
Math 481

I Instructor: Chenxi Wu wuchenxi2013@gmail.com

I Office: Hill 434, Office hours: 10-11 am Tu, Wed or by
appointment, starting from Jan 28.

I Grading policy: 10% weekly homework (lowest dropped), 20%
each of the two midterms, 50% final exam.

I Prerequisite: Probability. Will finish review of basic probability
on Feb 12.

I Weekly assignments: 2-3 homework problems a week, grade
for correctness, similar to exams. There will also be questions
from textbook assigned for practice which you don’t need to
hand in.

I No late homework or make up midterms.



Main topics we will cover:

I Review of probability

I Point estimate

I p-values and hypothesis testing

I Confidence intervals

I Bayesian statistics



Bayesian and non-Bayesian approaches to statistics

I Non-Bayesian approach: Set up a null hypothesis and try to
show that observation is highly unlikely if null hypothesis is
true.

I Bayesian approach: Assume prior distribution of some
parameter, calculate posterior via Bayes formula





Some review of basic probability

I Two random events A and B are called independent if
P(A ∩ B) = P(A)P(B)

I If A and B are two random events, P(A) > 0. The conditional
probability of B when A is given is P(B|A) = P(A∩B)/P(A).



Example

Suppose you are given a coin, you flip it 5 times and get head on
all 5 of them.

I Suppose the coin is fair, what is the odds that it gets head for
5 times in 5 flips?

I Null hypothesis

I p-value









I Suppose the coin is biased and gets head at probability p.
I What is the probability that it gets head for 5 times in 5 flips?
I What is the p that maximizes this probability?
I What is the range of p such that the probability for 5 heads in

5 flips is no less than 0.05?

I Maximum likelihood estimate (MLE)

I Confidence interval



I Suppose you pick the coin among a pile of 100 coins, 99 of
which is fair and 1 has head on both sides. What is the
chance of the coin being unfair given the results of the 5 flips?

I Prior and posterior



I Suppose the odds for getting a head is uniformly distributed in
[0, 1], given the results of the 5 flips, what do you think is the
most likely value for p? How about the expectation?

I Maximum a posteriori (MAP) estimate



Basic definitions in probability

A Probability is a triple (S ,F ,P) where S is called the sample
space denoting all possible states of the world, F ⊂ 𝒫(S) the
event space and P : F → R a real-valued function on F , such
that:

1. F is closed under complement and countable union.

2. P is non negative.

3. P(S) = 1

4. If {Ei} is a countable sequence of disjoint events in F ,
P(

⋃︀
i Ei ) =

∑︀
i P(Ei ).



Random variables

I A (real valued) random variable X is a function S → R such
that the preimage of any open interval is in F . Multivariant
random variables can be defined similarly.

I The cumulative distribution function (cdf) of a random
variable X is F (x) = P(X ≤ x).

I If F (x) =
∫︀ x
−∞ f (t)dt we call f the probability density

function (pdf)

I If there is a countable set C and g : C → R such that
F (x) =

∑︀
y∈C ,y≤x g(y) we call X discrete and g the

probability distribution

I The expectation of a random variable X is defined as
E [X ] =

∫︀
S XdP.



For those who know analysis

I A probability is a measure P : F → R, where F is a 𝜎-algebra
on sample space S and P(S) = 1.

I A random variable X is a P-measurable function on S .

I The expectation of a random variable X is the integral∫︀
S XdP.



Some questions

I Must the cdf of a random variable be left or right continuous?

I X is the number of heads in 2 fair coin flips. What is the cdf
of X? What is the expectation of X? What is the expectation
of (X − E [X ])2?

I Can you write down a random variable that is neither discrete
nor has a pdf?

I Can you write down a random variable which has no
expectation?



Independence and conditional probability

I X and Y are 2 random variables, X and Y are independent iff
FX ,Y (s, t) = P(X ≤ s ∩ Y ≤ t) = FX (s)FY (t).

I If A is some event with non zero probability,
FX |A(s) = P(X ≤ s|A) = P(X ≤ s ∩ A)/P(A).

I If X and Y has joint p.d.f. fX ,Y with non zero marginal
density fY , then fX |Y=a(s) = fX ,Y (s, a)/fY (a).

I If Ai are disjoint events with non zero probabilities, B ⊂ R,
P(X ∈ B| ∪i Ai ) =

∑︀
i (P(Ai )P(X ∈ B|Ai ))/

∑︀
i P(Ai ).

I If Y has p.d.f. fY , A ⊂ Rsuch that P(Y ∈ A) > 0, B is a
random event, then
P(B|Y ∈ A) =

∫︀
A fY (s)P(B|Y = s)ds/P(Y ∈ A).



Special random variables

I Discrete: Takes on countably values, has p.d.

I Continuous: has p.d.f.

2 random variables X and Y has the same distribution iff they
have the same c.d.f., or for any A ⊂ R, P(X ∈ A) = P(Y ∈ A).
Random variables with the same distribution are NOT necessarily
the same.



Special Probability distributions

I Bernoulli distribution: f (1) = 𝜃, f (0) = 1− 𝜃.

I Binomial distribution (sum of iid Bernoulli):

f (x) =

(︂
n
x

)︂
𝜃x(1− 𝜃)n−x , x = 0, 1, . . . , n.

I Negative Binomial distribution (waiting time for the k-th

success of iid trials): f (x) =

(︂
x − 1
k − 1

)︂
𝜃k(1− 𝜃)x−k ,

x = k, k + 1, . . . . When k = 1 it is the geometric
distribution.

I Hypergeometric distribution (randomly pick n elements at
random from N elements, the number of elements picked
from a fixed subset of M elements)

f (x) =

(︂
M
x

)︂(︂
N −M
n − x

)︂(︂
N
n

)︂−1

.



I Poisson distribution (limit of binomial as n → ∞, n𝜃 → 𝜆)
f (x) = 𝜆xe−𝜆/x!.

I Multinomial distribution

f (x1, . . . xk) =

(︂
n

x1, . . . , xk

)︂
𝜃x11 . . . 𝜃xkk ,

∑︀
i xi = n, 𝜃i𝜃i = 1.

I Multivariate Hypergeometric distribution

f (x1, . . . , xk) =
∏︀

i

(︂
Mi

xi

)︂
·
(︂

N
n

)︂−1

.
∑︀

i xi = n,∑︀
i Mi = N.



Special Probability Density Functions

Γ(a) =
∫︀∞
0 xa−1e−xdx . Γ(k) = (k − 1)! when k = 1, 2, . . . .

I Uniform distribution: f (x) =

{︃
1/(b − a) x ∈ (a, b)

0 x ̸∈ (a, b)
.

I Normal distribution: f (x) = 1
𝜎
√
2𝜋
e−

(x−𝜇)2

2𝜎2 .

I Multivariate Normal distribution: x ∈ Rd , Σ positive
definite d × d symmetric matrix,

f (x) = (2𝜋)−d/2|Σ|−1/2e−
1
2
(x−𝜇)TΣ−1(x−𝜇).

I 𝜒2 distribution d : degrees of freedom. Squared sum of d

normal distributions: f (x) =

{︃
1

2d/2Γ(d/2)
x

d−2
2 e−x/2 x > 0

0 x ≤ 0
.



I Exponential distribution f (x) =

{︃
1
𝜃e

−x/𝜃 x > 0

0 x ≤ 0
.

I Gamma-distribution: f (x) =

{︃
1

𝛽𝛼Γ(𝛼)x
𝛼−1e−x/𝛽 x > 0

0 x ≤ 0

I Beta distribution: (conjugate prior of Bernoulli distribution)

f (x) =

{︃
Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)x

𝛼−1(1− x)𝛽−1 x ∈ (0, 1)

0 x ̸∈ (0, 1)
.

Example: If the bias of a coin p has a uniform prior in [0, 1], after
n flips there are a heads and b tails, the posterior will be Beta
distribution with 𝛼 = a+ 1, 𝛽 = b + 1.



Sample mean and sample variance

Xi i.i.d. (independent with identical distribution)

I Sample mean: X = 1
n

∑︀
i Xi

I Sample variance:

S2 = 1
n−1

∑︀
i (Xi − X )2 = 1

n−1(
∑︀

i X
2
i − nX

2
).

Properties:

I E [X ] = E [X1]

I Var(X ) = 1
nVar(X1)

I
√︁

n
Var(X1)

(X − E [X1]) → 𝒩 (0, 1) (Central Limit Theorem)

I E [S2] = Var(X1)

Assuming Xi ∼ 𝒩 (𝜇, 𝜎2):

I X and S2 are independent.

I X ∼ 𝒩 (𝜇, 𝜎
2

n )

I (n−1)S2

𝜎2 ∼ 𝜒2(n − 1)



Proof of (n−1)S2

𝜎2 ∼ 𝜒2(n − 1)

(n − 1)S2 =
∑︁
i

(Xi − X )2 =
∑︁
i

((X 2
i − E [Xi ])− (X − E [X ]))2

=
∑︁
i

(X 2
i − E [Xi ])

2 − n(X − E [X ])2

Now divide by 𝜎2, the first term is 𝜒2(n) and second 𝜒2(1).



𝜒2 distribution

Definition: Xi independent, 𝒩 (0, 1), then
∑︀n

i=1 Xi = 𝜒2(n)
PDF:

f (x) =

{︃
1

n/2Γ(n/2)x
n−2
2 e−x/2 x > 0

0 x ≤ 0

Calculation of PDF:

f𝜒2(n)(r) =
d

dr

∫︁
∑︀

i x
2
i ≤r

(2𝜋)−n/2e−
∑︀

i x
2
i /2dx1 . . . dxn

= (2𝜋)−n/2e−r/2 d

dr
Vol(B(

√
r))

Where B(x) is the ball of radius x .



t distribution

Definition: X and Y independent, X ∼ 𝒩 (0, 1), Y ∼ 𝜒2(n), then
X√
Y /n

∼ t(n).

By LLN, when n → ∞ this converges to 𝒩 (0, 1).
PDF:

f (x) =
Γ(n+1

2 )
√
𝜋nΓ(n2 )

(1 +
x2

n
)−

n+1
2



Calculation of PDF of t

ft(n)(s) =
d

ds
P(X ≤ s

√︀
Y /n) =

d

ds

∫︁ ∞

0
dy

∫︁ s
√

y/n

−∞

dx
1√
2𝜋

e−x2/2 1

2n/2Γ(n/2)
y

n−2
2 e−y/2

=

∫︁ ∞

0
dy

√︀
y/n

1√
2𝜋

e−s2y/2n 1

2n/2Γ(n/2)
y

n−2
2 e−y/2

=
1√

2𝜋n2n/2Γ(n/2)

∫︁ ∞

0
dyy

n−1
2 e−y(1+ s2

n
)/2

Now let z = y(1 + s2

n )/2 and it’s done.



F -distribution

Definition: U and V independent, U ∼ 𝜒2(m), V ∼ 𝜒2(n), then
U/m
V /n ∼ F (m, n)
CDF:

f (x) =

⎧⎨⎩
Γ(m+n

2
)

Γ(m
2
)Γ( n

2
)(

m
n )

m/2xm/2−1(1 + m
n x)

−m+n
2 x > 0

0 x ≤ 0

Strategy for calculating the PDF of Y = g(Xi ):

1. Find joint pdf of Xi

2. Write down the CDF of Y as a probability, hence, some
integral of the pdf of Xi

3. Differentiate the CDF of Y .



Probability Review

I Probability, cdf and pdf for continuous random variables:
I Probability to cdf: FX (t) = P(X ≤ t)
I cdf to pdf: fX (t) =

d
dtFX (t)

I pdf to probability: P(X ∈ A) =
∫︀
A
fX (s)ds

I Probability, cdf and pd for discrete random variables:
I Probability to cdf: FX (t) = P(X ≤ t)
I cdf to pd: FX (t) =

∑︀
s≤t gX (s)

I pd to probability: P(X ∈ A) =
∑︀

s∈A gX (s)

I Joint cdf/pdf/pd, independence, conditional probability.

I Expectation, variance, covariance

I LLN and CLT

I Special distributions: binomial, uniform, normal, 𝜒2, etc.



Point estimates

Basic setting:

I ℱ : a family of possible distributions (represented by a family
of cdf, pdf, or pd)

I 𝜃 : ℱ → R population parameter

I X1, . . .Xn i.i.d. with distribution F ∈ ℱ
I 𝜃 = 𝜃(X1, . . . ,Xn) a function of Xi , which is an estimate of

𝜃(F ), is called a point estimate.

Example: ℱ : all distributions with an expectation, then X is a
point estimate of the expectation.



𝜃 is a point estimate of 𝜃.

I The bias is E [𝜃]− 𝜃. 𝜃 is called unbiased if E [𝜃] = 𝜃.

I The variance is Var(𝜃).

I 𝜃 is called minimum variance unbiased estimate if it has
the smallest variance among all unbiased estimates.

I 𝜃1 and ^theta2 are two unbiased estimates, the relative
efficiency is the ratio of their variance. When they are biased,
one can use the mean squared error E [(𝜃 − 𝜃)2] instead.

I 𝛽 is called asymptotically unbiased if bias converges to 0 as
n → ∞.

