1 9/5 PDE terminology & philosophy

PDE: equation for a multivariate function that involves its partial derivatives.

Example: $u_y = x$. Example: $(yu)_y = 1$.

General solution of a PDE.

Formally: PDE: $F(u, x_i, u_{x_i}, u_{x_ix_i}, \dots) = 0$

Order of a pde Linear PDE. Linear homogeneous PDE.

What are the order and linearality of the following PDEs? $u_x + u_{yyx} = 1$, $uu_x + u = 0$, $u_x + (x^2 + y^2)u_{yy} = 1$.

Some PDEs we will focus on later:

Heat: $u_t = u_{xx}$: (heat transmission, diffusion) Laplace: $u_{xx} + u_{yy} = 0$: (static electric field, Newton's gravity, equilibrium of random walk) Wave: $u_{tt} = u_{xx}$: (sound wave, other waves in physics)

Other important linear PDEs:

Dispersive wave equations: $u_{tt} = u_{xx} - ku_{xxxx}$ (stiff string) Cauchy-Riemann equation: $u_x = v_y$, $u_y = -v_x$

Non-linear PDEs you may see in later classes: Navier-Stokes Nonlinear Schrodinger: $iu_t = -\Delta u + k|u|^2 u$ KdV: $u_t + u_{xxx} + 6uu_x = 0$, etc.

Example: growth of bacteria. Baseline: GMCF (geodesic mean curvature flow) $u_t = A \frac{\nabla u}{|\nabla u|} \cdot \nabla u + B |\nabla u| \nabla \cdot \frac{\nabla u}{|\nabla u|}.$

Types of problems:

Evolution model (with time): Boundary condition. Initial condition. Initial value problem. Initial-boundary value problem.

Steady state model (no time): boundary value problem.

Typical questions in the theory of PDE: Existence Uniqueness Regularity Continuous dependency on boundary

Typical strategy: integral transform: $(Tu)(y) = \int u(x)K(x,y)dx$, then $T(u_x) = \int u_x(x)K(x,y)dx = -\int u(x)K_x(x,y)dx$, assume some decay conditions on the boundary (or infinity).

Problem: Is such a transform well defined?

Connection with harmonic analysis.

Use of symmetry (method of mirror images, spherical symmetry etc.) Example: solve $u_{xx} + u_{yy} = 1$, where u = 0 on the unit circle.

Example: $u_x = u_t, u_x = u_t + 1.$

2 9/7 Review of ODE, Advection and Diffusion

Review of ODE & multivatiable calculus topics:

- u' + p(t)u + q(t) = 0
- u''' + Au'' + Bu' + Cu = 0
- Chain rule: Example: $u_{xx} = u_{tt}$, what happens with change-of-variable y = x + t, w = x t?
- Fubini's theorem.
- Differentiating an integral. Example: $\frac{d}{dt} \int_0^{t^2} \sin(ts) ds$. Solution: Let x = t, y = t, then $\frac{d}{dt} \int_0^{t^2} e^{-ts^2} ds = \frac{d}{dt} \int_0^{x^2} e^{-ys^2} ds = (\int_0^{x^2} e^{-ys^2} ds)_x + (\int_0^{x^2} e^{-ys^2} ds)_y = 2x \cdot e^{-y(x^2)^2} + \int_0^{x^2} (e^{-ys^2})_y ds = 2xe^{-y(x^2)^2} - \int_0^{x^2} s^2 e^{-ys^2} ds = 2te^{-t^5} - \int_0^{t^2} s^2 e^{-ts^2} ds$.
- Example: $u_{tt} = u_{xx} + u_{yy}$, $u(x, y, t) = \sin(x \cos \theta + y \sin \theta + t)$ are solutions, hence $\int_0^{2\pi} \sin(x \cos \theta + y \sin \theta + t) d\theta$ is also a solution.

PDE from conservation laws, 1-dimensional case:

Consider the flow of some material whose total quantity remain unchanged, along a thin tube with section area A(x). Then, conservation means:

$$\frac{d}{dt}\int_{a}^{b}u(x,t)A(x)dx = A(a)\phi(a,t) - A(b)\phi(b,t) + \int_{a}^{b}f(x,t)A(x)dx$$

 ϕ : flux. f: source.

Differentiate w.r.t. b one gets: $Au_t = -A\phi_x - A'\phi + fA$.

- $\phi = u$: e.g. cars which travels at the same speed, age distribution etc.
- $\phi = -u_x$: heat conduction etc.
- $\phi = u u_x$: contaminated flow etc.
- f = -u: decay.

Relationship with random motion: see $u(\cdot, t)$ as the probability distribution.

Example: $u_t = u_x - u$. Decay vs. "widening".

Example: u has two components (e.g. mass, momentum): wave equation.

3 9/12 Method of characteristics

Question: first order linear PDE in 2 dimension: $u_t + fu_x + gu + h = 0$

First consider the case when g = h = 0. Recall that for 1st order ODE, there is a concept of *first integral*: the solution of $x'F_x + F_t = 0$ are the level curves of F(x,t). Hence, the level curves of u are exactly the solutions of x' = f, which are called *characteristics*.

Example: $u_t = xu_x - u$.

Example: $u_t = u_x + u_y$.

Example: $u_t = \sin t u_x + 1$.

Non-linear advection: $u_t = f(u)u_x$: level curves are straight lines of slope f(c). Breaking time. Example: $u_t = (1 - u)u_x$.

4 9/14 Diffusion, fundamental solutions

Review of method of characteristics: $u_t + cu_x = x$.

