
1 1.1

2. uxx + uyy = (2x · 1
2 (x2 + y2)−1)x + (2y · 1

2 (x2 + y2)−1)y = 2(x2 + y2)−1 − (2x2 + 2y2) · (x2 + y2)−2 = 0.

4. The statement of this problem is somewhat unclear in whether they mean (uxx)2 + (uyy)2 = 0 (the
more likely one) or (u2)xx + (u2)yy = 0, so either interpretation would be considered correct. With the first
interpretation it is obvious that all function in the stated form satisfy that uxx = uyy = 0. With the second
there would need to be additional constraints on a, b, c, d for it to work.

5. The general solution is u = xF (t) +G(t), hence one can let u = t2 + x(1− t2).

6. utt = (g(x + ct) + g(x − ct))t = c(g′(x + ct) − g′(x − ct)), uxx = c−1(g(x + ct) − g(x − ct))x =
c−1(g′(x+ ct)− g′(x− ct)).

7. (eat sin bx)t = aeat sin bx, (eat sin bx)xx = −b2eat sin bx, hence a = −kb2.

8. (ux)t = 1−3ux, hence ux = 1
3 +e−3tf(x) for some arbitrary function f , hence u(x, t) = x

3 +e−3tF (x)+
G(t) for arbitrary function F (which is the anti-derivative of f) and G.

12. To sketch wave profile, pick some k, A, D or c, sketch u(x, t) for different values of t, and if u is
complex-valued you can sketch either the real or imaginary part.

Dispersion relations: a) ω = −iDk2. b) ω = ±ck. c) ω = −k3. d) ω = k2. e) ω = ck.

14. Dispersion relation is ω = (−1 + δk2 − k4)i hence this is diffusive. When δ = k2 + 1/k2 the solution
has growth rate 0. When k2 + 1/k2 > δ the solution decays.

2 1.2

1. From equation (1.7) in the text we have d
dt

∫ b
a
uAdx = Aφ|a−Aφ|b. Differentiate with respect to b (or use

some other argument, for example as in the textbook), we have Aut = −Axφ−Aφx, hence ut+φx = −A′φ/A.

3. By chain rule, ux = uξ, ut = −cuξ + uτ , hence the equation (1.12) becomes uτ = −λu, hence the
general solution is u = e−λτF (ξ) = e−λtF (x− ct).

4. ut+cux = −λu. If w = ueλt, u = we−λt hence ut+cux = wte
−λt−λwe−λt+cwxe−λt, −λu = −λwe−λt,

hence wt + cwx = 0.

5. By method of characteristics ut + xtux = 0 has characteristics x = Cet
2/2, hence the general solution

is u = F (xe−t
2/2). Together with the initial value condition we know that F = f hence u = f(xe−t

2/2). The
general solution of ut + xux = et is u = et + F (xe−t), so with the initial condition, the solution should be
u = et + f(xe−t)− 1.

6(b). The characteristics are x = Ct, and the general solution is u = e−2tF (x/t). Use the initial condition
we get F = e2f , hence u = e−2(t−1)f(x/t).

7. The general solution is u = e−λtF (x− ct). The initial-boundary condition tells us that F (x) = 0 for

x > 0 and e−λtF (−ct) = g(t) for t > 0, hence F (x) =

{
0 x > 0

eλx/cg(x/c) x ≤ 0
.
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12. By the method of characteristics, u(x, t) = F (x − ct)e(αt−u)/β . Set t = 0 we have F (x) = f(x)ef/β

hence u(x, t) = f(x− ct)e(αt−u+f(x−ct))/β .

14. Characteristics are x = Ce−ut hence u = F (xeut). Together with the initial condition we get
u = xeut. A solution does not exist for all t. For example, there doesn’t exist any u at point x = t = 1
because s < es for all s ∈ R.