I 𝛽 is called consistent if 𝛽 converges to 𝛽 in distribution.



Review of definitions regarding point estimates

𝜃 is a point estimate of 𝜃

I Unbiased

I Minimal Variance Unbiased

I Asymptotically unbiased

I Consistent

Properties:

I Minimal Variance Unbiased can be verified via Cramer-Rao

I Mean squared error
E [(𝜃−𝜃)2] = E [((𝜃−E [𝜃])+(E [𝜃]−𝜃))2] = Var(𝜃)+(E [𝜃]−𝜃)2

I Mean squared error → 0 implies consistence:

P(|𝜃 − 𝜃| > 𝜖) <
E [(𝜃 − 𝜃)2]

𝜖2

But consistence does not imply mean squared error → 0.



Maximal Likelihood Estimate (MLE)

Suppose Xi ∼ F (𝜃), i.i.d., observation is x1, . . . , xk , then
𝜃 = argmax𝜃 L(x1, . . . xk , 𝜃).

I When F is a continuous distribution with p.d.f. f (x , 𝜃), let
L(x1, . . . , xk , 𝜃) =

∏︀
i f (xi , 𝜃)

I When F is a discrete distribution with p.d. g(x , 𝜃), let
L(x1, . . . , xk , 𝜃) =

∏︀
i g(xi , 𝜃)

When there are multiple parameters, we can get their MLE by
taking argmax to all of them altogether.
Sometimes we maximize log(L) (log likelihood) instead of L, which
is equivalent.



The basic idea of Bayesian statistics

I Input:
I Some (possibly vector valued) random variable Θ with given

distribution (prior)
I Some (possibly vector valued) random variable X with known

conditional distribution conditioned at a value of Θ,
X ∼ F (X |Θ). (observable)

I Output: the conditional distribution of Θ conditioned at a
value of X (posterior) Θ ∼ F (Θ|X ).



Example:

I Prior Y ∼ Bernoulli( 1
100)

I Observable X1, X2 conditionally i.i.d. when Y = y , and their
conditional distribution is Bernoulli with p = 1+8Y

10 .

Calculation of the posterior:

P(Y = 1|X1,X2) =
P(Y = 1,X1,X2)

P(X1,X2)

=
P(X1,X2|Y = 1)P(Y = 1)

P(X1,X2|Y = 0)|P(Y = 0) + P(X1,X2|Y = 1)|P(Y = 1)

=
(9/10)X1+X2(1/10)2−X1−X2 × 1

100

(9/10)X1+X2(1/10)2−X1−X2 × 1
100 + (1/10)X1+X2(9/10)2−X1−X2 × 99

100

=
9X1+X2

9X1+X2 + 99× 92−X1−X2

So, for example, if we know both Xi takes a value of 1, then the
probability of Y = 1 is 9/20.



We can answer many questions using posterior, for example:

I What is the probability of Θ taking value in A given X?

I What is the “most likely” value of Θ?
Θ̂MAP = argmaxs fΘ|X (s), where f is p.d.f. when Θ|X is
continuous and p.d. when it is discrete. This is called the
maximum a posteriori (MAP) estimate.

I What is the average value of Θ? Θ̂ = E [Θ|X ]. This is called
the Bayesian point estimate with L2 lost.

I In general, let l(·, ·) be a lost function (a positive function
such that l(a, a) = 0), then Θ̂ = argmin𝜃 E [l(Θ, 𝜃)|X ] is
called the Bayesian point estimate.



MLE vs. Point estimate using Bayesian statistics

MLE:

I Input: Assumption on the distribution of X : X ∼ F (𝛼). A
likelihood function L(X , 𝛼).

I Output: �̂�MLE = argmax𝛼 L(X , 𝛼).

Bayesian statistics:

I Input: Prior: 𝛼 ∼ F0, Conditional distribution: X |𝛼 ∼ F (𝛼).

I Calculated output: Posterior: 𝛼|X ∼ F ′(X )

I MAP Point estimate: �̂� = argmax𝛼 falpha|X (𝛼)

I L2-Bayesian Point estimate: �̂� = E [𝛼|X ].



Input:

I 𝜇 ∼ 𝒩 (0, 1)

I Xi |𝜇 cond. i.i.d., ∼ 𝒩 (𝜇, 1)

Posterior:

f𝜇|Xi
(s) =

f𝜇,Xi
(s,X1, . . . ,Xn)

fXi
(X1, . . .Xn)

=
f𝜇,Xi

(s,X1, . . . ,Xn)∫︀
R f𝜇,Xi

(t,X1, . . .Xn)dt

=

∏︀
i fXi |𝜇=s(Xi )f𝜇(s)∫︀

R
∏︀

i fXi |𝜇=t(Xi )f𝜇(t)dt
=

(2𝜋)−
n+1
2 e−

∑︀
i (Xi−s)2/2−s2/2∫︀

R(2𝜋)
− n+1

2 e−
∑︀

i (Xi−t)2/2−t2/2dt

So

𝜇|Xi ∼ 𝒩 (

∑︀
i Xi

n + 1
,

1

n + 1
)

The MAP and L2 Bayesian estimate of 𝜇 are both �̂� =
∑︀

i Xi

n+1 .



Formula for Posterior

f𝜇|X (s) ∝ fX |𝜇=s(X )f𝜇(s)

This works for discrete 𝜇 or X as well!

Example: P uniform on [0, 1], X |P ∼ Binomial(5,P), then
fP|X (s) ∝ sX (1− s)5−X · 1, hence P|X ∼ Beta(X + 1, 6− X ).



Often in practice we build “hierarchical models” by stacking
multiple layers of Bayesian and non Bayesian models together. For
example:

𝜎2
i ∼ Γ(𝛼, 𝛽)

𝜎2 ∼ Γ(𝛼′, 𝛽′)

𝜇i ∼ 𝒩 (0, 𝜎2)

Xij ind. ∼ 𝒩 (𝜇i , 𝜎
2
i )

How would you estimate 𝜎i and 𝜇i from the values of Xij?

We will talk about models like this if we have more time at the end
of the semester.



More examples

1. t has p.d.f. ft(x) =

{︃
0 x < 0

e−x x > 0
.

P(Y = n|t) = (1− e−t)e−nt . Knowing Y , find t̂MAP and E [t|Y ].
2. a, t indep. ∼ Uniform([0, 1]). Xi |a, t i.i.d. ∼ Uniform([a, a+ t]),
find t̂MAP .
Answer: M = max(Xi ), m = min(Xi ), then:

fa,t|Xi
∝

{︃
t−n 0 ≤ a ≤ m ≤ M ≤ a+ t ≤ a+ 1

0 otherwise

So

ft|Xi
∝

{︃
t−n · (min(1,m)− (M − t)) M −min(1,m) ≤ t ≤ 1

0 otherwise

t̂MAP = min(1,
n

n − 1
(M −min(1,m)))



Review: Point estimate

I Problem: X ∼ F (Θ), want to know unknown parameter Θ.

I Solution: Build a random variable Θ̂ depending on X via:
I MOM
I MLE
I Bayesian-based methods like MAP or Bayesian point estimate
I Other methods



Hypothesis testing

I Problem: want to know if the distribution of X satisfy certain
propositions (null hypothesis), for example:
I Will anyone be infected by covid-19 2 years from now?
I Will the expectation of our midterm 2 grade be better than

midterm 1?
I Is the performance of a machine learning algorithm better than

random chance?

I Solution: Find a random variable Z (test statistics)
depending on X and a set A (critical region), and reject the
hypothesis when Z ∈ A.



I (Z ,A) is called a statistical test to null hypothesis H0.

I If Z ∈ A ⇐⇒ Z ′ ∈ A′ we consider (Z ,A) and (Z ′,A′) to be
the same test.

I If H0 completely determines P(Z ∈ A) (simple hypothesis),
p = P(Z ∈ A|H0) is called the significance level.



Example 1: Suppose your grade for midterm 1 is X1, your grade for
midterm 2 is X2, Y = X2 − X1 satisfies normal distribution with
variance 25. How do we test the null hypothesis E [Y ] = 0?

I Answer 1: Z = Y , A = (−∞,−M) ∪ (M,∞).

p = P(Y < −M ∪ Y > M|H0)

= P(Y < −M|Y ∼ 𝒩 (0, 25))

+P(Y > M|Y ∼ 𝒩 (0, 25))

= 2

∫︁ ∞

M

1√
50𝜋

e−t2/50dt

I Answer 2: Z = Y , A = (M,∞), p =
∫︀∞
M

1√
50𝜋

e−t2/50dt

I Answer 3: Z = Y , A = (−M,M), p =
∫︀M
−M

1√
50𝜋

e−t2/50dt

Which of the three is more reasonable?



Ways to evaluate a test

I Alternative hypothesis: an alternative to the null hypothesis
H0, called H1.

I P(Z ∈ A|H0) is called Significance level or type I error.

I If H1 is a simple hypothesis, P(Z ̸∈ A|H1) is called type II
error.

I If H1 is a simple hypothesis, 1− P(Z ̸∈ A|H1) = P(Z ∈ A|H1)
is called (statistical) power

I If X ∼ F (𝜃), 𝜋(𝜃) = P(Z ∈ A|𝜃) is called the power
function. If H0 : 𝜃 = 𝜃0, H1 : 𝜃 = 𝜃1, then significance is
𝜋(𝜃0) and power is 𝜋(𝜃1).

In Example 1, let Y = 𝒩 (𝜃, 25), what is the power function of the
three tests?



Example 2: Yi i.i.d. ∼ 𝒩 (𝜃, 25), H0 : 𝜃 = 0.
Example 3: Yi i.i.d. Bernoulli distribution with parameter 𝜃,
H0 : 𝜃 = 1/2.



Review

I X ∼ F (𝜃). Null hypothesis: H0 : 𝜃 = 𝜃0, alternative
hypothesis H1 : 𝜃 = 𝜃1.

I Statistical test: (Z ,A), Z : test statistics, A: critical region

I Type I error: P(Z ∈ A|H0)

I Type II error: P(Z ̸∈ A|H1)

I Power: P(Z ∈ A|H1)

I Power function: 𝜋(t) = P(Z ∈ A|𝜃 = t)



Intuition behind statistical tests

I If (Z ,A) is a test such that the significance level is very small.

I Suppose H0 is true.

I It must mean that P(Z ∈ A) is very small.

I However, in an experiment we get Z ∈ A

I Hence the assumption earlier is probably untrue.

I Hence H0 is probably false.



Example 2

Xi i = 1, . . . 6 i .i .d ., Bernoulli with P(Xi = 1) = p.
H0 : p = 0.5, H1 : p = 0.9.
Test statistics: Z =

∑︀
i Xi . A = [M, 6], M is an integer.

Then power function is:

𝜋(p) = P(Z ≥ M|p) =
6∑︁

i=M

(︂
6

i

)︂
pi (1− p)6−i

Significance is 𝜋(0.5) = 1
64

∑︀6
i=M

(︀6
i

)︀
.

Power is 𝜋(0.9) =
∑︀6

i=M

(︀6
i

)︀
(0.9)i (0.1)6−i .



I M = 6: significance=0.0156, power=0.531

I M = 5: significance=0.109, power=0.886

I M = 4: significance=0.344, power=0.984

There is trade-off between significance and power. Which M to
choose depends on the purpose of the test, in particular whether
false positive or false negative would be more costly.



Neyman-Pearson test

Recall that the likelihood function is L(x , 𝜃) = fX |𝜃(x), which is the
p.d.f. when X is continuous and p.d. when X is discrete.
The Neyman-Pearson test for H0 : 𝜃 = 𝜃0, H1 : 𝜃 = 𝜃1 is:

(X , {x : L(x , 𝜃0)/L(x , 𝜃1) ≤ k})



Example 2, Neyman-Pearson test

p0 = 0.5, p1 = 0.9

L(X1, . . . ,X6, p0) =
∏︁
i

pXi
0 (1− p0)

1−Xi =
1

46

L(X1, . . . ,X6, p1) =
∏︁
i

pXi
1 (1− p1)

1−Xi

= 0.9
∑︀

i Xi · 0.16−
∑︀

i Xi = 0.16 · 9
∑︀

i Xi



Sometimes we need to consider composite hypothesis, i.e. cases
when H0 and H1 does not completely determine the distribution of
X . Suppose H0 : 𝜃 ∈ D0, H1 : 𝜃 ∈ D1, the likelihood ratio test
becomes:

(X , {x :
sup𝜃∈D0

L(x , 𝜃)

sup𝜃∈D0∪D1
L(x , 𝜃)

≤ k})

How would you do likelihood ratio test for the following examples:

I Xi i.i.d. Bernoulli(p). H0 : p = 0.5, H1 : p ̸= 0.5.

I Xi i.i.d. 𝒩 (𝜇, 1). H0 : 𝜇 = 0, H1 : 𝜇 ̸= 0.



Review

I Because (Z ,A) and (Z ′,A′) are the same test if
Z ∈ A ⇐⇒ Z ′ ∈ A′, we sometimes don’t specify test
statistics and critical region and just call the proposition
Z ∈ A a statistical test.