Fick's law: $\phi = -Du_x$, which results in $u_t = Du_{xx}$. Simple observation:

- 1. Steady state solution: u = ax + b.
- 2. Loss of information: should study initial value problem: $u_t = u_{xx}$, u(x,0) = f(x) on region t > 0.
- 3. Time scale: remains unchanged under $t = c^2 t'$, x = cx'.
- 4. Conservation of the "total heat": $\int u dx$ remain unchanged.

One could expect solution whose "shape" remain unchanged as one scales as in (3). However the integral in (4) changes under this scaling, so one should expect a factor of $t^{-1/2}$. Let $u = t^{-1/2}v(x^2/t)$, then v can be chosen as $v = Ce^{-s/4}$. One can normalize it into $u = \frac{1}{4\pi Dt}e^{-x^2/4t}$.

This is called the *fundamental solution* of heat equation in one dimension. δ distribution.

Alternative interpretation of the fundamental solution: discretize, then use central limit theorem. General solution: Convolution.

Fundamental solution of heat equations in higher dimensions?

 $u_t = u_x + u_{xx}$

Method of mirrors: IBV problem.

5 9/18 Wave equation

 $u_{tt} = u_{xx}$

Model 1: String vibration: u_{tt} proportional to force which is characterized by u_{xx} .

Model 2: Sound wave in 1-dimension: $\rho_t = -(\rho v)_x$, $(\rho v)_t = -(\rho v^2)_x - p_x$, $p = k\rho^{\gamma}$.

Review: general solution.

Solution for initial value problem.

Sound speed.

Initial-boundary value problems with one boundary (mirror), initial-boundary value problems with 2 boundaries, periodicity.

(Optional) Sepherical waves in higher dimensions.

6 9/21 Wave equation, boundary conditions, review of multivariable calculus

Correction: derivation of the general solution of 1-D wave equation:

$$\begin{aligned} u_{tt} &= c^2 u_{xx} \\ (\partial_t + c \partial_x)(\partial_t - c \partial_x)u &= 0 \\ (\partial_t + c \partial_x)u &= f(x + ct) \\ u &= G_1(x - ct) + \int_o^t f(cs + (x - ct) + cs)ds \\ F_1' &= f \\ G_1(x - ct) + (F_1(x + ct) - F_1(x - ct))/c &= (G_1 - F_1/c)(x - ct) + (F_1/c)(x + ct) \end{aligned}$$

Now let $G = G_1 - F_1/c$, $F = F_1/c$.

u =

Boundary conditions: Dirichlet, Neumann, Robin.

Homogeneous boundary condition.

Example: $u_{tt} = u_{xx}$, u(0, t) = 0, $u_X(1, t) = 0$, general solution?

Example: non-homogeneous boundary and non-homogeneous equations

Example: $u_{tt} = u_{xx} + \sin x$.

Vector field in 3 dimension: $T : \mathbb{R}^3 \to \mathbb{R}^3$. grad, div and curl. Stokes theorem in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$.

7 9/26 Heat equation in high dimension, Laplace equation

Mass balance in high dimension: $u_t + div\phi = 0$. Heat: $\phi = -kgrad(u)$.

Steady-state: Laplace equation.

Maximal principle, uniqueness.

Example of solutions. Fundamental solution.

Variational principle.

Laplacian in sepherical coordinates. Sepherical harmonics.

8 9/28 Types of PDEs

Consider 2nd order equation $Au_{xx}+Bu_{xy}+Cu_{yy}+f(u, u_x, u_y, x, y) = 0$. It is called elliptic/parabolic/hyperbolic iff $Ax^2 + Bxy + Cy^2$ is positive or negative definite/degenerate/indefinite.

Canonical forms: $u_{xx} + u_{yy} + \cdots = 0$, $u_{xy} + \cdots = 0$, $u_{xx} + \cdots = 0$ Example: different types at different places.

Example: type remains unchanged under coordinate change: polar coordinate.

9 10/3 Heat equation

Formula for the Green's function/fundamental solution G(x, t).

Properties: $\int_{-\infty}^{\infty} G(x,t) dx = 1, \lim_{t \to 0^+} \int_{|x| > c > 0} G(x,t) dx = 0, G_t = kG_{xx}.$

Poisson integration formula: is a solution: linearality; initial condition: the properties above.

Non-uniqueness of the solution: Tychonov 1935

Higher dimension.

Theorem (Poisson integration): If f is a bounded continuous function, then a solution of $u_t = ku_{xx}$ when t > 0, u(x, 0) = f(x) is:

$$u = \int_{\mathbb{R}} f(y) G(x - y, t) dy$$

Proof: By computation we know that:

- 1. $\int_{\mathbb{R}} G(x,t) dx = 1$
- 2. For any c > 0, $\int_{x \notin [-c,c]} G(x,t) dx \to 0$ as $t \to 0$.

3.
$$G_t = kG_{xx}$$

 $u_t = k u_{xx}$ follows from 3. and the fact that all infinite integrals involves converges absolutely. Now we need to show the initial condition, i.e. that $u(x,t) \to f(x)$ as $t \to 0^+$. Let M be a bound of |f(x)|.