3 1.3

2. d
dt

∫ l
0
u2dx =

∫ l
0

2uutdx =
∫ l

0
2kuuxxdx = 2kuux|l0 −

∫ l
0

2k(ux)2dx ≤ 0, hence
∫ l

0
u2dx ≤

∫ l
0
u2

0dx for t ≥ 0.

3. Let w = u − g + (x/l)(h − g), then w(0, t) = w(l, t) = 0, ut = kuxx will imply wt = kwxx − g′ +
(x/l)(h′ − g′).

4. The steady state satisfy 0 = kuxx − hu and u(0) = u(1) = 1, hence u = e(h/k)1/2(x−1/2)+e(h/k)1/2(1/2−x)

e(h/k)1/2/2+e−(h/k)1/2/2
.

5. ut = wte
αx−βt − βweαx−βt = wte

αx−βt − βu, ux = wxe
αx−βt + αu, uxx = wxxe

αx−βt + αwxe
αx−βt +

αwxe
αx−βt + α2u, hence 0 = ut −Duxx + cux + λu = (wt −Dwxx)eαx−βt + (c− 2Dα)wxe

αx−βt + (λ− β −
Dα2 + cα)u, so when α = c/(2D) and β = λ−Dα2 + cα = λ+ c2/(4D), 0 = wt −Dwxx.

6. The steady state doesn’t depend on the initial condition. It is u = 1
2kx(1− x).

10. The flux is Dux + u2/2. Replace u = ψx we have ψxt = Dψxxx + ψxψxx. Integrate along x we have

ψt = Dψxx + (ψx)2/2 +F (t). Replace ψt with ψt +
∫ t

0
F (s)ds we can get rid of F . Now let ψ = −2D ln v we

get −2Dvt/v = −2D2(vxxv − (vx)2)/v2 + 2D2(vx)2/v2, hence vt = Dvxx.

4 1.4

3. For ut = Duxx − cux, the time independent solution satisfies 0 = Duxx − cux. So the solution is u =
C1 +C2e

cx/D. For ut = Duxx−cux+ru, the time independent case reduces to 0 = Duxx−cux+ru, the char-

acteristic polynomial is Dλ2−cλ+r = 0 whose roots are r = c±
√
c2−4Dr
2D . Hence, when c2 = 4Dr the general

solution is u = (C1 +C2x)e
cx
2D , when c2 > 4Dr the general solution is u = C1e

xc+x
√
c2−4Dr

2D +C2e
xc−x

√
c2−4Dr

2D ,

when c2 < 4Dr the general solution is u = C1e
xc
2D cos(x

√
4Dr−c2
2D ) + C2e

xc
2D sin(x

√
4Dr−c2
2D ).

9. u = ax+ b then uxx = 0.

u = a ln r + b then uxx + uyy = a( xr2 )x + a( yr2 )y = a( r
2−2x2+r2−2y2

r4 ) = 0.

u = a
ρ+b then uxx + uyy + uzz = a(( xρ3 )x + ( yρ3 )y + ( zρ3 )z) = 0.

12. (a) d
dt

∫ b
a

2πrudr = 2πa(−Dur|a)− 2πb(−Dur|b). Differentiate on b we get but|b = Dburr|b +Dur|b,
hence ut = Durr + D

r ur = D 1
r (rur)r.

(b) d
dt

∫ b
a

4πr2udr = 4πa2(−Dur|a)−4πb2(−Dur|b). Differentiate on b then you get the differential equa-
tion.
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5 1.5

1. You can do it however you want, for example, in the 3rd equation on page 51, add a term −
∫ b
a
ρ0gdx to

the right.

3. Verification is by chain rule. Sketch u = 1
2 ( 1

1+(x−t)2 + 1
1+(x+t)2 ).

4. The initial condition is un(x, 0) = sin nπx
l , (un)t(x, 0) = 0. The frequency is cn

2l , they decrease as l
increases and as c (tension) increases.

5. d
dtE =

∫ l
0
(ρ0ututt + τ0uxutx)dx = τ0

∫ 1

0
(utuxx + uxutx)dx = τ0utux|l0 = 0.