I Neyman-Pearson test: fX |H0
(X )/fX |H1

(X ) ≤ k

I Likelihood ratio test: H0 : 𝜃 ∈ D0, H1 : 𝜃 ∈ D1.

sup𝜃∈D0
fX |𝜃(X )

sup𝜃∈D0∪D1
fX |𝜃(X )

≤ k

I Correction: type I error should be called the significance
level of a test.



Neyman-Pearson Lemma

Neyman-Pearson test has the highest power for given significance,
and lowest significance level for given power.
Proof in continuous case: Let X taking value in Rn, k be the
threshold of the Neyman-Pearson test with significance 𝛼. In other
words, ∫︁

fX |H0
(x)

fX |H1
(x)

≤k
fX |H0

(x)dx = 𝛼

Then its power is 𝛽0 =
∫︀

fX |H0
(x)

fX |H1
(x)

≤k
fX |H1

(x)dx .

Suppose another test (Z ,A) has significance 𝛼, then by definition
of conditional p.d.f.,∫︁

Rn

P(Z ∈ A|X )fX |H0
(x)dx = 𝛼



While the power is

∫︁
Rn

P(Z ∈ A|X )fX |H1
(x)dx

=

∫︁
fX|H0

(x)

fX|H1
(x)

≤k

P(Z ∈ A|X )fX |H1
(x)dx +

∫︁
fX|H0

(x)

fX|H1
(x)

>k

P(Z ∈ A|X )fX |H1
(x)dx

= 𝛽0 −
∫︁

fX|H0
(x)

fX|H1
(x)

≤k

P(Z ̸∈ A|X )fX |H1
(x)dx +

∫︁
fX|H0

(x)

fX|H1
(x)

>k

P(Z ∈ A|X )fX |H1
(x)dx

≤ 𝛽0 −
1

k

∫︁
fX|H0

(x)

fX|H1
(x)

≤k

P(Z ̸∈ A|X )fX |H0
(x)dx +

1

k

∫︁
fX|H0

(x)

fX|H1
(x)

>k

P(Z ∈ A|X )fX |H0
(x)dx

= 𝛽0 −
1

k

∫︁
fX|H0

(x)

fX|H1
(x)

≤k

fX |H0
(x)dx +

1

k

∫︁
Rn

P(Z ∈ A|X )fX |H0
(x)dx

= 𝛽0



Significance and p-value

X ∼ F (𝜃), H0 : 𝜃 ∈ D0.
Suppose a family of statistical tests with parameter k is X ∈ A(k).
Then:

I The significance level of the test X ∈ A(k) is
𝛼 = sup𝜃∈D0

P(X ∈ A(k)|𝜃). k ≤ k ′ =⇒ A(k) ≤ A(k ′).

I The p-value for x , which is an observed value of X , is

p = inf
k∈{k:x∈A(k)}

sup
𝜃∈D0

P(X ∈ A(k))

I Suppose the test X ∈ A(k0) has significance level 𝛼0. Then
x ∈ A(k0) (i.e. X = x results in rejection of H0 under this
test) implies that x has a p-value no larger than 𝛼0, and x has
p-value less than 𝛼0 implies that x ∈ A(k0).



Relationship between significance and p-value

Proof: Let 𝛼(k) = sup𝜃∈D0
P(X ∈ A(k)|𝜃), then because

P(X ∈ A(k)|𝜃) is non-increasing, k ↦→ 𝛼(k) is non increasing.
Furthermore, by assumption, 𝛼(k0) = 𝛼0, and
𝛼(k) > 𝛼0 =⇒ k > k0, and the p-value for x is

p = inf
k∈{k:x∈A(k)}

𝛼(k)

Suppose x ∈ A(k0), then the p-value of x is
p = infk∈{k:x∈A(k)} 𝛼(k) ≤ 𝛼(k0) = 𝛼0.
Now suppose the p-value of x is less than 𝛼0, then there is some k ′

such that x ∈ A(k ′) and 𝛼(k ′) < 𝛼0. Hence, k
′ ≤ k0,

x ∈ A(k ′) ⊂ A(k0).



Example 1: Normal approximation for large sample

Xi i.i.d., Bernoulli distribution with parameter p. H0 : p = p0,
H1 : p ̸= p0. Likelihood ratio test:∏︀

i p
Xi
0 (1− p0)

1−Xi

supp
∏︀

i p
Xi (1− p)1−Xi

≤ k

p
∑︀

i Xi

0 (1− p0)
n−

∑︀
i Xi

( 1n
∑︀

i Xi )
∑︀

i Xi (1− 1
n

∑︀
i Xi )n−

∑︀
i Xi

≤ k

log(LHS) = nX (log(p0)−log(X ))+n(1−X )(log(1−p0)−log(1−X ))

Which is non positive and 0 iff X = p0. So for k close to 1 the test
should be of the form:

|X − p0| > 𝜖



From CLT, if n >> 1, under H0,
√︁

n
p0(1−p0)

· (X − p0) has

distribution close to 𝒩 (0, 1), so the test with significance level 𝛼 is

roughly |X − p0| ≥ Φ−1(1− 𝛼/2)
√︁

p0(1−p0)
n where Φ is the cdf of

𝒩 (0, 1).
And the p-value for given X = x is

p = inf{𝛼 : |x − p0| ≥ Φ−1(1− 𝛼/2)

√︂
p0(1− p0)

n
}

= 2(1− Φ(

√︂
n

p0(1− p0)
· |x − p0|))



Suppose n = 100, p0 = 0.5, 60 of the Xi has a value of 1 and 40
has a value of 0. We want to test if H0 : p = p0 is true with a
significance level 0.05.

I Method 1: The test with significance level 0.05 is roughly

|X − p0| ≥ Φ−1(1− 0.05/2)
√︁

p0(1−p0)
n = 0.0980.

X − p0 = 0.1 which is larger than the threshold, hence we
should reject H0.

I Method 2: Calculate the p-value, we get

p = 2(1− Φ(
√︁

n
p0(1−p0)

· |X − p0|)) = 0.0455 ≤ 0.05, so we

should reject H0.



Review

I Neyman-Pearson test: fX |H0
(X )/fX |H1

(X ) ≤ k

I Likelihood ratio test: H0 : 𝜃 ∈ D0, H1 : 𝜃 ∈ D1.

sup𝜃∈D0
fX |𝜃(X )

sup𝜃∈D0∪D1
fX |𝜃(X )

≤ k

I Significance level of a test: highest possible probability of false
positive under H0. It is a increasing function of the threshold
k.

I p-value of a possible value of X : the significance level of the
test with the lowest threshold that rejects H0.

I How to test H0 with given significance level 𝛼:
I Method I: Find the threshold k corresponding to 𝛼, test the

observed value of X using threshold k .
I Method II: Find the p-value corresponding to the observed

value of X , compare it with 𝛼.



Example 2: single sample t-test

Xi i.i.d. 𝒩 (𝜇, 𝜎2), here 𝜇 and 𝜎2 are both unknown. H0 : 𝜇 = 0,
H1 : 𝜇 ̸= 0.
Likelihood ratio test:

sup𝜎2(2𝜋𝜎2)−n/2
∏︀

i e
−X 2

i /2𝜎
2

sup𝜇,𝜎2(2𝜋𝜎2)−n/2
∏︀

i e
−(Xi−𝜇)2/2𝜎2 ≤ k

Do the optimization we get the optimal 𝜇 is X , the optimal 𝜎2 in
denominator is 1

n

∑︀
i X

2
i , and the optimal 𝜎2 in the numerator is

1
n

∑︀
i (Xi −X )2 = 1

n

∑︀
i X

2
i −X

2
. (Recall examples we did in MLE).



Hence

log(LHS) = −n

2
(log(

1

n

∑︁
i

X 2
i )− log(

1

n

∑︁
i

X 2
i − X

2
)) +

n

2
− n

2

=
n

2
log(1− X

2

1
n

∑︀
i X

2
i

) = h(| X√︀
S2/n

|)

Where h(t) = n
2 log(1−

1
1+ 1

(n−1)t2

) is a decreasing function of t2.

So the LRT must be of the form

⃒⃒⃒⃒
X√
S2/n

⃒⃒⃒⃒
≥ M. From the

definition of t-distribution, we know that if

Xi ∼ 𝒩 (0, 𝜎2)

Then
(n − 1)S2/𝜎2 ∼ 𝜒(n − 1)

X/
√︁
𝜎2/n ∼ 𝒩 (0, 1)

So
X√︀
S2/n

=
X/

√︀
𝜎2/n√︀

((n − 1)S2/𝜎2)/(n − 1)
∼ t(n − 1)



For any observed value xi , let x and s2 be the sample mean and
sample variance, then the largest threshold M which yield positive
result (which corresponds to the smallest k) is:

M0 =

⃒⃒⃒⃒
⃒ x√︀

s2/n

⃒⃒⃒⃒
⃒

The p-value, which is the significance level of the test with
threshold M0, is:

p = P(

⃒⃒⃒⃒
⃒ X√︀

S2/n

⃒⃒⃒⃒
⃒ ≥ M0|

X√︀
S2/n

∼ t(n − 1))

= 2(1− T (

⃒⃒⃒⃒
⃒ x√︀

s2/n

⃒⃒⃒⃒
⃒)

Where T is the cdf of t(n − 1).



Example 3: one sided single sample t-test

Xi i.i.d. 𝒩 (𝜇, 𝜎2), here 𝜇 and 𝜎2 are both unknown. H0 : 𝜇 ≤ 0,
H1 : 𝜇 > 0.
Likelihood ratio test:

sup𝜇≤0,𝜎2(2𝜋𝜎2)−n/2
∏︀

i e
−(Xi−𝜇)2/2𝜎2

sup𝜇,𝜎2(2𝜋𝜎2)−n/2
∏︀

i e
−(Xi−𝜇)2/2𝜎2 ≤ k

The likelihood ratio is 1 if
∑︀

i Xi ≤ 0, and the same as Example 2
if
∑︀

i Xi > 0. Hence, the LRT is of the form:⃒⃒⃒⃒
⃒ X√︀

S2/n

⃒⃒⃒⃒
⃒ ≥ M and X > 0

Hence
X√︀
S2/n

≥ M



Hence, for given significant level 𝛼 we let

M = T−1(1− 𝛼)

For given value xi we can calculate the p-value as

p = 1− T (
x√︀
s2/n

)

Where x and s2 are the calculated sample mean and sample
variance.



Some conceptual questions

I Suppose a statistical test with significance level 0.05 is used
to test covid-19, null hypothesis being not having covid-19. If
your test come out positive, what do you know about your
probability of getting covid-19?

I Let p be a function that sends observed value X to a p-value.
What can you say about the c.d.f. of random variable p(X )
when H0 is true?



Midterm 2 Review

I Regular OHs: 10-11 am Tu Wed Fr, Extra OH: 5-8 pm April 6.

I Please make sure you understand the examples fully before
doing homework.

I If you find a homework problem too challenging, write down
your thought process and where you get stuck, and make sure
to read the posted solution after it is due!

I All homework grades lower than your final grades will be
replaced by your final grades.

I Please tell me to stop if there is anything you do not
understand.

I April 10 is the last day to drop the class.



Midterm 2 review

I MOM

I Bayesian-based point estimates: expectation of posterior,
MAP, etc.

I Neyman-Pearson test (the proof that it is optimal will not be
tested in the exam)

I Likelihood ratio test

I Significance, power, and p-value



How to read examples and do homework problems

When reviewing the examples, please do not focus on the
calculation part and focus on the concepts and ideas.
For example, this is part of the HW7 due yesterday:

Xi , i = 1, 2, 3 are i.i.d. with p.d.f. fXi
(x) =

{︃
0 x < 0

ce−cx x > 0
.

I Let H0 : c = 1, H1 : 0 < c < 1 or c > 1. Find the likelihood
ratio test.

I Find the threshold in the likelihood ratio test above that
makes type I error 𝛼 equals 0.01.



Relevant examples from the lectures
LRT for Xi i.i.d. 𝒩 (𝜇, 1). H0 : 𝜇 = 0, H1 : 𝜇 ̸= 0.
Likelihood under H0 is

L0 =
∏︁
i

1√
2𝜋

e−X 2
i /2 = (2𝜋)−n/2e−

∑︀
i X

2
i

2

maximum likelihood under H0 or H1 is

L1 = sup
𝜇

∏︁
i

1√
2𝜋

e−(Xi−𝜇)2/2

= sup
𝜇
(2𝜋)−n/2e−

∑︀
i (Xi−𝜇)2

2

= (2𝜋)−n/2e−
∑︀

i X
2
i −(

∑︀
i Xi )

2/n

2

So

L0/L1 = e−
(
∑︀

i Xi )
2

2n

So the likelihood ratio test must be of the form |
∑︀

i Xi | ≥ C .



Strategy for the HW problem

So, to find the LRT, find the maximal likelihood (here we are
dealing with continuous random variables, so just the joint p.d.f.)
under H0 and H0 or H1 respectively as L0(X1,X2,X3) and
L1(X1,X2,X3), and the test is L0(X1,X2,X3)/L1(X1,X2,X3) ≤ k .
For each k , the type I error is by definition

𝛼 = P(L1(X1,X2,X3)/L2(X1,X2,X3) ≤ k|H0)

Recall that to get probability of a continuous random variable on
certain range one integrate its pdf. So here integrate the joint pdf
of X1, X2 and X3 on the region defined by the LRT.



