ug, Uy = Up, Uy = Upp, hence when C' = —1, uy = upp.
(2) u(x,t) = [ =00 f(y)G(x +t -y, t)dy.
(3) %I = fol Quupdx = fol 2utty + 22Uty dr = u?|§ + 2uu, |§ — fol 2(uy)%dr < 0.

4. Consider the equation g, + uy, = 2%+ y* on R?\(0,0). Find all radial symmetric solutions (In other

words, all solutions of the form u(x,y) = g(v/2? +3?)). You may want to use the fact that the Laplace
operator in polar coordinate (r,0) is A = u,, + 2u, + Sugg. (5 points)

Answer: Uy, +u, /7 =12, 50 (rug), =13, ru, = A+ %r‘l, u, = Afr+ %73’, and u(r) = B+ Alogr + 1—167"4.



11 2.1

2. Ju| = | [ o(W)G(x—y,t)dy| < [ o(y)G(x—y,t)|dy < M [, G(x—y)dy = M, where G is the heat kernel.

3. u(wo,t) = [ 0(y)Glzo —y,t)dy = uo [, G t)dy—uofIOGst)ds—uof G(s,t)ds +
o Gls, t)ds) We know f_oo G(s,t)ds = 1/2, f G(s,t)ds = xo/sq”t G(s,1)dt which converges to 0 as
t — 00, hence lim;_, oo u(zo,t) = up/2 = 1/2.
12 2.2
3. The solution of the latter Cauchy problem is u(z,t) = & ;H_:tt @(s)ds, and the solution of the first

Cauchy problem is the partial derivative of the solution of the latter Cauchy problem in ¢ direction which
by fundamental theorem of calculus is 3(¢(z — ct) + ¢(z + ct)).



13 Quiz 2

Uy = gy + € uy(x,0) = 0, u(x,0) = sinz.

Solution: By Dahamel’s principle, u;; = 1 (sin(z — 2t) +sin(z + 2t)) + fot 1 f;j;:;;; e"tdrds = 1(sin(z —

2t) +sin(z+2t))+ i fot et t2t—s _ pu—2t+3s g — %(sin(x —2t)+sin(z+2t)) + %(ex“t —er ) — %(e“‘t —e®2t),



14 2.3

3. |ul —u?| = |3 (fH (w—ct)+ [ (w+et)+ 52 [715 g1 (s)ds) = (G (f2(w—ct) + [ (a+ct) + 3= [175 g (s)ds)| <
1LY = )@ —ct) + (fY = )@ +et)| + | & [T (6" — g%)(s)ds| = 61 + 82T Tt shows that this Cauchy
problem is stable and well posed.

15 24
—(z—y —(z+y)?

2. Do odd extension of the initial condition, one gets u(z,t) = \/ﬁ fooo O e dy.
16 2.5
1. By Duhamel’s principle, u(z, t) fo = f;tc(: TT)) sin sdsdr = — = fo cos(z+c(t—T7))—cos(x—c(t—7))dr =
7oz (sin(z + ct) + sin(z — ct) — 2sin(z)).
17 2.6

Ly F)dr) = [57 e (fy fr)dr)dt = 7= ([ emdt) f(r)dr = L[5 e flr)dr = £2.

8. Let v = Lu in the t direction, we have sv — ug = vgs, v:(0,5) = v(0, s), because we want bounded

solution, v = — (Hf)e —Vse + =2, hence u = fuoL’l(MGf‘/gI) + ug.

Remark: for those who know complex analysis, we can evaluate L_l(s(Tl\/g)e_\/g”’) using the inverse

. —st 1 —/six __ Vsiz _
formula on pp. 107 of the textbook. The answer is 27” fo —s(l—i—i\/g)e = z\[)e )ds =
1 00 51n(fm:)+\/§cos(fzw)d
0 s(1+s)est S-

18 2.7
5. Fu= [ e leltiteqy = +£2 So, F~X( 1+£2)2) =tuxu=1 [ e lvl-le-vlgy = L(|zg|elzl 4 =l

15. Do Fourier transform in the x direction, let v = Fu, we have v, = —Ds?v + cisv, so v(s,t) =
(]_-d))(s)e(fD52+cis)t, and u(m,t) ((f¢)( ) —Ds%+cis)t ) PxF~ ( —Ds? +czs)t) ¢*< 4717Dt67(z7ct)2/(4Dt)>'



19 Solution of other exercise problems

2.2.6 u(z,t) = $(e~lo=etl 4 emltetl) 4 L(sin(x + ct) — sin(z — ct)).