9. Ix + CVt +GV = 0, so Ixx + CVxt +GVx = 0. Substitute Vx = −LIt +RI, we get that I satisfy the
telegraph equation. The fact that V satisfy telegraph equation follows analogously. When R = G = 0 the
speed of wave is (LC)−1/2.

6 1.7

1. div(gradu) = div((ux, uy, ux)) = uxx + uyy + uzz.

7 Quiz 1:

ut + (x+ 1)ux = 1, u(x, 0) = sinx.

Characteristics are x = Cet − 1. Hence u = t + F ((x + 1)e−t), hence F (x) = sin(x − 1) and u =
t+ sin((x+ 1)e−1 − 1).

8 1.7

3. This is divergence theorem. The heat generated in Ω equals the heat flowing out at the boundary.

4. Let φ = (φ1, φ2, φ3), then div(wφ) = (wφ1)x + (wφ2)y + (wφ3)z = (wxφ1 +wyφ2 +wzφ3) +w((φ1)x +
(φ2)y+(φ3)z) = φ ·gradw+wdivφ. Let φ = gradu then Green’s identity follows from this and the divergence
theorem.

5. λ =
∫
Ω
u∆udV∫
Ω
u2dv

= −
∫
Ω
||gradu||2dV∫
Ω
|u|2dV < 0,

6. Let w = u+ v where v is 0 at the boundary, then
∫

Ω
|gradw|2dV =

∫
Ω
|gradu|2dV +

∫
Ω
|gradv|2dV +

2
∫

Ω
gradu · gradvdV . By 4 and the assumption, the last term is 0, hence

∫
Ω
|gradw|2dV ≥

∫
Ω
|gradu|2dV .

7. Use cρut = divφ.

9 1.8

1. Maximum are at r = 2, θ = π/4, 5π/4, minimum are at r = 2, θ = 3π/4, 7π/4.
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2. u = (x2 + y2)/4− a2/4.

4. The solution is spherical symmetric because the function and the boundary conditions are both
spherical symmetric, i.e. u = u(ρ). Hence ∆u = 1 reduces to uρρ + 2

ρuρ = 1, hence (ρ2uρ)ρ = ρ2, hence

ρ2uρ = 1
3ρ

3 + C1, u′ = 1
3ρ + C1

ρ2 , hence u = 1
6ρ

2 − C1

ρ + C2. Apply the boundary condition one gets

u = 1
6ρ

2 + b3

3ρ −
1
6a

2 − b3

3a .

5. u = Aatan(x) +B, solve for constants A and B using the boundary condition.

6. u = A log r +B. u = 10
log 2 log r.

8. Use chain rule.

9. curlE = 0 implies that such a potential exists. ∆V = divgradV = divE = 0.

10 1.9

1. This is a parabolic equation. u = F (kx−t)+(x+kt)G(kx−t), or you can write it in other equivalent ways.

2. Let p = 2x+ t, q = t, then ux = 2up, uxx = 4upp, ut = up + uq, uxt = 2upp + 2upq, hence the equation
becomes up = 4uqp, hence u = F (2x+ t)et/4 +G(t).

3. It is hyperbolic. Under the change of variable, by chain rule, ux = 4
xuτ , uxx = 16

x2uττ − 4
x2uτ ,

uxt = 4
xuτξ + 4

xuττ , so 0 = xuxx + 4uxt = − 4
xuτ − 16uτξ, hence u = e−ξ/4f(τ) + g(ξ).

4. Use chain rule and product rule.

5. Elliptic. Find the eigenvalues of matrix

[
1 −3
−3 12

]
.

6. Parabolic. The general solution calculation is similar to 3 above.

7. a) Elliptic when xy > 1 and hyperbolic when xy < 1. b) Elliptic.