For any c > 0,

$$|u(x,t) - f(x)|$$

$$\leq |\int_{x-c}^{x+c} f(x)G(x-y,t)dy - f(x)| + |\int_{x-c}^{x+c} (f(y) - f(x))G(x-y,t)dy| + |\int_{y \notin [x-c,x+c]} f(y)G(x-y,t)dy| \\ \leq |f(x)\int_{y \notin [-c,c]} G(y,t)dy| + \sup_{x-c < y < x+c} |f(y) - f(x)| + M|\int_{y \notin [-c,c]} G(y,t)dy|$$

Now, for any $\epsilon > 0$, let c be small enough so that $\sup_{x-c < y < x+c} |f(y) - f(x)| < \epsilon/2$, t be small enough so that $|\int_{y \notin [-c,c]} G(y,t) dy| < \epsilon/4M$, then $|u(x,t) - f(x)| < \epsilon$. Hence $u(x,t) \to f(x)$ as $t \to 0$. Furthermore, because any continuous function is absolutely continuous when restricted to a bounded closed neighborhood, the convergence is uniform when x is restricted to any bounded interval. Hence u is continuous on t = 0.

10 10/5 Examples, Poisson problem for wave equation

$$u_t = u_{xx}, \ u(x,0) = \chi_{[-1,1]}$$

- $u_t = u_{xx}, \ u(x,0) = e^{-x^2}$
- erf function: $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$

d'Alembert from change of variable: $u_{tt} = k^2 u_{xx}$, p = x + kt, q = x - kt, then $u_{pq} = 0$, u = F(p) + G(q). Now u(x, 0) = f(x), $u_t(x, 0) = g(x)$, which in p, q-coordinate means F(x) + G(x) = f, kF'(x) - kG'(x) = 0. Solve for F and G then one gets the d'Alembert formula.

Negative and positive characteristics, domain of influence and domain of dependence

11 **Review for Midterm I**

The following may appear in the first midterm:

- Simplify PDE by substitution
- Prove properties of the solution by chain rules, fundamental theorem of calculus, and divergence theorem
- Solve PDE by reducing it to ODE either through restriction to a curve or through the use of symmetry.
- Obtain particular solution from the general solution by applying boundary condition.
- Method of characteristics
- General solution of 1-dimensional wave equations
- Poisson integration representation for initial value problem of the heat equation
- Can recognize elliptic, parabolic and hyperbolic 2nd-order equations

Practice problems:

1. Solve the initial value problem $u_t + \sin t u_x = 1$, $u(x, 0) = \sin x$. Solution: By method of characteristics, the general solution is $u(x,t) = t + F(x + \cos t)$, so u(x,t) = $t + \sin(x + \cos t - 1).$

2. Find the steady state solution of $u_t = u_{xx} + xu_x$. Solution: The steady state solution satisfies $u_{xx} + xu_x = 0$, hence $u = A \int_0^x e^{-t^2/2} dt + B$. You can also write it using the erf function.

3. Consider the equation: $u_{tt} = u_{xx} + u_{yy}$. If a solution satisfy $u = \sin t v(x, y)$, what is the PDE v satisfies? Can you find a solution when v depends only on y? Solution: By product law, we get $v_{xx} + v_{yy} + v = 0$. If v depends only on y then $v = A \cos y + B \sin y$.

4. Consider the boundary value problem $u_{tt} = u_{xx} - u_t$, u(0,t) = u(1,t) = 0. Show that the function $\int_0^1 u_t^2 + u_x^2 dx \text{ is decreasing. What's the limit of } u \text{ as } t \to \infty?$ Solution: $\frac{d}{dt} \int_0^1 u_t^2 + u_x^2 dx = \int_0^1 2u_t u_{tt} + 2u_x u_{xt} dx = 2(u_t u_x)|_0^1 - 2\int_0^1 u_t^2 dx \le 0.$ As $t \to \infty$, the energy

 $\int_0^1 u_t^2 + u_x^2 dx$ will decay towards 0, and the limit will be 0.

$12 \quad 10/10$ Well posed problem, review

Some known solutions of IVP:

- $u_t = u_x$, u(x, 0) = f(x)Answer: u(x, t) = f(x + t).
- $u_{tt} = u_{xx}, u(x,0) = f(x), u_t(x,0) = g(x)$ Answer: $u(x,t) = \frac{1}{2}(f(x+t) + f(x-t)) + \frac{1}{2}\int_{x-t}^{x+t} g(s)ds.$
- $u_t = u_{xx}, u(x,0) = f(x), u$ bounded. (or $\leq Ce^{Cx^2}$) Answer: $u(x,t) = \int_{\mathbb{R}} f(s)G(x-s)ds$.

In all cases, we have: (1) solution exist. (2) solution is unique. (3) solution depends on the initial condition continuously. Hence we call them **well posed** problems.

Example of non-well-posed problems:

Nonlinear advection. Reverse heat equation. $u_{xx} + u_{tt} = 0.$

Review: 1. $u_t = tu_x, u(x, 0) = x^2$.

2. $u_{tt} = u_{xx} - u$: steady state?

13 10/17 Semi-infinite domain, Dahamel's Principle

Example 1: $u_t = u_{xx}$, u(x,0) = f, u(0,t) = 0: $u = \int G(x-y,t)\phi(y)dy$, so $\phi(x) = f(x)$ when x > 0 and -f(-x) when x < 0.

Example 2: $u_{tt} = u_{xx}$, u(x,0) = f, $u_t(x,0) = g$, $u_x(0,t) = 0$, $x \ge 0, t \ge 0$: $u = \frac{1}{2}(\phi(x-t) + \phi(x+t)) + \frac{1}{2}\int_{x-t}^{x+t} \psi(s) ds$. So ϕ and ψ are even extension of f and g respectively.

Example 3: L linear operator in the space of functions on x. $u_t = Lu$, $u(0) = \alpha$ has solution $u(t, \alpha)$. Then, $u_t = Lu + f(t)$, $u(0) = \alpha$ has solution $u(t) = u(t, \alpha) + \int_0^t u(s, f(t-s)) ds$.