2.3.4. I don’t see a 2.3.4 in my textbook?
2.5.3. u(z,t) = fot w(z, t —7;7)dT = fot flx —ct+cr,7)dT.

2.5.4. Use 2.5.3, u(z,t) = fot(x—Qt—i—QT)e_TdT = (z—2t)(1—e ") —2te ' 42-2¢" = x—2t+42—ze ' —2e".

2.6.10. Do Laplace transform in ¢ direction, let v = L(u), then s?v = c?v,, — gs~!, with boundary
condition v(z, s) /4 0o as x — 00, v(0,s) = 0. So v(z,s) = L(e™5%/¢—1), u = £(2%/c® — 2ta/c) when = < tc

and —%tQ when x > tc. Note that when you use the table on page 114, all functions are 0 for t < 0 or s < 0.
2.6.11. Do Laplace transform in ¢ direction, v = Lu, sv = vy,, so v(z,y,s) = C(x,s)e"vV*¥. Use the
other boundary conditions one gets C(0,s) = 1/s, sC(x,s) + Cyx(x,s) =0, so C(x,s) = e"**/s. The result

can now be obtained from Table 2.1.

2.7.11. Use the hint, write v as in Example 2.18, then integrate the differential form vdy. You can also
use Fourier transform directly to get a solution but without the arbitrary constant C.

2.7.16. (a) w = k3.

(b) Let v = F'u, suppose the initial condition is u(z,0) = f(z), then v +isPu = 0,50 v(s, t) = F(f)e ",
u=f*K(z,t) where K(z,t) = &= [o emistt—isz gy =t 3 Ai(s).



Midterm 2

1. (1) Find the inverse Fourier transform of cos(z)e™*l. (6 points)
(2) Find the Laplace transform of cos(z)e™*. (6 points)
(3) Find the convolution between e® and e (6 points)

Solution: (1) % ( (e + e )e et dy + ffoo (e + efi“")exe*is“’dx) = % <1+(s2+1)2 + 1+(32_1)2>.

(2) [T cosme o dy = (1#%

(3) /7 e* Ve V' dy = e T1/4 /7.

2. Consider the initial-boundary value problem

Ut = Ugg, u(x,0) = sinz, u, (0,¢) =1

on the region x > 0,t > 0.

(1) Reduce it to a problem of the form

Ve = Vgp + f(2,t),0(x,0) = g(x),v,(0,¢) =0

by adding a function to u.(10 points)

(2) Find the solution of the original initial-boundary value problem about w. (22 points)

Solution: (1) Let v = u — sinx, then vy = vy, —sinz, v(z,0) =0, v,(0,¢) = 0.
(2) u(x,t) =sinx — fot Jo siny(G(z +y,t — 7) + G(x — y, t — 7))dydr, where G(,t) = \/%6_12/(4’5).
3. Consider the following problem:

Ut = Ugy — du, u(0,t) = u(1,t) = 0,u(z,0) = f(z)

on the region 0 <z < 1, ¢t > 0.

(1) For any integer n, find a solution of usy = uz, —4u, u(0,t) = u(1,t) = 0 of the form u = ¢(¢t) sin(nmx).
(10 points)

(2) Find the solution of the original problem for f(z) = sin(mz) — sin(37x). (10 points)
Solution: (1) u = (A cos(vn2n2 + 4t) + B cos(vn2n2 + 4t)) sin(nmz).
(2) u = cos(v/72 + 4t) sin(mx) — cos(v/9r2 + 4t) sin(37z).
4. Find the bounded solution of the following problem:
Ugt = Ugg, Ug(2,0) = u(x,0) = 0, u,(0,¢) = u(0,t) + sint

on the region x > 0,¢ > 0. You may want to use the Laplace transform or the general solution of 1-d wave
equations. (16 points)

Solution 1: u = F(t — z) + G(t + z), u(x,0) = u(x,0) = 0 implies that we can set ' = 0 on
(—00,0] and G = 0. The boundary condition is saying that F/ = —F —sint so F(s) = — fos sinre"*dr,

10



—Jo

T sinrertedr ¢ > g
u= )
0 t<ux

Solution 2: Laplace transform in ¢ direction, v = Lu, then s?v = v, v(x,s) = C(s)e™*%, —sC =

C + L(sint), so v = —L(sint) 5 e, u = —(sint x e "F*)H(t — ).

5. Find the bounded solution of ug, + uyy = u, u(z,0) = f(z) on the region y > 0. You may want to
use the Fourier or Laplace transform. (14 points)

Solution 1: Do Fourier transform in the z direction, let v = F(u), then —s%v + Vyy = U, u(T,y) =
fxF~ (e Vsitly),

Solution 2: Do Laplace transform in the y direction, let v = L(u), then vy, + s?v — sf — g = v, where

g(z) = uy(z,0). Because v should decay as s — oo, v = F_l(ﬁgfl(sF(f) + F(g))). Furthermore,

boundedness implies that there shouldn’t be a pole when s? — 2 — 1 = 0, which is only possible when

Flg) = =/ + 1F(f), hence u = L7 (f » F7 (———)).

11



20 Quiz 3

sin(rz) 0<z<1

Find the Laplace transform of f(z) =
0 z>1

Solution: Lf = f01 sin(rz)e *dx = —1% fol(e*“”” + e ST gy = %(67::7;_1 + eiz:;_l)

21 Quiz 4
Ut + Ugg = U, ux(oat) = U(Lt) =0, ’LL(.Z‘,O) = f(l‘)

Solution: Eigenfunctions are cos(m(n+1/2)x), so the result is 2 Zflozo(fol f(s) cos(m(n+1/2)s)ds) cos(m(n+

1/2)1,)6(1/2—\/ﬂ2(1/2+n)2+1/4)t.