4



Midterm 1

1. Solve the following initial or initial/boundary value problems:

(1) ut = xux, u(x, 0) = x2. Here u is a function of x and t. (25 points)
(2) ut + ux = sinx, u(x, 0) = 0 for x ≥ 0, u(0, t) = t for t ≥ 0. Here u is a function of x and t. (15 points)

Answer: (1) General solution is u = F (xet), hence u = x2e2t.
(2) General solution is u = − cosx+F (x−t), so u = − cosx−(x−t)+1 when x ≤ t, and u = − cosx+cos(x−t)
when x ≥ t.

2. (1) Find the general solution of utt = utx. (15 points)
(2) Find the solution of the initial value problem: utt = utx, u(x, 0) = 0, ut(x, 0) = x. (10 points)

Answer: (1) ut = f(x+ t), so u = F (x+ t) +G(x) where F and G are arbitrary functions.
(2) F (x) +G(x) = 0, F ′(x) = x, so u = 1

2 (x+ t)2 − x2.

3. Consider the 1 dimensional advection-diffusion equation: ut = ux + uxx.
(1) Use change of coordinate of the form p = x− Ct, q = t to reduce it to the 1 dimensional heat equation.
(13 points)
(2) Recall that the solution of initial value problem of 1-dimensional heat equation: vt = vxx when t >
0, v(x, 0) = f(x) can be given by the Poisson integral representation:

v(x, t) =

∫ ∞
−∞

f(y)G(x− y, t)dy, where G(x, t) =
1√
4πt

e−
x2

4t .

Can you write down the analogous formula for the following initial value problem: ut = ux + uxx when t >
0, u(x, 0) = f(x)? (10 points)
(3) Consider the following problem with periodic boundary condition: ut = ux + uxx when 0 < x <

1, u(0, t) = u(1, t), ux(0, t) = ux(1, t). Show that I(t) =
∫ 1

0
u2(x, t)dx is a non-increasing function by calcu-

lating d
dtI. (7 points)

Answer: (1) ut = −Cup + uq, ux = up, uxx = upp, hence when C = −1, uq = upp.
(2) u(x, t) =

∫
−∞∞f(y)G(x+ t− y, t)dy.

(3) d
dtI =

∫ 1

0
2uutdx =

∫ 1

0
2uux + 2uuxxdx = u2|10 + 2uux|10 −

∫ 1

0
2(ux)2dx ≤ 0.

4. Consider the equation uxx + uyy = x2 + y2 on R2\(0, 0). Find all radial symmetric solutions (In other

words, all solutions of the form u(x, y) = g(
√
x2 + y2)). You may want to use the fact that the Laplace

operator in polar coordinate (r, θ) is ∆ = urr + 1
rur + 1

r2uθθ. (5 points)

Answer: urr +ur/r = r2, so (rur)r = r3, rur = A+ 1
4r

4, ur = A/r+ 1
4r

3, and u(r) = B+A log r+ 1
16r

4.
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11 2.1

2. |u| = |
∫
R φ(y)G(x− y, t)dy| ≤

∫
R |φ(y)G(x− y, t)|dy ≤M

∫
RG(x− y)dy = M , where G is the heat kernel.

3. u(x0, t) =
∫
R φ(y)G(x0 − y, t)dy = u0

∫∞
0
G(x0 − y, t)dy = u0

∫ x0

−∞G(s, t)ds = u0(
∫ 0

−∞G(s, t)ds +∫ x0

0
G(s, t)ds). We know

∫ 0

−∞G(s, t)ds = 1/2,
∫ x0

0
G(s, t)ds =

∫ x0/sqrtt

0
G(s, 1)dt which converges to 0 as

t→∞, hence limt→∞ u(x0, t) = u0/2 = 1/2.

12 2.2

3. The solution of the latter Cauchy problem is u(x, t) = 1
2c

∫ x+ct

x−ct φ(s)ds, and the solution of the first
Cauchy problem is the partial derivative of the solution of the latter Cauchy problem in t direction which
by fundamental theorem of calculus is 1

2 (φ(x− ct) + φ(x+ ct)).
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13 Quiz 2

utt = 4uxx + ex+t, ut(x, 0) = 0, u(x, 0) = sinx.