Solution to this HW problem
LRT:

L0
L1

=
e−X1 · e−X2 · e−X3

supc ce
−cX1 · ce−cX2 · ce−cX3

≤ k

So
3 + 3(log(X )− X ) ≤ log(k)

Let a < b be the two numbers such that ae−a = be−b, and∫︀
x1,x2,x3≥0,x1+x2+x3≤a e

−(x1+x2+x3)dx1dx2dx3 +∫︀
x1,x2,x3≥0,x1+x2+x3≥b e

−(x1+x2+x3)dx1dx2dx3 = 0.01, then the

threshold k is a3e3−3a. You will get full credit if you write up to
this or something equivalent to this.
One can further simplify this statement by doing the integration,
for instance, and get something like:

1

2
e−3a(9a2 + 6a+ 2)− 1

2
e−3b(9b2 + 6b + 2) = 0.99

k = a3e3−3a = b3e3−3b



Practice Midterm 2

1. X is a random variable with uniform distribution on [0, 1], Yi ,
i = 1, 2 i.i.d. conditioned at any value of X , and are of the
distribution 𝒩 (0, 1 + X ).

I Write down the joint p.d.f. of X ,Y1,Y2.

I Find the conditional distribution of X conditioned at Y1 = 1,
Y2 = 2.

I Find the conditional expectation of X when Y1 = 1, Y2 = 2.



Answer:

I fX ,Y1,Y2(x , y1, y2) ={︃
0 x ̸∈ [0, 1]

(2𝜋(1 + x))−1e−(y2
1+y2

2 )/(2+2x) x ∈ [0, 1]
.

I fX |Y1=1,Y2=2(x) =

⎧⎨⎩0 x ̸∈ [0, 1]
(2𝜋(1+x))−1e−5/(2+2x)∫︀ 1

0 (2𝜋(1+s))−1e−5/(2+2s)ds
x ∈ [0, 1]

I
∫︀ 1
0 (2𝜋(1+s))−1se−5/(2+2s)ds∫︀ 1
0 (2𝜋(1+s))−1e−5/(2+2s)ds

.



2. Xi , i = 1, . . . , n i.i.d. with p.d.f. f (x) = ae−2a|x−b|. Find the
estimate of a and b using method of moments.
Answer:

b̂ =
1

n

∑︁
i

Xi

b̂2 +
1

2â2
=

1

n

∑︁
i

X 2
i

So

â =

√︃
1

2( 1n
∑︀

i X
2
i − 1

n2
(
∑︀

i Xi )2)



3. Xi , i = 1, 2, 3 i.i.d., H0 is that they are standard normal, H1 is
that they are uniform on [0, 1].

I Find the Neyman-Pearson test.

I What is the smallest possible type I error for a
Neyman-Pearson test that has non-zero power?

Answer: The Neyman-Pearson test is:

(2𝜋)−3/2e−
1
2

∑︀
i X

2
i ≤ k ,Xi ∈ [0, 1]

To make sure that the power is non-zero, we must let

k > min
Xi∈[0,1]

(2𝜋)−3/2e−
1
2

∑︀
i X

2
i = (2𝜋)−3/2e−3/2



Hence the type I error

𝛼 =

∫︁
xi∈[0,1],

∑︀
i x

2
i ≥−2 log((2𝜋)3/2k)

(2𝜋)−3/2e−
1
2

∑︀
i x

2
i dx1dx2dx3

decreases as k decreases. The function being integrated is
bounded, and the region of integration has area that goes to 0 as
k goes to (2𝜋)−3/2e−3/2, hence the type I error can be as close to
0 as one wants.



4. Xi , i = 1, 2, . . . n i.i.d. and are discrete random variables taking
value on {−2,−1, 1, 2}. H0: P(Xi = n) = P(Xi = −n) for all n,
H1: P(Xi = n) ̸= P(Xi = −n) for some n.

I Find the likelihood ratio test.

I Find the p-value for the observation: X1 = −1, X2 = −1,
X3 = −2, X4 = 2.

I Find a sequence Xi with the smallest possible n and a p-value
less than 0.05.



Answer: Let n−2, n−1, n1 and n2 be the number of Xi taking value
at −2, −1, 1, and 2 respectively. The likelihood ratio test is:

supp+q=1(p/2)
n−2+n2(q/2)n−1+n1

supa+b+c+d a
n−2bn−1cn1dn2

≤ k

In other words,

(n−2 + n2) log(
n−2 + n2

2
) + (n−1 + n1) log(

n−1 + n1
2

)

−n−2 log(n−2)− n−1 log(n−1)− n1 log(n1)− n2 log(n2) ≤ log k

Here 0 log 0 = 0.



When n = 4, n−2 = 1, n2 = 1, n−1 = 2, n1 = 0, the left-hand-side
of the inequality above becomes −2 log 2. So the smallest possible
k is 1/4. Now we find out the possible cases where the likelihood
ratio is no larger than 1/4: Assuming
p/2 = P(Xi = 2) = P(Xi = −2),
q/2 = P(Xi = 1) = P(Xi = −1).

1. If n1 + n−1 = n2 + n−2 = 2, the likelihood ratio is 1/4 if one
of the ni is 2, 1/16 if two of them are 2. Total probability is
(p/2)2(q/2)2 4!

1!1!2! · 2 · 2 + 22 · 4!
2!2! = 72(p/2)2(q/2)2.

2. If n1 + n−1 = 1, n2 + n−2 = 3, the likelihood ratio is no larger
than 1/4 iff one of the nj is 3. Total probability is
(p/2)3(q/2) · 2 · 2 · 4.

3. Similarly, if n1 + n−1 = 3, n2 + n−2 = 1, we get
(p/2)(q/2)3 · 2 · 2 · 4.

4. Lastly, if n2 + n−2 = 4 or n1 + n−1 = 4, the only possibility for
getting likelihood ratio less than 1/4 is if one of the nj is 4.
So, total probability is ((p/2)4 + (q/2)4) · 2



So, total probability is 9p2q2

2 + (p3q + pq3) + p4+q4

8 . The minimum
is taken at p = q = 1/2, so the p-value is
9/32 + 1/8 + 1/64 = 27/64.
For every n, it is evident that the smallest k is 2−n and it is
obtained when either n1 or n−1 is 0, either n2 or n−2 is 0. Hence,
the total probability for that is∑︀n−1

i=1 22
(︀n
i

)︀
(p/2)i (q/2)n−i + 2(p/2)n + 2(q/2)n =

22(p/2 + q/2)n − 2(p/2)n − 2(q/2)n = 2−n+2 − 2−n+1(pn + qn).
So the maximum is obtained when p = q = 1

2 , and is
2−n+2 − 2−2n+2. Hence the smallest n is 6. We can pick this
sequence 1, 1, 1, 1, 1, 1, the p-value is 2−4 − 2−6 = 3

64 < 0.05.



Example: Xi , i = 1, 2 independent and normal, with same variance
and expectations 𝜇 and 2𝜇 respectively.

I If variance is 1 and 𝜇 has 𝒩 (0, 1/𝜆) prior, what is its
posterior?

I H0 : 𝜇 = 0, and H1 : 𝜇 ̸= 0. Find the likelihood ratio test and
p-value.



Answer:

I f𝜇|Xi
(t) ∝ e−t2𝜆/2e−

∑︀
k (Xk−kt)2/2, so 𝜇|Xi ∼ 𝒩 (X1+2X2

5+𝜆 , 1
5+𝜆).

(this prior is call the prior for ridge regression or L2

regularization)

I LRT:
sup𝜎(2𝜋𝜎

2)−1e−
∑︀

k X
2
k /2𝜎

2

sup𝜎,𝜇(2𝜋𝜎
2)−1e−

∑︀
k (Xk−k𝜇)2/2𝜎2 ≤ k

log(LHS) = (− log(

∑︀
k X

2
k

2
)− 1)

−(− log(

∑︀
k(Xk − k

(︁∑︀
k kXk

5

)︁
)2

2
)− 1)

So the LRT is of the form:∑︀
k(Xk − k

(︁∑︀
k kXk

5

)︁
)2∑︀

k X
2
k

=
(2X1 − X2)

2

(X1 + 2X2)2 + (2X1 − X2)2
≤ C



Which is equivalent to

(2X1 − X2)
2

(X1 + 2X2)2
≤ M

Where M/(1 +M) = C . It is easy to see that under H0, the test

statistics (2X1−X2)2

(X1+2X2)2
∼ F (1, 1). So the p-value when X1 = x1,

X2 = x2 is p = FF (1,1)(
(2x1−x2)2

(x1+2x2)2
).



Midterm 2

Mean and Median: about 70

1. Xi , i = 1, 2, . . . , n are i.i.d. random variables that satisfies
normal distribution with expectation 𝜆 and variance 1 + 𝜆.

I Find the MOM estimate for 𝜆. (10 points)

I Is the MOM estimate for 𝜆 biased or unbiased? (10 points)

Answer: �̂�MOM = 1
n

∑︀
i Xi . Yes.



2. c has uniform distribution on [1, 2], Xi , i = 1, 2, are
conditionally i.i.d. for given value of c , and has conditional p.d.f.
of the form fXi |c(x) = ce−2c|x |.

I Find the conditional p.d.f. of c when X1 = 1, X2 = −2. (10
points)

I Find the MAP estimate for c when X1 = 1, X2 = −2. In
other words, find the value ĉMAP that maximizes the
conditional p.d.f. you calculated above. (10 points)

I Find the conditional expectation of c when X1 = 1, X2 = −2.
(10 points)

Answer: fc|X1=1,X2=−2(x) =

{︃
0 x < 1 or x > 2

108x2e−6x

25e−6−85e−12 1 ≤ x ≤ 2
.

ĉMAP = 1, and the conditional expectation is 61e−6−373e−12

50e−6−170e−12 .



3. Random variable X has p.d.f.

f (x) = 1√
2𝜋

(︁
ce−(x+1)2/2 + (1− c)e−(x−1)2/2

)︁
. Here 0 ≤ c ≤ 1.

Let H0 : c = 0, H1 : c > 0.

I Find the likelihood ratio test. (10 points)

I If the threshold for likelihood ratio in the test above is set to
be 0.5, calculate the significance level. (10 points)

Answer: LRT is e−(x−1)2/2

supc(ce−(x+1)2/2+(1−c)e−(x−1)2/2)
≤ k . In the

denominator, the optimal c is 1 if x > 0 and 0 if x < 0. Hence, if
k = 1 then x can be anything, if 0 < k < 1 then x ≤ 1

2 log(k). If
k = 0.5, the significance level is F (−1− log(2)/2) where F is the
c.d.f. of standard normal.



4. Xi , i = 1, 2 are i.i.d. random variables taking values in {1, 2, 3}.
Null hypothesis H0 is P(Xi = 1) = P(Xi = 2) = P(Xi = 3) = 1

3 ,
and alternative hypothesis H1 is P(Xi = k) = k/6 for k = 1, 2, 3.

I Write down the Neyman-Pearson test for this problem. (10
points)

I Calculate the p-value for X1 = X2 = 3. (10 points)

I Find the threshold for the Neyman-Pearson test that
minimizes that sum of false positive (probability of rejecting
H0 when H0 is true) and false negative (probability of not
rejecting H0 when H1 is true). (10 points)



Answer: Likelihood ratio for choices of possible values of Xi are

X2∖X1 1 2 3
1 4 2 4/3
2 2 1 2/3
3 4/3 2/3 4/9

So the N-P test for different threshold r , as well as the type I and II errors, are:

threshold test type I error type II error
r < 4/9 ∅ 0 1

4/9 ≤ r < 2/3 X1 = X2 = 3 1/9 3/4
2/3 ≤ r < 1 X1 + X2 ≥ 5 1/3 5/12
1 ≤ r < 4/3 X1 > 1, X2 > 1 4/9 11/36
4/3 ≤ r < 2 X1 + X2 ≥ 4 2/3 5/36
2 ≤ r < 4 X1 + X2 ≥ 3 8/9 1/36

r ≥ 4 everything 1 0

The p-value for X1 = X2 = 3 is 1/9, and the threshold that minimize the sum of two types of errors is in the
range [2/3, 4/3).



How to use a given statistical test

Some common hypothesis testing problems have well known tests,
which are usually either LRT or approximated LRT. We will
illustrate via examples how to use some of the tests in Chapter 13
of the textbook.
Usually a statistical test is stated as follows:
Testing H0 against H1, test statistics z = z(X ), critical region
of size (significance level) 𝛼 is z ∈ D𝛼.



For example, for the One sample, One sided t-test:
X1, . . .Xn, i.i.d. ∼ 𝒩 (𝜇, 𝜎2). Testing 𝜇 ≤ 0 against 𝜇 > 0.