Example 4: $u_{tt} = u_{xx} + \sin(x+t)$, $u_t(x,0) = u(x,0) = 0$. Let $U = [u, u_t]^T$, use the principle above.

Example 5: $u_t = u_{xx}$, u(0, t) = t. Solution: combine ideas from problem 1 and 3.

14 10/19 Laplace Transform and Fourier Transform

Review: Homogeneous boundary: mirroring; Non-homogeneous equation: $w(t, \alpha)$ being the solution of $w_t = Tw$, $w(0) = \alpha$, then $u_t = Tu + f(t)$, u(0) = b has solution $u = w(t, b) + \int_0^t w(t - s, f(s)) ds$. Hence, to solve non-homogeneous equations, first solve for w then put it in the formula.

Laplace transform: $L(f) = \int_0^\infty e^{-st} f(t) dt$.

Properties: L(f') = sL(f) - f(0), L(f * g) = L(f)L(g). Here f and g are 0 on $(-\infty, 0)$.

L(f) = 0 iff f a.e. 0. When f is analytic, $L^{-1}(f) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f(s) e^{st} ds$, but we won't use this.

Formulas we will use:

(1):
$$L(\frac{1}{\sqrt{4\pi t}}e^{-a^2/(4t)}) = \frac{1}{\sqrt{4s}}e^{-|a|\sqrt{s}}.$$

(2): $L(\frac{a}{2t^{3/2}}e^{-a^2/(4t)}) = \sqrt{\pi}e^{-a\sqrt{s}}.$

Example 1: $u_t = u_{xx}$, u(x, 0) = f(x), f compactly supported (or have similar decay condition)

 $sL(u) - f(x) = (Lu)_{xx}, \text{ hence } (Lu)(x,s) = \frac{1}{2\sqrt{s}} \left(e^{-\sqrt{s}x} \int_{-\infty}^{x} e^{\sqrt{s}r} f(r)dr + e^{\sqrt{s}r} \int_{x}^{\infty} e^{-\sqrt{s}r} f(r)dr \right) = \frac{1}{\sqrt{4s}} \int_{-\infty}^{\infty} e^{-\sqrt{s}|x-r|} f(r)dr = L(\int_{-\infty}^{\infty} G(x-r,t)y(r)dr). \text{ Here we use (1), and also the formula for solving non-homogeneous 2nd order ODE: } y = y_2 \int_{a}^{x} (y_1 f/W)ds - y_1 \int_{a}^{x} (y_2 f/W)ds.$

Example 2: $u_t = u_{xx}$, u(x, 0) = 0, u(0, t) = f(t).

$$sL(u) = (Lu)_{xx}, \text{ so } (Lu)(x,s) = L(f)e^{-\sqrt{s}x} \text{ so } u = L^{-1}(L(f)) * \frac{x}{\sqrt{4\pi t^3}}e^{-\frac{x^2}{4t}} = \int_0^t f(\tau)\frac{x}{\sqrt{4\pi(t-\tau)^3}}e^{-\frac{x^2}{4(t-\tau)}}d\tau.$$

How about f = 1?

15 10/24 Laplace and Fourier transform

Steps for solving PDEs using integration transform:

- 1. Do transform, turn it into ODE.
- 2. Apply initial/boundary conditions.
- 3. Solve ODE, take the inverse transform.

Example 1: $u_t = u_x$, u(x, 0) = f(x), use Laplace transform on t.

 $sLu - f(x) = (Lu)_x$, so $Lu = F(s) + \int_x^{\infty} f(r)e^{s(x-r)}dr = F(s) + L(f(x+\cdot))$. So $u = L^{-1}(F) + f(x+t)$, by initial condition F = 0.

Example 2: (PIP) $u_t = K u_{xx}$, u(x, 0) = 0, u(0, t) = f, find K from $u_x(t, 0)$.

$$u = \int_0^t f(\tau) \frac{x}{\sqrt{4K\pi(t-\tau)^3}} e^{-\frac{x^2}{4K(t-\tau)}} d\tau = -2K \int_0^t G_x(x,t-\tau) f(\tau) d\tau = -2 \int_0^t G(x,t-\tau) f'(\tau) d\tau = \dots$$
 Dovervthing for x small then take limit

everything for x small then take limit.

Fourier transform: $F(f) = \int_{\mathbb{R}} e^{ist} f(t) dt$. Properties: F(f') = -isF(f). $F^{-1}(f) = \frac{1}{2\pi} e^{-ist} f(t) dt$. F(f * g) = F(f) * F(g). $(F^{-1}(f * g) = \frac{1}{2\pi} F^{-1}(f) F^{-1}(g))$

Example 3: $u_t = u_{xx}, u(x, 0) = f$. F on x: $(Fu)_t = -y^2(Fu), Fu = e^{-ty^2}F(f), u = F^{-1}(e^{-ty^2})*f = \dots$ Here, one uses that $\int_{\mathbb{R}} e^{(-x+iy)^2} dx$ does not depend on y.

$16 \quad 10/26$ Fourier transform

Review: Definition, derivatives, convolution, inverse.