Solution: By Dahamel’s principle, utt = 1
2 (sin(x−2t)+sin(x+2t))+

∫ t
0

1
4

∫ x+2t−2s

x−2t+2s
er+sdrds = 1

2 (sin(x−
2t)+sin(x+2t))+ 1

4

∫ t
0
ex+2t−s−ex−2t+3sds = 1

2 (sin(x−2t)+sin(x+2t))+ 1
4 (ex+2t−ex+t)− 1

12 (ex+t−ex−2t).

7



14 2.3

3. |u1−u2| = |( 1
2 (f1(x−ct)+f1(x+ct))+ 1

2c

∫ x+ct

x−ct g
1(s)ds)−( 1

2 (f2(x−ct)+f2(x+ct))+ 1
2c

∫ x+ct

x−ct g
2(s)ds)| ≤

| 12 ((f1 − f2)(x− ct) + (f1 − f2)(x+ ct))|+ | 1
2c

∫ x+ct

x−ct (g1 − g2)(s)ds| = δ1 + δ2T . It shows that this Cauchy
problem is stable and well posed.

15 2.4

2. Do odd extension of the initial condition, one gets u(x, t) = 1√
4kπt

∫∞
0
e
−(x−y)2

4kt − e
−(x+y)2

4kt dy.

16 2.5

1. By Duhamel’s principle, u(x, t) =
∫ t

0
1
2c

∫ x+c(t−τ)

x−c(t−τ)
sin sdsdτ = − 1

2c

∫ t
0

cos(x+c(t−τ))−cos(x−c(t−τ))dτ =
1

2c2 (sin(x+ ct) + sin(x− ct)− 2 sin(x)).

17 2.6

4. L(
∫ t

0
f(τ)dτ) =

∫∞
0
e−st(

∫ t
0
f(τ)dτ)dt =

∫∞
0

(
∫∞
τ
e−stdt)f(τ)dτ = 1

s

∫∞
0
e−sτf(τ)dτ = L(f)

s .

8. Let v = Lu in the t direction, we have sv − u0 = vxx, vx(0, s) = v(0, s), because we want bounded
solution, v = − u0

s(1+
√
s)
e−
√
sx + u0

s , hence u = −u0L
−1( 1

s(1+
√
s)
e−
√
sx) + u0.

Remark: for those who know complex analysis, we can evaluate L−1( 1
s(1+

√
s)
e−
√
sx) using the inverse

formula on pp. 107 of the textbook. The answer is − 1
2πi

∫∞
0
e−st( 1

−s(1+i
√
s)
e−
√
six − 1

−s(1−i
√
s)
e
√
six)ds =

− 1
π

∫∞
0

sin(
√
six)+

√
s cos(

√
six)

s(1+s)est ds.

18 2.7

5. Fu =
∫∞
−∞ e−|x|+iξxdx = 2

1+ξ2 . So, F−1( 1
(1+ξ2)2 ) = 1

4u ∗ u = 1
4

∫∞
−∞ e−|y|−|x−y|dy = 1

4 (|x|e−|x| + e−|x|).

15. Do Fourier transform in the x direction, let v = Fu, we have vt = −Ds2v + cisv, so v(s, t) =

(Fφ)(s)e(−Ds2+cis)t, and u(x, t) = F−1((Fφ)(s)e(−Ds2+cis)t) = φ∗F−1(e(−Ds2+cis)t) = φ∗
(

1√
4πDt

e−(x−ct)2/(4Dt)
)

.
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19 Solution of other exercise problems

2.2.6 u(x, t) = 1
2 (e−|x−ct| + e−|x+ct|) + 1

2c (sin(x+ ct)− sin(x− ct)).