Test statistics t = X√
S2/n

Critical region t ≥ T−1(1− 𝛼),

where T is the cdf of t(n − 1).
To make use of it, say n = 5 and Xi are −1, 0, 1, 2, 1. The t
statistics can be calculated as 1.1767. T−1(1− 0.05) = 2.1318, so
we can not reject H0 when significance level is chosen to be 0.05.
The minimal 𝛼 such that 1.1767 is in the critical region is
1− T (1.1767) = 0.1523, so the p-value is 0.1523.
If Xi are 0, 1, 2, 3, 4 however, t = 2.8284 ≥ 2.1318, so reject H0

under significance level 0.05. The p-value is 0.0237.



Sometimes we make use of a test indirectly by transforming the
observed random variables: from some observed random variables
X , we build random variables Y , and use a known test on Y . For
example: Xi i = 1, . . . 10 i.i.d. 𝒩 (𝜇1, 𝜎

2
1), Yi , i = 1, . . . 10, i.i.d.

𝒩 (𝜇2, 𝜎
2
2), Xi and Yj are all independent. Want to test if 𝜇1 = 𝜇2.

One way to do so would be to consider Zi = Xi − Yi , which are
i.i.d.normal, and test if their expectation is 0.
This approach usually won’t give us the most powerful test as we
are losing information during the transformation. However in many
situations this is good enough.



Some commonly used statistical tests

Xi i.i.d. i = 1, . . . , n, ∼ 𝒩 (𝜇, 𝜎2).

I Test 𝜇 = 𝜇0 against 𝜇 ̸= 𝜇0. t =
X−𝜇0√
S2/n

, critical region

|t| ≥ F−1
t(n−1)(1− 𝛼/2), where Ft(n−1) is the c.d.f. of t(n− 1).

I Test 𝜇 ≤ 𝜇0 against 𝜇 > 𝜇0, same t as above, critical region
t ≥ F−1

t(n−1)(1− 𝛼, n − 1).

I Test 𝜎2 = 𝜎2
0: 𝜒

2 = (n − 1)S2/𝜎2
0, critical region

𝜒2 ∈ (−∞,F−1
𝜒(n−1)(𝛼/2)] ∪ [F−1

𝜒(n−1)(1− 𝛼/2),∞)

I Test 𝜎2 ≤ 𝜎2
0 against 𝜎2 > 𝜎2

0: 𝜒 same as above, critical
region 𝜒2 ≥ F−1

𝜒(n−1)(1− 𝛼).

I Test 𝜎2 ≥ 𝜎2
0 against 𝜎2 < 𝜎2

0: 𝜒 same as above, critical
region 𝜒2 ≤ F−1

𝜒(n−1)(𝛼).



Xi , i = 1, . . . n1 i.i.d. 𝒩 (𝜇1, 𝜎
2
1), Yi i = 1, . . . n2 i.i.d. 𝒩 (𝜇2, 𝜎

2
2),

Xi , Yj indep.

I Test for 𝜇1 = 𝜇2 against 𝜇1 ̸= 𝜇2, knowing 𝜎2
1 and 𝜎2

2.
z = x−y√

𝜎2
2/n1+𝜎2

2/n2
. Critical region |z | ≥ F−1

𝒩 (0,1)(1− 𝛼/2).

I If 𝜎2
i unknown but number of samples is large, can

approximate them with S2.

I 𝜎2
1 = 𝜎2

2 but unknown, test 𝜇1 = 𝜇2 against 𝜇1 ̸= 𝜇2:

t =
X − Y√︂

(1/n1 + 1/n2) ·
(︁
(n1−1)S2

X+(n2−1)S2
Y

n1+n2−2

)︁
Critical region |t| ≥ F−1

t(n1+n2−2)(1− 𝛼/2).

I One sided tests are similar.



Xi , i = 1, . . . n1 i.i.d. 𝒩 (𝜇1, 𝜎
2
1), Yi i = 1, . . . n2 i.i.d. 𝒩 (𝜇2, 𝜎

2
2),

Xi , Yj indep.

I Testing 𝜎2
1 = 𝜎2

2 against 𝜎2
1 ̸= 𝜎2

2. f = S2
X/S

2
Y . Critical region

f ∈ (0,F−1
F (n1−1,n2−1)(𝛼/2)] ∪ [F−1

F (n1−1,n2−1)(1− 𝛼/2),∞).

I One sided tests are similar.

One can check by calculation that all these tests have the
significance level 𝛼.



Pearson’s 𝜒2 test
Xi i.i.d. taking values at {1, 2, . . .m}. Test for null hypothesis:
P(X = j) = ej , where ej = f (j , 𝜃1, . . . , 𝜃k). Let nj be the number
of Xi taking value j . Then likelihood ratio test gives:

sup𝜃1,...,𝜃k
∏︀

j e
nj
j

suppj ,
∑︀

j pj=1

∏︀
j p

nj
j

≤ k

The optimal pj is nj/n where n =
∑︀

j nj . So

log(LHS) =
∑︁
j

nj(− log(
nj/n

êj
)) =

∑︁
j

nj(− log(1 +
nj − nêj

nêj
))

Here êj is the MLE of ej .
Taylor expansion at nj = nej , we get approximated LRT:∑︁

j

(nj − nêj)
2

nêj
≥ m

When n is large, and with some additional assumptions, the test
statistics ∼ 𝜒2(m − k − 1).



Examples of Pearson’s 𝜒2 test:

I Xi takes value in {1, 2, 3, 4}. To test if
P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = 1/4,

consider 𝜒2 =
∑︀4

j=1
(nj−n/4)2

n/4 satisfies 𝜒2(3), so critical region

is 𝜒2 ≥ F−1
𝜒2(3)

(1− 𝛼).

I Xi , Yi taking values in {0, 1}, (Xi ,Yi ) i.i.d. Want to test if Xi

and Yi are independent. Consider the random variable
Zi = 2Xi + Yi + 1, then Zi takes value at 1, 2, 3, 4, and this is
the same as testing if

P(Zi = k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ab k = 1

a(1− b) k = 2

(1− a)b k = 3

(1− a)(1− b) k = 4

MLE: â = n1+n2
n , b̂ = n1+n3

n . Use Pearson’s 𝜒2 test, there is 1
degrees of freedom.



The final exam is open book, so there is no need to
memorize the tests! You just need to know how to
use a given statistical test.



Confidence interval

Setting: X has p.d.f. (or p.d.) f (x , 𝜃), where 𝜃 is unknown.

I Point estimate: find a random variable 𝜃 based on X , which
is close to 𝜃.

I Hypothesis testing: given 𝜃0, we can tell how unlikely it is to
get the observed value of X if 𝜃 = 𝜃0.

I Confidence interval is related to both of these concepts:
I Conceptually, confidence interval is an extension of point

estimate: this is a random variable taking value in the set of
sets, such that 𝜃 is in it with probability 1− 𝛼.

I Mathematically, confidence intervals are equivalent to certain
types of statistical tests.



Definition of confidence interval

X has p.d.f. (or p.d.) f (x , 𝜃), where 𝜃 is unknown.
The 1− 𝛼-confidence interval of 𝜃 is a set I (X ) depending on X ,
such that for any possible value of 𝜃, P(𝜃 ∈ I (X )|𝜃) = 1− 𝛼.
Here, as in hypothesis testing, P(𝜃 ∈ I (X )|𝜃) does not necessarily
mean conditional probability. It means the probability after we fix
the value of 𝜃.
Equivalence between confidence intervals and statistical tests:

I If X ∈ D(𝜃0) is a statistical test of the null hypothesis
H0 : 𝜃 = 𝜃0, which has significance level 𝛼. Then
I (X ) = {𝜃0 : X ̸∈ D(𝜃0)} is a 1− 𝛼 confidence interval for 𝜃.

I If I (X ) is a 1− 𝛼 confidence interval for X , then 𝜃0 ̸∈ I (X ) is
a statistical test of the null hypothesis H0 : 𝜃 = 𝜃0.



In some textbooks the CI is defined as P(𝜃 ∈ I (X )|𝜃) ≥ 1− 𝛼,
then, they should correspond to statistical tests of significance level
≤ 𝛼. They will not be the focus of this course, but in case we need
to mention them in examples, let’s call them CI with confidence
level at least 1− 𝛼.



Proof of equivalence

I Suppose P(X ∈ D(𝜃)|𝜃) = 𝛼. Let

I (X ) = {𝜃 : X ̸∈ D(𝜃)}

then
P(𝜃 ∈ I (X )|𝜃) = P(X ̸∈ D(𝜃)|𝜃)

= 1− P(X ∈ D(𝜃)|𝜃) = 1− 𝛼

I Suppose P(𝜃 ∈ I (X )|𝜃) = 1− 𝛼. Let

D(𝜃0) = {X : 𝜃0 ̸∈ I (X )}

Then
P(X ∈ D(𝜃)|𝜃) = P(𝜃 ̸∈ I (X )|𝜃)

= 1− P(𝜃 ∈ I (X )|𝜃) = 𝛼



Example 1
X normal distribution with expectation 𝜇 and variance 1. Find the 0.95
confidence interval for 𝜇.
Likelihood ratio test for H0 : 𝜇 = 𝜇0 against H1 : 𝜇 ̸= 𝜇0:

e−(X−𝜇0)
2/2

sup𝜇 e−(X−𝜇)2/2
≤ k

The optimal 𝜇 is X , so the LRT is

|X − 𝜇0| ≥
√︀

−2 log(k)

Let Φ be the c.d.f. of standard normal distribution. The significance level is the
probability of success under null hypothesis, and under null hypothesis, X − 𝜇0

is standard normal. So,

𝛼 = 2(1− Φ(
√︀

−2 log(k)))

So the test
|X − 𝜇0| ≥ Φ−1(0.975)

Is a test with significance level 𝛼, the confidence interval is

I (X ) = {𝜇 : |X − 𝜇| ≤ Φ−1(0.975)} = [X − Φ−1(0.975),X +Φ−1(0.975)]



One sided confidence interval
Sometimes we want the confidence interval to be one sided, like
I = [a(X ),∞). The statistical test associated to it should be
mu < a(X ), in other words, it should only reject null hypothesis
𝜇 = 𝜇0 if 𝜇0 is too small. Hence, let’s consider H0 : 𝜇 = 𝜇0 and
H1 : 𝜇 > 𝜇0, then the LRT becomes

e−(X−𝜇0)2/2

sup𝜇≥𝜇0
e−(X−𝜇)2/2

≤ k

So the optimal 𝜇 is 𝜇0 if X ≤ 𝜇0, X if X > 𝜇0. So the test is

X − 𝜇0 ≥
√︀

−2 log(k)

When k < 1, and everything when k = 1. So

𝛼 = 0.05 = 1− Φ(
√︀

−2 log(k))

X − 𝜇0 ≥ Φ−1(0.95)

I (X ) = {𝜇 : X − 𝜇 ≤ Φ−1(0.95)} = [X − Φ−1(0.95),∞)



I As an exercise, read Chapter 11 and Chapter 13. For every
statistical test in 13.2-13.6, find the corresponding confidence
interval, if there are any, from 11.2-11.7.

I True or false: suppose based on the statistics up to today, the
reproductive number R0 of covid-19 has a 95% confidence
interval [2.1, 2.5]. Then the probability of R0 being between
2.1 and 2.5 is 0.95.

I True or false: suppose after the covid-19 outbreak we found a
very good model for estimating the R0 of an epidemic, and
this model gives a 95% confidence interval. Then, the
probability of R0 lying in this confidence interval is 0.95.



Example 2

X1, X2 i.i.d. with uniform distribution on [a− 1/2, a+ 1/2]. Find
d such that [X − d ,X + d ] is a 95% confidence interval, and find
the corresponding statistical tests.
X has p.d.f.

fX (x) =

{︃
0 x ̸∈ [a− 1/2, a+ 1/2]

4|x − a| x ∈ [a− 1/2, a+ 1/2]

Because a ∈ [X − d ,X + d ] iff X ∈ [a− d , a+ d ],

0.95 = P(a ∈ [X−d ,X+d ]|a) = P(X ∈ [a−d , a+d ]|a) =
∫︁ a+d

a−d
fX (s)ds

So d = 1/2−
√︀
1/80. The test for H0 : a = a0 is

a0 ≤ X − 1/2 +
√︀
1/80 or a0 ≥ X + 1/2−

√︀
1/80.



Remark: Bayesian analogy of hypothesis testing and
confidence interval

One can create some analogy of hypothesis testing and confidence
interval under Bayesian statistics as well, which is conceptually
much simpler but completely different from the ones we learn in
the non-Bayesian setting:

I Recall that the output of Bayesian statistics is the posterior,
i.e. conditional distribution of 𝜃 conditioned at X .

I For a hypothesis H : 𝜃 ∈ D, we can calculate its probability
under this posterior P(𝜃 ∈ D|X ), and reject it when this
probability is small.

I The 1− 𝛼-credible interval is J(X ) such that
P(𝜃 ∈ J(X )|X ) = 1− 𝛼.

This slide will not be in the exam.