Example 1: $u_{tt} = 4u_{xx} + f(x,t), \ u(x,0) = g(x), \ u_t(x,0) = 0.$

Fourier transform on x, v = F(u): $v_{tt} = -4s^2v + F(f), v(s,0) = Fg, v_t(s,0) = 0$. So $v(x,t) = (Fg)(s)\cos(2st) + \int_0^t \frac{1}{2s}\sin(2s(t-r))(Ff)(s,r)dr$. Now by the inverse formula, we have $F^{-1}(\cos(2st) + Fg)(x,t) = \frac{1}{2}(g(x-2t)+g(x+2t)), \text{ and } F^{-1}(\frac{1}{2s}\sin(2s(t-r)) \cdot Ff) = F^{-1}(\frac{1}{4is}(F(f(x+2t-2r,r)-f(x-2t+2r,r)))) = \frac{1}{4}\int_{x-2t+2r}^{x+2t-2r} f(y,r)dy$. Hence the solution is $u = \frac{1}{2}(g(x-2t)+g(x+2t)) + \frac{1}{4}\int_0^r \int_{x-2t+2r}^{x+2t-2r} f(y,r)dy$.

Example 2: $u_{tt} + u_{xx} = 0$, u(x,0) = f(x), u bounded on t > 0. (a model for electric potential, current field, Newtonian gravity etc.)

Fourier transform on x: v = F(u), then $v_{tt} = s^2 v$, $v(s,t) = F(f)(s)e^{-|s|t}$, $u = F^{-1}(F(f)(s)e^{-|s|t}) = f * \frac{t}{\pi(t^2+x^2)}$.

Example 3: 3-dimensional wave equation: $u_{tt} = \Delta u$, $u_t(x, 0) = f(x)$, u(x, 0) = 0.

Multi-variable Fourier transform on x, v = F(u), we get $v_{tt} = |s|^2 v$. $v = \frac{\sin(|s|t)}{|s|}F(f)$. Calculate $\frac{F^{-1}(\sin(|s|t))}{|s|}$ in coordinate system (r, h, θ) where $h = s \cdot x$, one gets that it is a distribution concentrated at |x| = t. Huygen's principle.

Example 4: $u_{tt} = u_{xx} - u_t$, u(x, 0) = 0, $u_t(x, 0) = f(x)$.

Do Fourier transform in x direction, one gets $\hat{u} = -\hat{f}(s) \cdot (1 - 4s^2)^{-1/2} (e^{-\frac{1+\sqrt{1-4s^2}}{2}t} - e^{-\frac{1-\sqrt{1-4s^2}}{2}t})$. So $u = f * \Phi, \ \Phi(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}} (1 - 4s^2)^{-1/2} (e^{-\frac{1+\sqrt{1-4s^2}}{2}t} - e^{-\frac{1-\sqrt{1-4s^2}}{2}t}) e^{-isx} ds$.

17 10/31 Solving IBVP with Fourier series

Example: $u_t = u_{xx}$, u(0,t) = u(1,t) = 0, u(x,0) = f(x).

 $\begin{array}{l} \text{Method 1: expand f into $\phi(x) = \begin{cases} f(x-2n) & 2n < x < 2n+1 \\ f(2n-x) & 2n-1 < x < 2n \end{cases} } \text{So $u = \int_0^1 \sum_{n \in \mathbb{Z}} f(y)(G(x+2n-y,t) - G(x+2n+y,t))dy$, where $G(x,t) = \frac{1}{\sqrt{4\pi t}}e^{-x^2/4t}$. \end{cases} \end{array}$

Method 2: Note that $u(x,t) = e^{-n^2 \pi^2 t} \sin(n\pi t)$ satisfies both the equation and the boundary condition. Try to build the solution by linear combinations of such solutions. Suppose $f(x) = \sum_n c_n \sin(n\pi x)$. Then, $c_n = 2 \int_0^1 f(y) \sin(n\pi y) dy$. So, $u(x,t) = \sum_{n=1}^\infty 2e^{-n^2 \pi^2 t} \left(\int_0^1 f(y) \sin(n\pi y) dy \right) \sin(n\pi x)$.

One can show that they are the same by Poisson summation formula. One needs only to show: $\sum_{n \in \mathbb{Z}} e^{-n^2 \pi^2 t + inx} = \frac{1}{\sqrt{\pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{(x+2n)^2}{4t}}$. This is by using Poisson summation formula $\sum_n F(n) = \sum_n \int_{\mathbb{R}} F(x) e^{2\pi i nx} dx$, on function $F(y) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x+2y)^2}{4t}}$.

Example 2: same, for Neumann boundary condition.

18 11/2 Fourier series

 $L^2(M)$: L^2 integrable functions on M (defined up to measure 0 set). Inner product: $(u, v) = \int u\overline{v} \leq (\int |u|^2 \int |v|^2)^{1/2}$.

Complete orthonormal system: $\{f_n\} \in L^2(M)$, orthonormal, and $(g, f_n) = 0$ for all n implies g = 0. Then, $g = \sum_i (g, f_i) f_i$, (in L^2 sense), $\sum |(g, f_i)|^2 = ||g||^2$ (Parseval's equality).

Other convergence: reduce to the periodic case. It can then be upgraded to uniform when $g \in C^1$, and pointwise when there is Dini criterion $\left(\int_0^{L/2} |\frac{g(x_0+t)+g(x_0-t)}{2} - l|\frac{dt}{t} < \infty\right)$.

Some complete orthonormal systems for $L^2([0, l])$: $\{\sin(2n\pi x/l), \cos(2n\pi x/l)\}, \{\sin(2\pi x/l)\}, \{\cos(n\pi x/l)\}, \{e^{2in\pi x/l}\}.$

Example: $\sin(\pi x)$ expand under $\cos(n\pi x)$.