12



22 3.1

1. a) b) d) are straightforward.

2 [T f(z) sin zd.

c) ap =

e) u(z,t) =3, -2 [ f(z) sin zdz sin nct sin nt.

23 4.1

4. u(z, t) =3, 2( fo )sin(nws)ds)e "t (cos(tr/n2w2 /4 — 1)+ (n?n?/4—1)"Y?sin(t\/n?72 /4 — 1)) sin(n7z).
5. (a) u=0. (b) u(z,t) =3, % fo ) sin(nas/1)ds)e k" w* /P 4ht sin (nra /1).

24 4.2

4. When A <0, y(z) = Clew‘/j’\—i-(}'ge_z\/j‘, so the boundary condition is C; +Co+2v/—AC1 —2v/—=\Cs = 0,
3(e2V7AC) + e 2V + 2(V=Ae2V A, — 2¢/=Xe 2V () = 0, so there is a non-zero solution iff V=X
is the solution of e = 1+ S_Eﬁ. By taking derivatives and intermediate value theorem there is a unique
such ¢ in (0,1/2). 0 is not an eigenvalue. There are infinite positive eigenvalues by Sturm Liouville theory.

8. The boundary condition is not symmetric e.g. y1(a) = y1(b) = y2(a) = y2(b) = vh(a) = 2y4(b) = 1,
yi(a) = y1(b) = 0. It is not self adjoint either. For u, v satisfying the boundary conditions, f: —u''v =
/|b

b
v'u—ovu'|% + [ —uv”, and v'u — vu/|’, can not be guaranteed to be 0.

25 4.3

1. If u = X(x)T(t), the first pde can be separated into —(22X’)'/(2%2X) = T"”/T = X. 1If one let
u = X(x)Y (y) in the second PDE, it becomes X"Y + (22 + 2zy + y*)XY"” = 0, and is not separable.

[T 2,71\ (T 2,72
4. If y is an eigenfunction with eigenvalue A\, A = K ff,jr(;gw) L ff;}?ﬁlwdr 0.

The differential equation is the Cauchy-Euler equation, hence eigenfunctions are z~1/2 Sln( ¥ " Log x),
2_2

and A\, = 7 Ly (l’;(;)

26 44

7. In 0 direction the eigenfunctions are ©,,(6) = sin((2n + 1)6), with corresponding eigenvalues (2n + 1)2.
So u(r,0) = 4 3% ( T2 F(s)sin((2n + 1)s )ds) (r/R)?"+'sin((2n + 1)6).

11. There is a typo and the h should be the same as g. This is the divergence theorem.

13



27 Final exam

1. Find the general solution of the following PDE:
1) uy = e®uy. (15 points)
2) ug = Gug, + 1. (10 points)

o~ o~

Answer: (1) u = F(t+¢e%). (2) u= % + F(z + v6t) + G(z — v/6t).

2. Solve the Laplace equation Au = ug, + uy, = 0 on the unit disc D with Dirichlet boundary condition
ulop(r,y) = 23, here AD is the boundary of the unit disc, which is the unit circle {(z,y) : 2% +y* = 1}. (15
points)

Answer: u(1,0) = cos® 6 = cos §(cos 20+1)/2 = cos 30 /4+3 cos0/4, so u(r,8) = r® cos 30 /4+3r cos /4 =
23 /4 + 3z(1 — y?) /4.

3. Solve the following initial value problem:
Ut = Ugg + 2uy + g(x), u(x,0) = f(x), on the region ¢ > 0. (15 points)

_(z+2t—s)2 _(m+2‘rfs)2

Answer: u = ﬁfR f(s)e Tds—i—f(;s \/iTTng(s)e T dsdr.

4. Find bounded solution for the following initial-boundary value problem:
Ut + Ugg — Uy —u =0, u(0,t) = u(l,t) =0, u(x,0) = f(x), on the region 0 < x < 1, ¢ > 0. (15 points)
. _ 0 1 —s/2 & /2 o —\/n2m2+3/4t
Answer: u =3 "2 [ f(s)e sin(nms)dse*’ ? sin(nwx)e .

5. Find the bounded solution for the following initial-boundary value problem:
Ut = Ugg, u(0,1) = u(m, t) = 0, u(z,0) = sin(3x), on the region 0 < z < 7, t > 0. (15 points)
Answer: u(z,t) = —§ sin(3z)e .

6. Find the solution for the following initial-boundary value problem:
Ut = 2Ugg, w(x,0) = u(2,0) = 0, ugy(0,¢) = f(¢), on the region = > 0, ¢ > 0. (15 points)
:vft\/i
Answer: u =< /0 F(=s/V2)ds @< tﬂ.
0 T >t/2
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