Review of LRT, significance level, p value
Likelihood ratio test:
X has p.d.f. (or p.d.) f (x , 𝜃), H0 : 𝜃 ∈ D0, H1 : 𝜃 ∈ D∖D0.
The LRT is:

L0(X )/L1(X ) ≤ k

Where
L0(X ) = sup

𝜃∈D0

f (X , 𝜃), L1(X ) = sup
𝜃∈D

f (X , 𝜃)

And k is an arbitrary threshold parameter. The significance level is

𝛼 = sup
𝜃∈D0

P(L0/L1 ≤ k |𝜃)

For X = x , we find the smallest k that rejects H0, which is
km = L0(x)/L1(x). The significant level for the LRT with
threshold km is called the p-value for x :

p = sup
𝜃∈H0

P(L0(X )/L1(X ) ≤ km|𝜃)



Example: X has p.d.f. f (x) =

{︃
0 x ̸∈ [0, 1]

1 + c(x − 1/2) x ∈ [0, 1]
.

c ∈ [−2, 2]. H0 : c = 0, H1 : c ̸= 0.

L0(X ) =

{︃
1 X ∈ [0, 1]

0 X ̸∈ [0, 1]
, L1(X ) =

{︃
1 + 2|X − 1/2| X ∈ [0, 1]

0 X ̸∈ [0, 1]

LRT:
1/(1 + 2|X − 1/2|) ≤ k

|X − 1/2| ≥ 1/(2k)− 1/2

If k = 2/3, the above becomes |X − 1/2| ≥ 1/4. Under null
hypothesis X is uniform on [0, 1], so the significance level is
𝛼 = P(|X − 1/2| ≥ 1/4) = P(X ∈ [0, 1/4] ∪ [3/4, 1]) = 1/2.



If X = 2/3, the minimal k , km, satisfies

1/6 = 1/(2km)− 1/2

So the LRT with threshold km is:

|X − 1/2| ≥ 1/6

The significance level for this test is

𝛼pm = 2/3

And the p-value is
p = 𝛼pm = 2/3



Review for CI

X ∼ F (𝜃).

I Definition: An CI with 1− 𝛼 confidence level is a random set
I (X ) depending on X , such that P(𝜃 ∈ I (X )|𝜃) = 1− 𝛼 .

I If there is a statistical test for 𝜃 = 𝜃0 with significance level 𝛼
of the form X ∈ D(𝜃0), then I (X ) = {𝜃 : X ̸∈ D(𝜃0)} is a
1− 𝛼 CI.

I If I (X ) is a 1− 𝛼 CI, 𝜃0 ̸∈ I (X ) is a test for 𝜃 = 𝜃0 with
significance level 𝛼.

I Sometimes we want I (X ) to be one-sided, e.g. of the form
[A(X ),∞). Hence the corresponding statistical test must be
of the form 𝜃0 ≤ 𝛼(X ). In other words, the null hypothesis
can be rejected is only if 𝜃0 is too small, i.e. when 𝜃0 < 𝜃.
Hence the power function of the test must be no more than 𝛼
on (−∞, 𝜃0], and one can pick the alternative hypothesis as
𝜃0 < 𝜃.



In practice we often use the following definitions, which will NOT
be in the HW or exam:
X ∼ F (𝜃).

I Definition: An CI with confidence level bounded by 1− 𝛼 is a
random set I (X ) depending on X , such that
P(𝜃 ∈ I (X )|𝜃) ≥ 1− 𝛼 .

I If there is a statistical test for 𝜃 = 𝜃0 with significance level
≤ 𝛼 of the form X ∈ D(𝜃0), then I (X ) = {𝜃 : X ̸∈ D(𝜃0)} is
a CI with CL bounded by 1− 𝛼.

I If I (X ) is a CI with CL bounded by 1− 𝛼, 𝜃0 ̸∈ I (X ) is a test
for 𝜃 = 𝜃0 with significance level ≤ 𝛼.



Example 1: normal approximation of binomial distribution
X ∼ B(n, p), n >> 1, p not too close to 0 or 1. Want CI of p.
From what we learned some weeks ago, we have an approximated
LRT based on CLT which says that the test for p = p0 against
p ̸= p0 with significance level 𝛼 is

|X/n − p0| ≥
√︂

p0(1− p0)

n
· Φ−1(1− 𝛼/2)

Where Φ is the cdf of standard normal.
So the approximated 1− 𝛼 CI is

{p : |X/n − p| ≤
√︂

p(1− p)

n
· Φ−1(1− 𝛼/2)} = [p1, p2]

Where

X/n − p1 =

√︂
p1(1− p1)

n
· Φ−1(1− 𝛼/2)

p2 − X/n =

√︂
p2(1− p2)

n
· Φ−1(1− 𝛼/2)



Because n >> 0, p1, p2 ≈ X/n, we have

[p1, p2] = [X/n −
√︂

X (n − X )

n3
· Φ−1(1− 𝛼/2),

X/n +

√︂
X (n − X )

n3
· Φ−1(1− 𝛼/2)]



Example 2: Exponential distribution

X has p.d.f. f (x) =

{︃
ce−cx x ≥ 0

0 x ≤ 0
. Find the one sided CI of the

form (0,A].
LRT with H0 : c = c0 and H1 : c < c0.

c0e
−c0X

supc≤c0 ce
−cX

≤ k

If X ≤ 1/c0 the LHS is 1, if X > 1/c0, the optimal c in
denominator is 1/X , and we get

log(c0)− Xc0 ≤ log(k)− log(X )− 1

c0X − log(X ) ≥ log(c0) + 1− log(k)



The LHS is an increasing function, so the test must be of the form
X ≥ M. If we want the significance level to be 𝛼,

𝛼 = P(X ≥ M|c = c0) =

∫︁ ∞

M
f (s)ds

So M = − log(𝛼)/c0. The one sided CI is now

{c : X ≤ − log(𝛼)/c} = (0,− log(𝛼)/X ]



Example 3: Making use of the t-, 𝜒2-, F - . . . tests

Suppose there are 2 independent i.i.d. normal samples Xi ,
i = 1, . . . n1, Yj , j = 1, . . . n2, with variance 𝜎2

1 and 𝜎2
2 respectively.

Want the one sided CI of 𝜎2
1/𝜎

2
2 of the form (0,A].

H0 : 𝜎
2
1/𝜎

2
2 = r , H1 : 𝜎

2
1/𝜎

2
2 < r . Let Y ′

j = r1/2Yj , then the test is
for Var(Xi ) = Var(Y ′

j ) against Var(Xi ) ≤ Var(Y ′
j ), use one sided

F-test with significance level 𝛼 is:

S2
X/S

2
Y ′ = S2

X/(rS
2
Y ) ≤ F−1

F (n1−1,n2−1)(𝛼)



So CI with CL 1− 𝛼 is

{r : S2
X/(rS

2
Y ) ≥ F−1

F (n1−1,n2−1)(𝛼)}

= (0,
S2
X

S2
Y F

−1
F (n1−1,n2−1)(𝛼)

]

In the textbook they used the relationship
F−1
F (n1−1,n2−1)(𝛼) = (F−1

F (n2−1,n1−1)(1− 𝛼))−1

The CI for other tests are analogous.



More approximated CI via CLT

When n1 >> 1, n2 >> 1, CLT allow us to do normal
approximation for the 𝜒2 distribution. This can also be used to
derive approximated CI for the ratio of variance:
By definition, 𝜒2(k) is the squared sum of k standard normal, so
CLT tells us, if X ∼ 𝜒2(k), when k → ∞, X−k√

2k
→ standard

normal.

(n1 − 1)S2
X

𝜎2
1

∼ 𝜒2(n1 − 1)



So
(n1 − 1)(S2

X − 𝜎2
1)

𝜎2
1

√
2n1 − 2

→ 𝒩 (0, 1)

Similarly
(n2 − 1)(S2

Y − 𝜎2
2)

𝜎2
2

√
2n2 − 2

→ 𝒩 (0, 1)

Hence the distribution of S2
X − rS2

Y is approximately

𝒩 (𝜎2
1 − r𝜎2

2,
2𝜎4

1

n1 − 1
+

2𝜎4
2

n2 − 1
)

≈ 𝒩 (𝜎2
1 − r𝜎2

2,
2S4

X

n1 − 1
+

2r2S4
Y

n2 − 1
)

So the test is

S2
X − rS2

Y ≤ Φ−1(1− 𝛼)

√︃
2S4

X

n1 − 1
+

2r2S4
Y

n2 − 1



You can now use this to get a corresponding approximated CI
(0, rm], where

S2
X − rmS

2
Y = Φ−1(1− 𝛼)

√︃
2S4

X

n1 − 1
+

2r2mS
4
Y

n2 − 1

Review for statistical testing and CI:

I Find statistical test and finding CI are equivalent.
I Common ways to find a statistical test:

I Neyman-Pearson Lemma
I Likelihood ratio test
I Use known tests
I Transform the random variables then use known tests



Resampling techniques

If Xi i.i.d., distribution has some parameter 𝜃, n >> 1. Suppose,
via CLT or some other means, we can get a point estimate 𝜃 such
that its distribution converges to some 𝒩 (𝜃, 𝜎2) as n → ∞. Then,
one can get CI for 𝜃 by estimating 𝜃 using {X1, . . .Xm},
{Xm+1, . . . ,X2m}, . . . and do t-test for the resulting i.i.d. normal
random variables.
Some commonly used resampling techniques:

I Bootstraping, bagging

I Jackknife

I Cross validation

I U-statistics

I . . .



Linear Regression

Setting: x1, . . . xn real numbers, Y1, . . .Yn independent,
Yi ∼ 𝒩 (cxi , 𝜎

2). How do we estimate c and 𝜎2?



(1) MLE for c and 𝜎2

Likelihood function:

L =
∏︁
i

fYi
(Yi ) = (2𝜋𝜎2)−n/2e−

∑︀
i (Yi−cxi )

2/(2𝜎2)

log(L) = −n

2
(log(2𝜋) + log(𝜎2))− 1

2𝜎2

∑︁
i

(Yi − cxi )
2

𝜕

𝜕c
log(L) = − 1

2𝜎2

∑︁
i

(2xiYi − 2cx2i )

ĉMLE =

∑︀
i xiYi∑︀
i x

2
i

𝜕

𝜕𝜎2
log(L) = − n

2𝜎2
+

1

2𝜎4

∑︁
i

(Yi − cxi )
2

𝜎2
MLE =

1

n

∑︁
i

(Yi − ĉMLExi )
2 =

1

n
(
∑︁
i

Y 2
i − (

∑︁
i

xiYi )
2/

∑︁
i

x2i )



(2) Prior on c , knowing 𝜎2 = 1

Suppose 𝜎2 = 1, c has a prior 𝒩 (0, 𝜆).
Posterior will be proportional to

g(c) =
1√
2𝜋𝜆

e−c2/(2𝜆)(2𝜋)−n/2e−
∑︀

i (Yi−cxi )
2/2

So

c |Yi ∼ 𝒩 (

∑︀
i XiYi∑︀

i x
2
i + 1/𝜆

, (
∑︁
i

x2i + 1/𝜆)−1)



(3) Prior on c and 𝜎2

Suppose 𝜎2 has a prior f (s) =

{︃
𝛼e−𝛼s s ≥ 0

0 s < 0
, c has a prior

𝒩 (0, 𝜆𝜎2).
Posterior will be proportional to

g(c , 𝜎2) =
𝛼√
2𝜋𝜆

e−c2/(2𝜆𝜎2)e−𝛼𝜎2
(2𝜋𝜎2)−n/2e−

∑︀
i (Yi−cxi )

2/(2𝜎2)

MAP estimate:

ĉMAP =

∑︀
i XiYi∑︀

i x
2
i + 1/𝜆

𝜎2
MAP =

2(
∑︀

i (Yi − ĉMAPxi )
2 + ĉ2MAP/𝜆)

n +
√︁
n2 + 8𝛼(

∑︀
i (Yi − ĉMAPxi )2 + ĉ2MAP/𝜆)

Similarly we can calculate the expectation of c and 𝜎2 under
posterior distribution. It is evident that E [c|Yi ] = ĉMAP .

