Singularities of infinite translation surfaces

1st part: with Anja Randecker, Lucien Clavier 2nd part: with Harry Baik, Ahmad Rafiqi http://www.math.cornell.edu/~wuchenxi

November 14, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Definitions

Translation surface: 2-manifold with an atlas whose transition is translation.

Example: flat torus, flat polygon with gluing Singularities: points added in the metric completion We only consider the case of isolated singularities. Types of isolated singularities: cone-angle singularities, infinite singularities, wild singularities

Example: Chamanara surface

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Definition(Joshua Bowman and Ferrán Valdez): A *linear approach* at singularity σ is the equivalent class of geodesic rays $\gamma(t)$ approaching σ as $t \to 0$ up to \sim , where $\gamma \sim \gamma'$ iff they are identical for small t.

Bowman and Ferrán showed that the "natural" topology on the set of linear approaches ${\cal L}$ is generated by

ション ふゆ く は マ く ほ マ く し マ

 $B(x,r)^t = \{ [\gamma] : d(\gamma(t),x) < r \}$, and is Hausdorff.

Definition(Joshua Bowman and Ferrán Valdez): Rotational component is the equivalence class on \mathcal{L} under the following relation R: $\gamma R \gamma'$ iff γ and γ' both lie on a embedded sector centered at σ .

We denote the set of rotational components, with quotient topology, $\widetilde{\mathcal{L}}.$

1 wild singularity, 2 rotational components of infinite length, countably infinitely many rotational components of finite length.

Properties and examples

Theorem (Clavier, Randecker, W.)

- 1. Rotational components isometric to \mathbb{R} are open points in $\widetilde{\mathcal{L}}$; open points in $\widetilde{\mathcal{L}}$ has infinite length.
- 2. Points in $\widetilde{\mathcal{L}}$ with length $\geq \pi$ are dense; $\widetilde{\mathcal{L}}$ is separable.
- 3. $\widetilde{\mathcal{L}}$ can be homeomorphic to any topological spaces of finite points.
- 4. $\widetilde{\mathcal{L}}$ can be homeomorphic to $\mathbb{S}^{\mathbb{H}}$.
- 5. There are uncountable many translation surfaces with one singularity, same $\widetilde{\mathcal{L}}$ and different \mathcal{L} .

Proof of 3.

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - のへ⊙

Approximation of affine maps

- 1. Blow up the invariant rotational components.
- 2. Double.
- 3. Glue the ends of the mapping torus, perturb.

$$\lambda^n - 2\lambda^{n-1} + 2\lambda - 1 = 0$$

(with Baik, Rafiqi)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Other results and further questions

1. Arnoux-Yoccoz surfaces (Bowman), and many other examples

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- 2. "Generalized" Teichmüller polynomial
- 3. "Limit surface"?
- 4. Condition on \mathcal{L} and $\widetilde{\mathcal{L}}$?
- 5. Strata?