Application: Poisson summation formula: $F(x) = \sum_n f(x+n)$, do Fourier expansion on [0, 1] using $e^{2in\pi x}$, $F(x) = \sum_n \int_0^1 \sum_n f(y+n) e^{-2in\pi y} dy e^{2in\pi x} = \sum_n \int_0^1 \sum_n f(y+n) e^{-2in\pi(y+n)} dy e^{2in\pi x}$. Let x = 0.

Example of solving PDE with Fourier series: $u_t = u_{xx}$, $u_x(0,t) = 0$, $u_x(1,t) = f(t)$, u(x,0) = 0, f(0) = 0: $v = u - \frac{x^2}{2}f(t)$, then v(x,0) = 0, $v_t + \frac{x^2}{2}f'(t) = v_{xx} + f(t)$. Let $v(x,t) = \sum_n v_n(t) \cos nx$, then $v'_n + C_n f'(t) = v_n + D_n$, where $C_n = \frac{1}{n\pi}(-1)^n - \frac{2}{n^2\pi^2}(-1)^{n-1}$ when n > 0, $C_0 = \frac{1}{6}$, $D_n = 0$ for n > 0, $D_0 = 1$.

19 11/7 Review for Chapter 2 & 3

The Heaviside function H is defined by H(x) = 1 when $x \ge 0$ and 0 when x < 0.

The Dirac mass δ is defined by $\int \delta(x) f(x) dx = f(0)$. Hence, $\delta * f = f$ for any f.

 χ_A : characteristic function of A.

The solution of IVP for 1-d wave equation can be written as $\frac{1}{2}(\delta_{ct} + \delta_{-ct}) * f + \frac{1}{2c}\chi_{[-ct,ct]} * g$.

Effect of translation and scaling for L and F.

Reason for odd/even extension.

Example 1: $u_t = u_{xx} - u + f(x), u(x,0) = 0, t > 0.$

Solution 1: Change of variable $u = e^{-t}v$, then $v_t = v_{xx} + e^t f(x)$, $u = \int_0^t e^{\tau - t} \int_{\mathbb{R}} G(x - y, t - \tau) f(y) dy d\tau$.

Solution 2: Fourier transform in the x direction: v = Fu, $v_t = -s^2v - v + F(f)$, $v(s,t) = F(f)(e^{-(s^2+1)t} - 1)\frac{1}{1+s^2}$, $u(x,t) = \frac{1}{2}(f * e^{-t}G - f) * (e^{-|x|})$.

Example 2: $u_{tt} = u_{xx}, u_x(0,t) = 0, u_t(x,0) = 0, u(x,0) = f(x), x > 0, t > 0.$

Solution 1: Even extension: $u(x,t) = \frac{1}{2}(f(|x+t|) + f(|x-t|)).$

Solution 2: Laplace transform in t direction: v = Lu, then $s^2v - sf = v_{xx}$, $v_x(0,s) = 0$. So $v(x,s) = \int_0^x \left(\frac{f(r)}{2}(e^{s(x-r)} - e^{-s(x-r)})\right) dr + C(s)(e^{sx} + e^{-sx}) = \int_0^x \left(\frac{f(x-r)}{2}(e^{sr} - e^{-sr})\right) dr + C(s)(e^{sx} + e^{-sx})$. Here $\int_0^x \left(\frac{f(x-r)}{2}(e^{sr} - e^{-sr})\right) dr = \frac{1}{2}(e^{xs}L(\chi_{[0,x]}f) - L(f(-\cdot)))$. Let $x \to \infty$, we have $C(s) = -\frac{L(f)}{2}$. Now take L^{-1} one gets the solution.

Example 3: $u_{tt} = u_{xx}$, $u_x(0,t) = u_x(2,t)$, u(0,t) = u(2,t), $u_t(x,0) = 0$, u(x,0) = f(x).

Solution 1: Do periodic extension: $u(x,t) = \frac{1}{2}(f(x+t-2\lfloor \frac{x+t}{2} \rfloor) + f(x-t-2\lfloor \frac{x-t}{2} \rfloor)).$

Solution 2: Fourier series expansion. $u(x,t) = \frac{1}{2} \int_0^2 f(s) ds + \frac{1}{2} \sum_{n=1}^\infty \int_0^2 f(s) \cos(n\pi s) ds (\cos(n\pi (t+x)) + \cos(n\pi (t-x)))) + \frac{1}{2} \sum_{n=1}^\infty \int_0^2 f(s) \sin(n\pi s) ds (\sin(n\pi (t+x)) + \sin(n\pi (x-t)))).$

Example 4: $iu_t = u_{xx}$.

20 Review for Midterm 2

Topics that will be covered in the second midterm:

- Definitions of Laplace and Fourier transform.
- Use odd/even extension for boundary-value problems
- Dahamel's principle
- Solving PDE on bounded domain using Fourier (sine, cosine etc.) series.

The Heaviside function H is defined by H(x) = 1 when $x \ge 0$ and 0 when x < 0. The Dirac mass δ is defined by $\int \delta(x) f(x) dx = f(0)$. Hence, $\delta * f = f$ for any f.

Practice problems:

(1) Find the Laplace transform of $f(x) = x^{-1/2}$.

Solution: $\int_0^\infty x^{-1/2} e^{-sx} dx = \frac{2}{\sqrt{s}} \int_0^\infty s^{-sx} ds^{1/2} x^{1/2} = \frac{2}{\sqrt{s}} \frac{\sqrt{\pi}}{2} = \sqrt{\frac{\pi}{s}}.$

(2) If f is continuous with bounded support defined on $(0, \infty)$, find bounded solution of $u_{xx} + u_{tt} = 0$, $u_x(0,t) = 0$, u(x,0) = f(x), on the region $\{x, t : x > 0, t > 0\}$.