E [𝜎2|Yi ] =

∫︀∞
0 d𝜎2

∫︀∞
−∞ 𝜎2g(c , 𝜎2)∫︀∞

0 d𝜎2
∫︀∞
−∞ g(c , 𝜎2)



(4) Test for hypothesis H0 : c = 0 against H1 : c ̸= 0,
knowing 𝜎2 = 1

LRT:
(2𝜋)−n/2e−

∑︀
i Y

2
i /2

supc(2𝜋)
−n/2e−

∑︀
i (Yi−cxi )2/2

≤ k

The optimal c is
∑︀

i xiYi∑︀
i x

2
i

from (1), so

−
∑︁
i

Y 2
i +

∑︁
i

(Yi −
∑︀

i xiYi∑︀
i x

2
i

· xi )2 ≤ 2 log k

(
∑︀

i xiYi )
2∑︀

i x
2
i

≥ −2 log k

So the test should be

|
∑︁
i

xiYi | ≥ M



Under null hypothesis
∑︀

i xiYi ∼ 𝒩 (0,
∑︀

i x
2
i ), so significance level

is

𝛼 = 2(1− F𝒩 (0,1)(
M√︁∑︀

i x
2
i

))

The test with significance level 𝛼 should be

|
∑︁
i

xiYi | ≥ F−1
𝒩 (0,1)(1− 𝛼/2)

√︃∑︁
i

x2i

p-value for Yi = yi is

p = 2(1− F𝒩 (0,1)(
|
∑︀

i xiyi |√︁∑︀
i x

2
i

))



(5) CI for c , knowing 𝜎2 = 1

We need statistical test for H0 : c = c0 against H0 : c ̸= c0. Let
Zi = Yi − c0xi , then Zi ∼ 𝒩 (c − c0)xi , 1). Now make use of the
test in (4), we get

|
∑︁
i

xiZi | = |
∑︁
i

xiYi −
∑︁
i

c0x
2
i | ≥ F−1

𝒩 (0,1)(1− 𝛼/2)

√︃∑︁
i

x2i

So the corresponding 1− 𝛼 CI for c is

{c : |
∑︁
i

xiYi −
∑︁
i

cx2i | ≤ F−1
𝒩 (0,1)(1− 𝛼/2)

√︃∑︁
i

x2i }

= [

∑︀
i xiYi∑︀
i x

2
i

−
F−1
𝒩 (0,1)(1− 𝛼/2)√︁∑︀

i x
2
i

,

∑︀
i xiYi∑︀
i x

2
i

+
F−1
𝒩 (0,1)(1− 𝛼/2)√︁∑︀

i x
2
i

]



(6) Test for hypothesis H0 : c = 0 against H1 : c ̸= 0, with
unknown 𝜎2

LRT:
sup𝜎2(2𝜋𝜎2)−n/2e−

∑︀
i Y

2
i /(2𝜎

2)

supc,𝜎2(2𝜋𝜎2)−n/2e−
∑︀

i (Yi−cxi )2/(2𝜎2)
≤ k

sup𝜎2(2𝜋𝜎2)−n/2e−
∑︀

i Y
2
i /(2𝜎

2) = (2𝜋 ·
∑︀

i Y
2
i

n
)−n/2e−n/2

supc,𝜎2(2𝜋𝜎2)−n/2e−
∑︀

i (Yi−cxi )
2/(2𝜎2) = (2𝜋·

∑︀
i (Yi − ĉxi )

2

n
)−n/2e−n/2

Where ĉ =
∑︀

i xiYi∑︀
i x

2
i
. So the test becomes∑︀

i (Yi − ĉxi )
2∑︀

i Y
2
i

≤ k2/n

∑︁
i

(Yi − ĉxi )
2 =

∑︁
i

Y 2
i −

(
∑︀

i xiYi )
2∑︀

i x
2
i



So we can rewrite the test as

|

∑︀
i xiYi/

√︁∑︀
i x

2
i√︂

1
n−1 · (

∑︀
i Y

2
i − (

∑︀
i xiYi )2∑︀
i x

2
i

)

| ≤ M

By calculation (using multivariable calculus and linear algebra) we

can see that, under null hypothesis,
∑︀

i Y
2
i

𝜎2 ∼ 𝜒2(n),∑︀
i Y

2
i − (

∑︀
i xiYi )

2∑︀
i x

2
i

is independent from
(
∑︀

i xiYi )
2∑︀

i x
2
i

, and

1
𝜎2 ·

(
∑︀

i xiYi )
2∑︀

i x
2
i

∼ 𝜒2(1). So,

∑︀
i xiYi/

√︁∑︀
i x

2
i√︂

1
n−1 · (

∑︀
i Y

2
i − (

∑︀
i xiYi )2∑︀
i x

2
i

)

∼ t(n − 1)

The M for significance level 𝛼 is F−1
t(n−1)(1− 𝛼/2).



(7) CI for c , unknown 𝜎2

Use the same technique as in (5), and the test in (6), we get

[

∑︀
i xiYi∑︀
i x

2
i

− F−1
t(n−1)(1− 𝛼/2) ·

√︂
1

n−1 · (
∑︀

i Y
2
i − (

∑︀
i xiYi )2∑︀
i x

2
i

)√︁∑︀
i x

2
i

,

∑︀
i xiYi∑︀
i x

2
i

+ F−1
t(n−1)(1− 𝛼/2) ·

√︂
1

n−1 · (
∑︀

i Y
2
i − (

∑︀
i xiYi )2∑︀
i x

2
i

)√︁∑︀
i x

2
i

]



Review:

I Point estimate: MLE, MAP and Bayesian point estimate.

I Hypothesis testing: LRT.

I Confidence interval.

Setting: x1, . . . xn real numbers, Y1, . . .Yn independent,
Yi ∼ 𝒩 (cxi , 𝜎

2). How do we estimate c and 𝜎2?
Examples we will do today:

I CI of 𝜎2.

I Logistic regression.

I Higher dimensional models.



Independence of residue and regression coefficient

This slide is just for those who remember linear algebra and multivariable
calculus.
Last week we made the claim:
If Yi i.i.d. normal,

∑︀
i Y

2
i − (

∑︀
i xiYi )

2∑︀
i x

2
i

is independent from
(
∑︀

i xiYi )
2∑︀

i x
2
i

.

Proof: Let c1 = [xi/
√︀∑︀

i x
2
i ]

T ∈ Rn. |c1| = 1, so we can find an
orthonormal basis {c1, . . . , cn} of Rn. Let C = [c1. . . . cn]

T ,
Y = [Y1, . . .Yn]

T , Z = CY . Because Yi are i.i.d. normal, the p.d.f. of Y

is f (y) = 2𝜋𝜎2−n/2
e−

1
2 y

T y , so for any set A ⊂ Rn,

P(Z ∈ A) = P(CY ∈ A) =

∫︁
C−1A

(2𝜋𝜎2)−n/2e−
1

2𝜎2 y
T ydy

=

∫︁
A

(2𝜋𝜎2)−n/2e−
1

2𝜎2 z
T zdz

So Zi i.i.d. 𝒩 (0, 𝜎2).



By calculation it is easy to verify that∑︀
i Y

2
i − (

∑︀
i xiYi )

2∑︀
i x

2
i

=
∑︀n

i=2 Z
2
i and

(
∑︀

i xiYi )
2∑︀

i x
2
i

= Z 2
1 , hence they

must be independent. The same calculation works for
Yi ∼ 𝒩 (cxi , 𝜎

2) as well by change of variable Yi = cxi + Y ′
i .



(8) Test for H0 : 𝜎
2 = 𝜎2

0 against H1 : 𝜎
2 ̸= 𝜎2

0
Likelihood ratio test:

supc(2𝜋𝜎
2
0)

−n/2e−
∑︀

i (Yi−cxi )
2/(2𝜎2

0)

supc,𝜎2(2𝜋𝜎2)−n/2e−
∑︀

i (Yi−cxi )2/(2𝜎2)
≤ k

The optimal c is
∑︀

i Yixi∑︀
i x

2
i
. Let r2 =

∑︀
i (Yi −

∑︀
i Yixi∑︀
i x

2
i

· xi )2, log of

LHS is

−n

2
log(𝜎2

0)−
r2

2𝜎2
0

+
n

2
log(r2/n) +

n

2
≤ log(k)

Hence the critical region should be of the form r2/n ≥ 𝜎2
0A or

r2/n ≤ 𝜎2
0B for some positive numbers 0 < B < 1 < A. By similar

argument as in the previous slides, under H0,
1
𝜎2
0
r2 ∼ 𝜒2(n − 1), so

significance level

𝛼 = F𝜒2(n−1)(nB) + 1− F𝜒2(n−1)(nA)

log(A)− A = log(B)− B



In practice, we usually just ignore the second equation and let
F𝜒2(n−1)(nB) = 1− F𝜒2(n−1)(nA) = 𝛼/2, hence the test is

1

𝜎2
0

∑︁
i

(Yi −
∑︀

i Yixi∑︀
i x

2
i

· xi )2 ̸∈ [F−1
𝜒2(n−1)

(𝛼/2),F−1
𝜒2(n−1)

(1− 𝛼/2)]



(9) CI for 𝜎2

Using the test on the previous slide, we have the CI:⎡⎣∑︀
i (Yi −

∑︀
i Yixi∑︀
i x

2
i

· xi )2

F−1
𝜒2(n−1)

(1− 𝛼/2)
,

∑︀
i (Yi −

∑︀
i Yixi∑︀
i x

2
i

· xi )2

F−1
𝜒2(n−1)

(𝛼/2)

⎤⎦



Logistic regression

Materials from this slide on will be beyond the scope of final exam.
Setting Yi independent, Yi ∼ Bernoulli( ecxi

1+ecxi ).
Likelihood function

L =
∏︁
i

yie
cxi + (1− yi )

1 + ecxi

It is easy to see that log(L) is concave w.r.t. c , hence any local
maximum is the MLE, and we can use convex optimization to
calculate the optimal c.
This is a first example of Generalized Linear Models (GLM).



Higher dimensional linear regression
Setting: x1, . . . xn ∈ Rd , Y1, . . .Yn independent, 𝛽 ∈ Rd ,
Yi ∼ 𝒩 (𝛽T xi , 𝜎

2). How do we estimate 𝛽 and 𝜎2?
MLE: Log likelihood is

log(L) = −n

2
(log(2𝜋) + log(𝜎2))− 1

2𝜎2

∑︁
i

(Yi − 𝛽T xi )
2

So
𝛽MLE = argmin

𝛽

∑︁
i

(Yi − 𝛽T xi )
2

Take derivative, we get:

2
∑︁
i

(Yi − 𝛽T xi )xi = 0

𝛽 = (
∑︁
i

xix
T
i )−1(

∑︁
i

Yixi )

The MLE for 𝜎2 is the same as the univariant case.



Linear regression with constant term

x1, . . . xn ∈ R, Y1, . . .Yn independent, 𝛽 ∈ Rd ,
Yi ∼ 𝒩 (d + cxi , 𝜎

2). Find MLE for c and d .
Let x ′i = [1, xi ]

T , 𝛽 = [d , c], then use the formula on the previous
slide, we get

[d̂ , ĉ]T =

[︂
n

∑︀
i xi∑︀

i xi
∑︀

i x
2
i

]︂−1 [︂ ∑︀
i Yi∑︀

i xiYi

]︂
So

d̂ =

∑︀
i x

2
i

∑︀
i Yi −

∑︀
i xi

∑︀
i xiYi

n
∑︀

i x
2
i − (

∑︀
i xi )

2

ĉ =
−
∑︀

i xi
∑︀

i Yi + n
∑︀

i xiYi

n
∑︀

i x
2
i − (

∑︀
i xi )

2



Ridge Regression

Suppose 𝜎 = 𝜎0, and we add a prior to 𝛽 as 𝛽 ∼ 𝒩 (0, 𝜆𝜎2
0Id), log

of posterior will be, up to a constant,

− 𝛽T𝛽

2𝜆𝜎2
− 1

2𝜎2

∑︁
i

(Yi − 𝛽T xi )
2

So the MAP estimate for 𝛽 is

𝛽 = argmin𝛽
∑︁
i

(Yi − 𝛽T xi )
2 +

1

𝜆
𝛽T𝛽

𝛽 = (
∑︁
i

xix
T
i + Id/𝜆)

−1(
∑︁
i

Yixi )

This works even when n < d .



Alternative interpretation of Ridge Regression

The idea from the previous slide has an alternative formulation as
follows: xi , x ∈ Rd , Yi ,Y satisfies joint distribution
𝒩 (0, 𝜎2(K + 𝛿I )), with known 𝜎2 and 𝛿, and where
K = [x1, . . . x ][x1, . . . x ]

T . Find the conditional expectation of Y
with known Y1, . . .Yn. The log of joint p.d.f. of [Y1, . . . ,Yn,Y ]T

is, up to a constant, proportional to

−1

2
[y1, . . . yn, y ](K + 𝛿I )−1[y1, . . . yn, y ]

T



Let K0 = [x1, . . . xn][x1, . . . xn]
T , b = [xT1 x , . . . xTn x ], then

K + 𝛿I =

[︂
K0 + 𝜆I bT

b xT x + 𝜆

]︂
, hence

(K + 𝛿I )−1 =

[︂
* BT

B C

]︂
Where

C = (xT x − b(K0 + 𝛿I )−1bT )−1

B = −(xT x − b(K0 + 𝛿I )−1bT )−1b(K0 + 𝛿I )−1



So the conditional distribution for y is normal, and the expectation
is

ŷ = − 1

C
B

⎡⎣ y1
. . .
yn

⎤⎦ = b(K0 + 𝛿I )−1

⎡⎣ y1
. . .
yn

⎤⎦
Let X = [x1, . . . xn], Y = [y1, . . . yn]

T , then this equals

xTX (XTX + 𝛿I )−1Y = xT (XXT + 𝛿I )−1XY

= xT (
∑︁
i

xix
T
i + 𝛿Id)

−1(
∑︁
i

yixi )

So 𝛿 takes the role of 1
𝜆 earlier. This model allows us to get a

value for 1
𝜆 , by setting it as 𝛿MLE . This is the simplest case of a

family of statistical models called mixed models.



Questions to think about

I Suppose xi ∈ {1, 2, 3}, how do you check
H0 : Yi ∼ 𝒩 (cxi , 𝜎

2) against H1 : Yi ∼ 𝒩 (f (xi ), 𝜎
2) where f

is an arbitrary function?