2.3.4. I don’t see a 2.3.4 in my textbook?

2.5.3. u(x, t) =
∫ t

0
w(x, t− τ ; τ)dτ =

∫ t
0
f(x− ct+ cτ, τ)dτ .

2.5.4. Use 2.5.3, u(x, t) =
∫ t

0
(x−2t+2τ)e−τdτ = (x−2t)(1−e−t)−2te−t+2−2e−t = x−2t+2−xe−t−2e−t.

2.6.10. Do Laplace transform in t direction, let v = L(u), then s2v = c2vxx − gs−1, with boundary
condition v(x, s) 6→ ∞ as x→∞, v(0, s) = 0. So v(x, s) = g

s3 (e−sx/c−1), u = g
2 (x2/c2−2tx/c) when x < tc

and − g2 t
2 when x > tc. Note that when you use the table on page 114, all functions are 0 for t < 0 or s < 0.

2.6.11. Do Laplace transform in t direction, v = Lu, sv = vyy, so v(x, y, s) = C(x, s)e−
√
sy. Use the

other boundary conditions one gets C(0, s) = 1/s, sC(x, s) + Cx(x, s) = 0, so C(x, s) = e−xs/s. The result
can now be obtained from Table 2.1.

2.7.11. Use the hint, write v as in Example 2.18, then integrate the differential form vdy. You can also
use Fourier transform directly to get a solution but without the arbitrary constant C.

2.7.16. (a) ω = k3.

(b) Let v = Fu, suppose the initial condition is u(x, 0) = f(x), then vt+is
3v = 0, so v(s, t) = F (f)e−is

3t,

u = f ∗K(x, t) where K(x, t) = 1
2π

∫
R e
−is3t−isxds = 1

2π t
−1/3Ai( x

t1/3
).

9



Midterm 2
1. (1) Find the inverse Fourier transform of cos(x)e−|x|. (6 points)

(2) Find the Laplace transform of cos(x)e−x. (6 points)

(3) Find the convolution between ex and e−x
2

. (6 points)

Solution: (1) 1
2π

(∫∞
0

1
2 (eix + e−ix)e−xe−isxdx+

∫ 0

−∞
1
2 (eix + e−ix)exe−isxdx

)
= 1

2π

(
2

1+(s+1)2 + 2
1+(s−1)2

)
.

(2)
∫∞

0
cosxe−x−xsdx = 1+s

(1+s)2+1 .

(3)
∫∞
−∞ ex−ye−y

2

dy = ex+1/4
√
π.

2. Consider the initial-boundary value problem

ut = uxx, u(x, 0) = sinx, ux(0, t) = 1

on the region x > 0, t > 0.

(1) Reduce it to a problem of the form

vt = vxx + f(x, t), v(x, 0) = g(x), vx(0, t) = 0

by adding a function to u.(10 points)

(2) Find the solution of the original initial-boundary value problem about u. (22 points)

Solution: (1) Let v = u− sinx, then vt = vxx − sinx, v(x, 0) = 0, vx(0, t) = 0.

(2) u(x, t) = sinx−
∫ t

0

∫∞
0

sin y(G(x+ y, t− τ) +G(x− y, t− τ))dydτ , where G(x, t) = 1√
4π
e−x

2/(4t).

3. Consider the following problem:

utt = uxx − 4u, u(0, t) = u(1, t) = 0, u(x, 0) = f(x)

on the region 0 < x < 1, t > 0.

(1) For any integer n, find a solution of utt = uxx−4u, u(0, t) = u(1, t) = 0 of the form u = φ(t) sin(nπx).
(10 points)

(2) Find the solution of the original problem for f(x) = sin(πx)− sin(3πx). (10 points)

Solution: (1) u = (A cos(
√
n2π2 + 4t) +B cos(

√
n2π2 + 4t)) sin(nπx).

(2) u = cos(
√
π2 + 4t) sin(πx)− cos(

√
9π2 + 4t) sin(3πx).