Solution: Because $u_x(0,t) = 0$, the problem can be reduced to $u_{xx} + u_{tt} = 0$, u(x,0) = f(|x|), t > 0. So the solution is $\int_{\mathbb{R}} \frac{t}{\pi((x-r)^2+t^2)} f(|r|) dr$.

(3) Find the bounded solution of $u_{xx} + u_{tt} = 1$, u(x,0) = u(0,t) = u(1,t) = 0, on the region $\{x, t : t > 0, 0 < x < 1\}$.

Solution: Do sine expansion, we have $u(x,t) = \sum_{n} C_n(t) \sin(n\pi x)$, and $C''_n - n^2 \pi^2 C_n = \frac{1-(-1)^n}{2n\pi}$ so $C_n(t) = \frac{1-(-1)^n}{2n^3\pi^3} e^{-n\pi t} - \frac{1-(-1)^n}{2n^3\pi^3}$, and $u(x,t) = \sum_{n} \sin(n\pi x) \left(\frac{1-(-1)^n}{2n^3\pi^3} e^{-n\pi t} - \frac{1-(-1)^n}{2n^3\pi^3}\right)$.

21 11/14 Review of separation of variables

Example 1: $u_t = ku_{xx} - hu$, u(0,t) = u(L,t) = 0, u(x,0) = f(x).

Example 2: $u_t = ku_{xx} - hu$, $u(0,t) = u_x(L,t) = 0$, u(x,0) = f(x).

Example 3: $u_t = ku_{xx} - hu$, $u(0,t) = u_x(L,t) = 0$, u(x,0) = 0, $u_t(x,0) = f(x)$.

22 11/16 Sturm-Liouville problems

Lu = -(p(x)u')' + q(x)u, p non-zero.

Regular SLP: $Lu = \lambda u$, $\alpha_1 u(a) + \alpha_2 u'(a) = \beta_1 u(b) + \beta_2 u'(b) = 0$. Periodic SLP: $Lu = \lambda u$, u(a) = u(b), $u_x(a) = u_x(b)$.

 λ such that there is non-zero solution: eigenvalues, non-zero solution: eigenfunction.

For both SLPs:

Discrete eigenvalues: theory of compact operators.

Eigenvalues are real, eigenfunctions orthorgonal: self adjoint under L^2 : $\int f \overline{Lg} = \int f \overline{-(pg')'} + (qf)\overline{g} = \dots$

For regular SLP:

Eigenspaces have dimension 1: theory of ODE.

Signs of eigenvalues: $\lambda = (u, Lu)/(u, u)$, hence when $p > 0, q > 0, \lambda > 0$.

Example 1: $u_t = u_{xx}$, $u(0,t) = u(1,t) + u_x(1,t) = 0$, u(x,0) = f(x).

Example 2: $u_{yy} + u_{xx} = u$, $u(0,t) = u(1,t) + u_x(1,t) = 0$, u(x,0) = f(x).

23 11/21 SLP cont.

1. Symmetric boundary conditions: if y_1 , y_2 both satisfy the condition, then $p(y_1y'_2 - y'_1y_2)|_a^b = 0$. Energy argument: show that (u, Lv) > 0.

2. Weighted SLP: $Lu = \lambda ru$, then inner product should be taken as $(u, v) = \int u r \overline{v}$.

Example 1: $u_t = u_{xx} + u_x$, u(0,t) = u(1,t) = 0, u(x,0) = f(x).

3. Singular SLP: p = 0 Example 2: Bessel's eq: $-(xu')' = \lambda xu$, u(0) bounded, u(1) = 0.

4. SLP on infinite interval: Example 3: $-u'' = \lambda u$, u(0) = 0, u bounded at ∞ : Fourier sine transform (i.e. Fourier transform after an odd expansion)

Example 4: $u_t = u_{xx}$, u(x, 0) = f(x), $u_x(0, t) = 0$, t > 0, x > 0.

In the case when both sides are unbounded, this becomes Fourier transform.

Example 5: $-u'' = \lambda u$, u bounded at ∞ , u(0) - u'(0) = 0.

Solution: The expansion is $f(x) = \int_0^\infty g(s)(\sin(sx) + s\cos(sx))ds$. To get g from f, first solve ODE h + h' = f, then do odd extension for h and do inverse Fourier transform.

11/28 Laplace on disc

Review: solve pde with separation of variables:

Step 1: write u as product form, make ODEs. Step 2: apply boundary condition, get SLP in one or more directions. Step 3: solve ODEs with eigenvalues. Step 4: write solution in infinite series.

 $\Delta = \partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\theta^2.$

Example 1: $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0, \ u(1,\theta) = f(\theta), \ r < 1.$

Solution: $u = \frac{1}{2\pi} \int_0^{2\pi} f(s) ds + \frac{1}{\pi} \sum_n r^n \int_0^{2\pi} f(s) \cos(n(\theta - s)) ds = \frac{1}{2\pi} f * \left(\frac{1}{1 - re^{i(\theta - \cdot)}} + \frac{1}{1 - re^{-i(\theta - \cdot)}} - 1\right).$ Poisson's integral formula, Poisson's kernel. Fundamental solution.

Example 2: same as above but r > R, bounded solution.