I How do you check that Yi ∼ 𝒩 (cxi , 𝜎
2) in general?



Final review: Probability prerequisites

I Random variables

I c.d.f., p.d.f., p.d.

I Conditional p.d.f

I Expectation

I LLN, CLT

I sample mean and sample variance

I order statistics



Example
Xi i.i.d., i = 1, . . . n, with p.d.f.

f (x) =

{︃
ce−cx x ≥ 0

0 x < 0

The joint p.d.f. is

fX1,...Xn(x1, . . . xn) =
∏︁
i

f (xi ) =

{︃
cne−c

∑︀
i xi min{xi} ≥ 0

0 min{xi} < 0

The joint c.d.f. is

FX1,...Xn(x1, . . . xn) =
∏︁
i

FXi
(xi )

=
∏︁
i

∫︁ xi

−∞
f (s)ds =

{︃∏︀
i (1− e−cxi ) min{xi} ≥ 0

0 min{xi} < 0



Example

E [Xi ] =

∫︁ ∞

0
sce−csds =

1

c

Var(Xi ) = E [X 2
i ]− E [Xi ]

2 =

∫︁ ∞

0
s2ce−csds − 1

c2
=

1

c2

E [X ] = E [Xi ] =
1

c

Var(X ) =
1

n
Var(Xi ) =

1

nc2

E [S2
X ] = E [

1

n − 1
(
∑︁
i

X 2
i −nX

2
)] =

1

n − 1
(
2n

c2
−n(Var(X )+E [X ]2))

=
1

n − 1
(
2n

c2
− 1

c2
− n

c2
) =

1

n − 1
· n − 1

c2
=

1

c2
= Var(Xi )



The p.d.f. of min{Xi} = Y1 is

fY1(x) =
n!

(1− 1)!(n − 1)!
F (x)1−1f (x)(1− F (x))n−1

Where f is the p.d.f. of Xi and F is the c.d.f. By calculation, the
answer is

fY1(x) =

{︃
0 x < 0

nce−ncx x ≥ 0

LLN for Xi implies that as n → ∞,

X → 1

c

While CLT implies that as n → ∞,

√
nc2(X − 1

c
) → 𝒩 (0, 1)



Point estimate

Basic setting: X has a distribution with parameter Θ.

I Point estimate: a random variable Θ̂ which we use to
estimate Θ.

I Bias: E [Θ̂]−Θ.

I Variance: Var(Θ̂).

I Consistency: X = [X1, . . . ,Xn], Xi i.i.d., Θ̂ → Θ as n → ∞.
I Some ways to show consistency

I Definition.
I Variance and bias goes to 0 (due to Chebyshev’s theorem)
I LLN.

I Ways to find point estimate
I MLE
I MOM
I MAP
I Bayesian point estimate



Example, continued

I MLE for c

L(Xi , c) = fX1,...Xn(X1, . . .Xn, c) = cne−c
∑︀

i Xi

So
ĉMLE =

n∑︀
i Xi

I MOM for c : First empirical moment is X , first moment is 1
c ,

so
1

ĉMOM
= X

ĉMOM =
n∑︀
i Xi

= ĉMLE



I Suppose prior of c has p.d.f. fc(x) =

{︃
e−x x ≥ 0

0 x < 0
. Then

posterior is:

fc|Xi
(c) = Cfc(c)L(X1, . . .Xn, c) = Ccne−c(

∑︀
i Xi+1)

So

ĉMAP =
n∑︀

i Xi + 1
=

1

X + 1/n

2(
∑︁
i

Xi + 1)c |Xi ∼ 𝜒2(2n + 2)

So the Bayesian point estimate with L2 lost is

ĉL2,Bayesian = argmin
c ′

E [(c − c ′)2|Xi ] = E [c |Xi ] =
n + 1∑︀
i Xi + 1

I All these point estimates are consistent due to LLN.



Hypothesis testing
Setting: X has a distribution with parameter Θ. H0 : Θ ∈ D,
H1 : Θ ∈ D ′, D ∩ D ′ = ∅.
I Statistical test: a random event Z ∈ A, where Z is a random

variable defined using X , A the critical region (usually the
“tail” of the distribution of Z ).

I Significance level (bound on type I error):
supΘ∈D P(Z ∈ A|Θ).

I Power (one minus type II error): P(Z ∈ A|Θ) for some
specific Θ ∈ D ′.

I p-value: the lowest significance level that result in rejection of
H0.

I Intuition of statistical tests: suppose H0 is true, then a test
with small significance level is unlikely to be true. So, if we
observed that it is true, probably H0 isn’t.

I Neyman-Pearson test: D and D ′ both consists of a single
point Θ0 and Θ1, then test is L(X ,Θ0)/L(X ,Θ1) ≤ k.

I LRT: supΘ0∈D L(X ,Θ0)/ supΘ1∈D∪D′ L(X ,Θ1) ≤ k.
I How to use known statistical tests.



Example, Continued
I It is easy to see that 2cXi ∼ 𝜒2(2), so 2c

∑︀
i Xi ∼ 𝜒2(2n).

I H0 : c = 1, H1 : c = 2. Neyman-Pearson test:

e−
∑︀

i Xi

2ne−2
∑︀

i Xi
≤ k

So the test should be of the form
∑︀

i Xi ≤ M, significance
level is

𝛼 = P(
∑︁
i

Xi ≤ M|c = 1) = F𝜒2(2n)(2M)

So the test with significance level 𝛼 is∑︁
i

Xi ≤
1

2
F−1
𝜒2(2n)

(𝛼)

The p-value for Xi = x1 is

p = min{𝛼 :
∑︁
i

xi ≤
1

2
F−1
𝜒2(2n)

(𝛼)} = F𝜒2(2n)(2
∑︁
i

xi )



I Suppose a test on H0 : Z ∼ 𝜒2(k) is
Z ̸∈ (F−1

𝜒2(k)
(𝛼/2),F−1

𝜒2(k)
(1− 𝛼/2)), then we can apply it to

2c
∑︀

i Xi , and get a test for H0 : c = c0 as

∑︁
i

Xi ̸∈ (
F−1
𝜒2(2n)

(𝛼/2)

2c0
,
F−1
𝜒2(2n)

(1− 𝛼/2)

2c0
)

∑︁
i

Xi ≤
F−1
𝜒2(2n)

(𝛼/2)

2c0
or

∑︁
i

Xi ≥
F−1
𝜒2(2n)

(1− 𝛼/2)

2c0



Confidence Intervals

Setting: X has a distribution with parameter Θ.

I A 1− 𝛼-CI is a set I (X ) depending on X such that
P(Θ ∈ I (X )|Θ) = 1− 𝛼.

I CI with CL 1− 𝛼 are related to statistical tests of significance
level 𝛼.

I One sided CIs are usually related to tests where the alternative
hypothesis is one sided as well.

Two types of statistical inference:

I Bayesian approach: Θ has assumed prior distribution, use
successive observation to estimate the posterior, eventually
converging to the true value.

I Non-Bayesian, or frequentist approach: Θ is a constant with
unknown value. Use observation to rule out more and more
unlikely values of Θ, until we have an estimate of its true
value.



Example, continued

I The CI from the test on H0 : c = c0 earlier is

{c0 :
∑︁
i

Xi ∈ [
F−1
𝜒2(2n)

(𝛼/2)

2c0
,
F−1
𝜒2(2n)

(1− 𝛼/2)

2c0
]}

= [
F−1
𝜒2(2n)

(𝛼/2)

2
∑︀

i Xi
,
F−1
𝜒2(2n)

(1− 𝛼/2)

2
∑︀

i Xi
]

I To get one sided CI, use LRT for H0 : c = c0 against
H1 : c > c0.

cn0 e
−c0

∑︀
i Xi

supc≥c0 c
ne−c

∑︀
i Xi

≤ k

So the test is ∑︁
i

Xi ≤ M

for some M < n/c0.



To make significance level 𝛼, we must let M =
F−1

𝜒2(2n)
(𝛼)

2c0
, so the

test is ∑︁
i

Xi ≤
F−1
𝜒2(2n)

(𝛼)

2c0

The one sided 1− 𝛼 CI for c is

[
F−1
𝜒2(2n)

(𝛼)

2
∑︀

i Xi
,∞)



Review Examples

Suppose X ∼ B(n, p), n >> 1.

1. Find the LRT for H0 : 1/3 ≤ p ≤ 2/3

2. Use the CLT to calculate its approximated significance level.

3. Find the approximated p-value for n = 9000, X = 2900.

LRT:
supp∈[1/3,2/3]

(︀
n
X

)︀
pXpn−X

supp
(︀
n
X

)︀
pXpn−X

≤ k

So

log(LHS) =

⎧⎪⎨⎪⎩
0 X ∈ [n/3, 2n/3]

X log( n
3X ) + (n − X ) log( 2n

3(n−X ) ) X < n/3

X log( 2n
3X ) + (n − X ) log( n

3(n−X ) ) X > 2n/3

It is easy to see that this function is increasing when X < n/3, decreasing
when X > 2n/3, and takes the same value at n/3− a and 2n/3 + a for
any 0 < a < n/3, so the LRT is of the form X ̸∈ [n/3−M, 2n/3 +M]



CLT says that as n → ∞, X−pn√
np(1−p)

∼ 𝒩 (0, 1). Hence

𝛼 = sup
p∈[1/3,2/3]

P(X ≤ n/3−M or X ≥ 2n/3 +m)

≈ sup
p∈[1/3,2/3]

P(
X − p√︀
np(1− p)

≤ n/3−M − pn√︀
np(1− p)

or
X − p√︀
np(1− p)

≥ 2n/3 +M − pn√︀
np(1− p)

)

If p ∈ (1/3, 2/3), as n → ∞ the two bounds go to infinity and probability goes
to 0. So we can only use p = 1/3 or p = 2/3. In both cases, the significance
level is

𝛼 = 1− Φ(
M√︀
2n/9

)

Where Φ is the c.d.f. of standard normal. The p-value for n = 9000, X = 2900
is

1− Φ(
100√
2000

) ≈ 0.0127



Suppose Xi i.i.d. and ∼ 𝒩 (0, 𝜎2), X ∼ 𝒩 (a, 𝜎2) is independent
from Xi , H0 : a = 0, H1 : a ̸= 0.

1. If Z − b satisfies t(d) distribution (which is the distribution of
X√
Y /d

where X and Y are independent, X ∼ 𝒩 (0, 1),

Y ∼ 𝜒2(d)), |Z | ≥ M is a test for H0 : b = 0. Find the
significance level of this test.

2. Find Cn such that CnX√∑︀
i X

2
i

∼ t(n).

3. Use the test in 1. to find a test for H0 : a = 0 with
significance level 𝛼.

Answer:

1. 𝛼 = P(|Z | ≥ M|Z ∼ t(d)) = 2(1− Ft(d)(M))

2. Use definition we know that Cn =
√
n.

3. |X
√︁

n∑︀
i X

2
i
| ≥ F−1

t(d)(1− 𝛼/2).



X1, X2 i.i.d. uniform on [a, a+ l ].

1. Find a CI for l of the form [C |X1 − X2|,∞) with CL 1− 𝛼

2. Use this CI to derive a test for H0 : l = 1 with significance
level 𝛼.

Answer:

1. 1− 𝛼 = P(l ≥ C |X1 − X2|) = P(|X1 − X2| ≤ l
C ), so

C = 1/(1−
√
𝛼).

2. |X1 − X2| ≥ 1−
√
𝛼.



True or false:

I Let Z be a test statistics, H0, H
′
0 two disjoint null hypothesis,

if the significance level of Z ∈ C as a test for H0 is 0.05, the
significance level of Z ∈ C ′ as a test for H ′

0 is 0.05, then
Z ∈ C ∩ C ′ as a test for H0 ∪ H ′

0 is no more than 0.05

I If Xi i.i.d., 𝜃 is a parameter of the distribution of Xi , In a
1− 𝛼-CI for 𝜃 such that the maximal length goes to 0 as n
goes to infinity, then the midpoint of In is a consistent
estimator for 𝜃.



HW 10

Suppose X1 ∼ 𝒩 (0, 𝜎2), X2 ∼ 𝒩 (0, 2𝜎2), X1, X2 independent,
H0 : 𝜎

2 = c, H1 : 𝜎
2 > c , where c > 0. Recall that the one sided

𝜒2 test for the null hypothesis Z ∼ 𝜒2(d) is Z ≥ F−1
𝜒2(d)

(1− 𝛼),

here F is the c.d.f. of 𝜒2(d), and 𝛼 is the significance level.

1. Find a numbers a and b such that under H0,
aX 2

1 + bX 2
2 ∼ 𝜒2(2).

2. Use the one-sided 𝜒2 test described above to write down a
statistical test of H0 against H1.

3. Find the one-sided confidence interval using the test you
found above.

Answer:

1. a = 1
c , b = 1

2c .

2.
X 2
1
c +

X 2
2

2c ≥ F−1
𝜒2(2)

(1− 𝛼).

3. [
X 2
1+X 2

2 /2

F−1

𝜒2(2)
(1−𝛼)

,∞), or (
X 2
1+X 2

2 /2

F−1

𝜒2(2)
(1−𝛼)

,∞).