4. Find the bounded solution of the following problem:

utt = uxx, ut(x, 0) = u(x, 0) = 0, ux(0, t) = u(0, t) + sin t

on the region x > 0, t > 0. You may want to use the Laplace transform or the general solution of 1-d wave
equations. (16 points)

Solution 1: u = F (t − x) + G(t + x), ut(x, 0) = u(x, 0) = 0 implies that we can set F = 0 on
(−∞, 0] and G = 0. The boundary condition is saying that F ′ = −F − sin t so F (s) = −

∫ s
0

sin rer−sdr,

10



u =

{
−
∫ t−x

0
sin rer−t+xdr t > x

0 t ≤ x
.

Solution 2: Laplace transform in t direction, v = Lu, then s2v = vxx, v(x, s) = C(s)e−xs, −sC =
C + L(sin t), so v = −L(sin t) 1

1+se
−xs, u = −(sin t ∗ e−t+x)H(t− x).

5. Find the bounded solution of uxx + uyy = u, u(x, 0) = f(x) on the region y > 0. You may want to
use the Fourier or Laplace transform. (14 points)

Solution 1: Do Fourier transform in the x direction, let v = F (u), then −s2v + vyy = v, u(x, y) =

f ∗ F−1(e−
√
s2+1y).

Solution 2: Do Laplace transform in the y direction, let v = L(u), then vxx + s2v − sf − g = v, where
g(x) = uy(x, 0). Because v should decay as s → ∞, v = F−1( 1

s2−ξ2−1 (sF (f) + F (g))). Furthermore,

boundedness implies that there shouldn’t be a pole when s2 − ξ2 − 1 = 0, which is only possible when
F (g) = −

√
ξ2 + 1F (f), hence u = L−1(f ∗ F−1( 1

s+
√
ξ2+1

)).

11



20 Quiz 3

Find the Laplace transform of f(x) =

{
sin(πx) 0 < x < 1

0 x > 1
.

Solution: Lf =
∫ 1

0
sin(πx)e−sxdx = − i

2

∫ 1

0
(e−sx+iπx + e−sx−iπx)dx = i

2 ( e
−s+iπ−1
s−iπ + e−s−iπ−1

s+iπ ).

21 Quiz 4

utt + uxx = ut, ux(0, t) = u(1, t) = 0, u(x, 0) = f(x).

Solution: Eigenfunctions are cos(π(n+1/2)x), so the result is 2
∑∞
n=0(

∫ 1

0
f(s) cos(π(n+1/2)s)ds) cos(π(n+

1/2)x)e(1/2−
√
π2(1/2+n)2+1/4)t.

12



22 3.1

1. a) b) d) are straightforward.

c) an = 2
π

∫ π
0
f(x) sinxdx.

e) u(x, t) =
∑
n

2
ncπ

∫ π
0
f(x) sinxdx sinnct sinnt.

23 4.1

4. u(x, t) =
∑
n 2(

∫ 1

0
f(s) sin(nπs)ds)e−t(cos(t

√
n2π2/4− 1)+(n2π2/4−1)−1/2 sin(t

√
n2π2/4− 1)) sin(nπx).

5. (a) u = 0. (b) u(x, t) =
∑
n

2
l (
∫ l

0
f(s) sin(nπs/l)ds)e−kn

2π2/l2+ht sin(nπx/l).

24 4.2

4. When λ < 0, y(x) = C1e
x
√
−λ+C2e

−x
√
−λ, so the boundary condition is C1+C2+2

√
−λC1−2

√
−λC2 = 0,

3(e2
√
−λC1 + e−2

√
−λC2) + 2(

√
−λe2

√
−λC1 − 2

√
−λe−2

√
−λC2) = 0, so there is a non-zero solution iff

√
−λ

is the solution of e4t = 1 + 8t
3−4t−4t2 . By taking derivatives and intermediate value theorem there is a unique

such t in (0, 1/2). 0 is not an eigenvalue. There are infinite positive eigenvalues by Sturm Liouville theory.