Solution: $u = \frac{1}{2\pi} f * \left(\frac{1}{1 - (R/r)e^{i(\theta - \cdot)}} + \frac{1}{1 - (R/r)e^{-i(\theta - \cdot)}} - 1 \right).$

Example 3: $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = f(r,\theta), \ u(1,\theta) = f(\theta), \ r < 1.$

Solution: $f(r,\theta) = \sum_n f_n(r) \cos n\theta + \sum_n g_n(r) \sin n\theta$, where $f_0(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r,s) ds$, $f_n(r) = \frac{1}{\pi} \int_0^{2\pi} f(r,s) \cos ns ds$ when n > 0, and $g_n = \frac{1}{\pi} \int_0^{2\pi} f(r,s) \sin ns ds$. Then, $u(r,\theta) = \sum_n A_n(r) \cos n\theta + \sum_n B_n(r) \sin n\theta$. The functions A_n , and B_n satisfies: $A''_n + \frac{1}{r}A'_n - \frac{n^2}{r^2}A_n = f_n$, $B''_n + \frac{1}{r}B'_n - \frac{n^2}{r^2}B_n = f_n$.

Now we solve $A_n'' + \frac{1}{r}A_n' - \frac{n^2}{r^2}A_n = f_n$. $(r^{2n+1}(r^{-n}A_n)')' = (-nr^nA_n + r^{n+1}A_n')' = -n^2r^{n-1}A_n + r^nA_n' + r^{n+1}A_n'' = r^{n+1}f_n$, so $(r^{-n}A_n)' = r^{-2n-1}\int_0^r s^{n+1}f_n(s)ds$, $A_n = -r^n\int_r^1 h^{-2n-1}\int_0^h s^{n+1}f_n(s)dsdh$. Similarly, $B_n = -r^n\int_r^1 h^{-2n-1}\int_0^h s^{n+1}g_n(s)dsdh$.

24.1 General theory of Laplace equation (for any dimension)

Divergence theorem: $\int_{\Omega} div\phi dV = \int_{\partial\Omega} \phi \cdot n dA.$

 $\begin{array}{l} \text{Green's identities: } \int_{\partial\Omega} ugradu \cdot ndA = \int_{\Omega} u\Delta u dV + \int_{\Omega} \|gradu\|^2 dV \\ \int_{\Omega} u\Delta v dV = \int_{\Omega} v\Delta u dV + \int_{\partial\Omega} (ugradv - vgradu) \cdot ndV. \end{array}$

Uniqueness for Dirichlet problem: Green's first identity. Dirichlet's principle for Dirichlet problem: Green's second identity.

25 11/30 More example on non-homogenuity. Heat equation on balls

Example 1: $u_t = u_{rr} + \frac{d-1}{r}u_r$, $u_r(0,t) = u(1,r) = 0$, u(r,0) = f(r).

 $d=3,\,d=2.$

Example 2: $u_{tt} = c^2 (u_{rr} + \frac{2}{r}u_r).$

Example 3: parameter identification: $\lambda_n R_n = c(r)^2 (R''_n + \frac{2}{r}R'_n), R_n(1) = 0.$ $\lambda_n(rR_n) = c^2 (rR_n)'', \text{ so } \lambda_n \int_0^r c^{-2} sR_n(s) ds = (rR_n)', \dots$

$26 \quad 12/5$ Poisson equation

Example 1: $u_{tt} = u_{xx}$, $u(0,t) - \sin kt = u_x(1,t) = 0$, $u(x,0) = u_t(x,0) = 0$.

 $\Delta u = \lambda u$, Dirichlet/Neumann boundary, then there is a orthogonal basis formed by eigenvectors.

Example 2: Ω be the region $[0, a] \times [0, b]$, $\Delta u = f$ on Ω , $u|_{\partial\Omega} = 0$.

Example 3: $u_{rr} + 1/ru_r + u_{\theta\theta} = f, u(1, \theta) = 0.$

Fredholm alternative.

Green's functon.

Example 4: upper half space.

Example 5: $[0, \infty) \times [0, \infty)$.

27 Final review

Types of equations: advection, heat, wave, laplace, Poisson, linear, linear homogeneous.

Solution methods: method of characteristics, Poisson integration for heat equation, D'Alembert solution for 1-D wave equation Method of mirror image, Duhamel's principle Fourier and Laplace transform Fourier method.

Exercises:

1. Solve the equation $u_t = u_{xx} + f(x)$, $u_x(0,t) = u(2,t) = u(x,0) = 0$ on 0 < x < 2, t > 0.

Solution:
$$u = \sum_{n=0}^{\infty} \frac{1}{(n\pi/2 + \pi/4)^2} \left(\int_0^2 f(s) \cos((n\pi/2 + \pi/4)s) ds \right) (1 - e^{-(n\pi/2 + \pi/4)^2 t}) \cos((n\pi/2 + \pi/4)x).$$

2. Find bounded solution of $u_{xx} + u_{yy} = 0$, $u_y(x, 0) = f(x)$, $u_x(0, y) = u_x(1, y) = 0$ on 0 < x < 1, y > 0. Note that f has to satisfy some other constraint for such a solution to exist.

Solution: The constraint is that $\int_0^1 f(s)ds = 0$. $u = -\sum_{n=1}^\infty \frac{2}{n\pi} \int_0^1 f(s)\cos(n\pi s)ds e^{-n\pi y}\cos(n\pi s)$.

3. Find the general solution of $0 = (x\partial_t + \partial_x)(\partial_t - \partial_x)u = xu_{tt} + (1-x)u_{xt} - u_{xx}$. $u_t - u_x = F(t - x^2/2), u = G(x+t) + \int_0^t F(s - (x+t-s)^2/2)ds$.