8. The boundary condition is not symmetric e.g. y1(a) = y1(b) = y2(a) = y2(b) = y′2(a) = 2y′2(b) = 1,

y′1(a) = y′1(b) = 0. It is not self adjoint either. For u, v satisfying the boundary conditions,
∫ b
a
−u′′v =

v′u− vu′|ba +
∫ b
a
−uv′′, and v′u− vu′|ba can not be guaranteed to be 0.

25 4.3

1. If u = X(x)T (t), the first pde can be separated into −(x2X ′)′/(x2X) = T ′′/T = λ. If one let
u = X(x)Y (y) in the second PDE, it becomes X ′′Y + (x2 + 2xy + y2)XY ′′ = 0, and is not separable.

4. If y is an eigenfunction with eigenvalue λ, λ =
−

∫ π
1
y(x2y′)′dx∫ π
1
y2dx

=
−

∫ π
1
x2y′2dx∫ π

1
y2dx

≥ 0.

The differential equation is the Cauchy-Euler equation, hence eigenfunctions are x−1/2 sin(
√

4λn−1
2 log x),

and λn = 1
4 + n2π2

(logπ)2 .

26 4.4

7. In θ direction the eigenfunctions are Θn(θ) = sin((2n + 1)θ), with corresponding eigenvalues (2n + 1)2.

So u(r, θ) = 4
π

∑∞
n=0

(∫ π/2
0

f(s) sin((2n+ 1)s)ds
)

(r/R)2n+1 sin((2n+ 1)θ).

11. There is a typo and the h should be the same as g. This is the divergence theorem.
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27 Final exam

1. Find the general solution of the following PDE:
(1) ux = exut. (15 points)
(2) utt = 6uxx + 1. (10 points)

Answer: (1) u = F (t+ ex). (2) u = t2

2 + F (x+
√

6t) +G(x−
√

6t).

2. Solve the Laplace equation ∆u = uxx + uyy = 0 on the unit disc D with Dirichlet boundary condition
u|∂D(x, y) = x3, here ∂D is the boundary of the unit disc, which is the unit circle {(x, y) : x2 + y2 = 1}. (15
points)

Answer: u(1, θ) = cos3 θ = cos θ(cos 2θ+1)/2 = cos 3θ/4+3 cos θ/4, so u(r, θ) = r3 cos 3θ/4+3r cos θ/4 =
x3/4 + 3x(1− y2)/4.

3. Solve the following initial value problem:
ut = uxx + 2ux + g(x), u(x, 0) = f(x), on the region t > 0. (15 points)

Answer: u = 1√
4πt

∫
R f(s)e−

(x+2t−s)2
4t ds+

∫ t
0

1√
4πτ

∫
R g(s)e−

(x+2τ−s)2
4τ dsdτ .

4. Find bounded solution for the following initial-boundary value problem:
utt + uxx − ux − u = 0, u(0, t) = u(1, t) = 0, u(x, 0) = f(x), on the region 0 < x < 1, t > 0. (15 points)

Answer: u =
∑∞
n=1 2

∫ 1

0
f(s)e−s/2 sin(nπs)dsex/2 sin(nπx)e−

√
n2π2+3/4t.

5. Find the bounded solution for the following initial-boundary value problem:
ut = uxx, u(0, t) = u(π, t) = 0, ut(x, 0) = sin(3x), on the region 0 < x < π, t > 0. (15 points)

Answer: u(x, t) = − 1
9 sin(3x)e−9t.

6. Find the solution for the following initial-boundary value problem:
utt = 2uxx, u(x, 0) = ut(x, 0) = 0, ux(0, t) = f(t), on the region x > 0, t > 0. (15 points)

Answer: u =

{∫ x−t√2

0
f(−s/

√
2)ds x < t

√
2

0 x ≥ t
√

2
.
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