1 9/5 PDE terminology \& philosophy

PDE: equation for a multivariate function that involves its partial derivatives.
Example: $u_{y}=x$.
Example: $(y u)_{y}=1$.
General solution of a PDE.

Formally: PDE: $F\left(u, x_{i}, u_{x_{i}}, u_{x_{i} x_{j}}, \ldots\right)=0$
Order of a pde
Linear PDE.
Linear homogeneous PDE.
What are the order and linearality of the following PDEs?
$u_{x}+u_{y y x}=1, u u_{x}+u=0, u_{x}+\left(x^{2}+y^{2}\right) u_{y y}=1$.

Some PDEs we will focus on later:
Heat: $u_{t}=u_{x x}$: (heat transmission, diffusion)
Laplace: $u_{x x}+u_{y y}=0$: (static electric field, Newton's gravity, equilibrium of random walk)
Wave: $u_{t t}=u_{x x}$: (sound wave, other waves in physics)
Other important linear PDEs:
Dispersive wave equations: $u_{t t}=u_{x x}-k u_{x x x x}$ (stiff string)
Cauchy-Riemann equation: $u_{x}=v_{y}, u_{y}=-v_{x}$
Non-linear PDEs you may see in later classes:

Navier-Stokes

Nonlinear Schrodinger: $i u_{t}=-\Delta u+k|u|^{2} u$
$\mathrm{KdV}: u_{t}+u_{x x x}+6 u u_{x}=0$, etc.
Example: growth of bacteria. Baseline: GMCF (geodesic mean curvature flow) $u_{t}=A \frac{\nabla u}{|\nabla u|} \cdot \nabla u+$ $B|\nabla u| \nabla \cdot \frac{\nabla u}{|\nabla u|}$.

Types of problems:
Evolution model (with time): Boundary condition. Initial condition. Initial value problem. Initial-boundary value problem.
Steady state model (no time): boundary value problem.
Typical questions in the theory of PDE:
Existence
Uniqueness
Regularity
Continuous dependency on boundary
Typical strategy: integral transform: $(T u)(y)=\int u(x) K(x, y) d x$, then $T\left(u_{x}\right)=\int u_{x}(x) K(x, y) d x=$ $-\int u(x) K_{x}(x, y) d x$, assume some decay conditions on the boundary (or infinity).

Problem: Is such a transform well defined?
Connection with harmonic analysis.
Use of symmetry (method of mirror images, spherical symmetry etc.)
Example: solve $u_{x x}+u_{y y}=1$, where $u=0$ on the unit circle.
Example: $u_{x}=u_{t}, u_{x}=u_{t}+1$.

2 9/7 Review of ODE, Advection and Diffusion

Review of ODE \& multivatiable calculus topics:

- $u^{\prime}+p(t) u+q(t)=0$
- $u^{\prime \prime \prime}+A u^{\prime \prime}+B u^{\prime}+C u=0$
- Chain rule: Example: $u_{x x}=u_{t t}$, what happens with change-of-variable $y=x+t, w=x-t$?
- Fubini's theorem.
- Differentiating an integral. Example: $\frac{d}{d t} \int_{0}^{t^{2}} \sin (t s) d s$.

Solution: Let $x=t, y=t$, then $\frac{d}{d t} \int_{0}^{t^{2}} e^{-t s^{2}} d s=\frac{d}{d t} \int_{0}^{x^{2}} e^{-y s^{2}} d s=\left(\int_{0}^{x^{2}} e^{-y s^{2}} d s\right)_{x}+\left(\int_{0}^{x^{2}} e^{-y s^{2}} d s\right)_{y}=$ $2 x \cdot e^{-y\left(x^{2}\right)^{2}}+\int_{0}^{x^{2}}\left(e^{-y s^{2}}\right)_{y} d s=2 x e^{-y\left(x^{2}\right)^{2}}-\int_{0}^{x^{2}} s^{2} e^{-y s^{2}} d s=2 t e^{-t^{5}}-\int_{0}^{t^{2}} s^{2} e^{-t s^{2}} d s$.

- Example: $u_{t t}=u_{x x}+u_{y y}, u(x, y, t)=\sin (x \cos \theta+y \sin \theta+t)$ are solutions, hence $\int_{0}^{2 \pi} \sin (x \cos \theta+$ $y \sin \theta+t) d \theta$ is also a solution.

PDE from conservation laws, 1-dimensional case:
Consider the flow of some material whose total quantity remain unchanged, along a thin tube with section area $A(x)$. Then, conservation means:

$$
\frac{d}{d t} \int_{a}^{b} u(x, t) A(x) d x=A(a) \phi(a, t)-A(b) \phi(b, t)+\int_{a}^{b} f(x, t) A(x) d x
$$

ϕ : flux. f: source.
Differentiate w.r.t. b one gets: $A u_{t}=-A \phi_{x}-A^{\prime} \phi+f A$.

- $\phi=u$: e.g. cars which travels at the same speed, age distribution etc.
- $\phi=-u_{x}$: heat conduction etc.
- $\phi=u-u_{x}$: contaminated flow etc.
- $f=-u$: decay.

Relationship with random motion: see $u(\cdot, t)$ as the probability distribution.
Example: $u_{t}=u_{x}-u$. Decay vs. "widening".
Example: u has two components (e.g. mass, momentum): wave equation.

$3 \quad 9 / 12$ Method of characteristics

Question: first order linear PDE in 2 dimension: $u_{t}+f u_{x}+g u+h=0$
First consider the case when $g=h=0$. Recall that for 1 st order ODE, there is a concept of first integral: the solution of $x^{\prime} F_{x}+F_{t}=0$ are the level curves of $F(x, t)$. Hence, the level curves of u are exactly the solutions of $x^{\prime}=f$, which are called characteristics.

Example: $u_{t}=x u_{x}-u$.
Example: $u_{t}=u_{x}+u_{y}$.
Example: $u_{t}=\sin t u_{x}+1$.
Non-linear advection: $u_{t}=f(u) u_{x}$: level curves are straight lines of slope $f(c)$. Breaking time.
Example: $u_{t}=(1-u) u_{x}$.

4 9/14 Diffusion, fundamental solutions

Review of method of characteristics: $u_{t}+c u_{x}=x$.
Fick's law: $\phi=-D u_{x}$, which results in $u_{t}=D u_{x x}$. Simple observation:

1. Steady state solution: $u=a x+b$.
2. Loss of information: should study initial value problem: $u_{t}=u_{x x}, u(x, 0)=f(x)$ on region $t>0$.
3. Time scale: remains unchanged under $t=c^{2} t^{\prime}, x=c x^{\prime}$.
4. Conservation of the "total heat": $\int u d x$ remain unchanged.

One could expect solution whose "shape" remain unchanged as one scales as in (3). However the integral in (4) changes under this scaling, so one should expect a factor of $t^{-1 / 2}$. Let $u=t^{-1 / 2} v\left(x^{2} / t\right)$, then v can be chosen as $v=C e^{-s / 4}$. One can normalize it into $u=\frac{1}{4 \pi D t} e^{-x^{2} / 4 t}$.

This is called the fundamental solution of heat equation in one dimension. δ distribution.
Alternative interpretation of the fundamental solution: discretize, then use central limit theorem. General solution: Convolution.

Fundamental solution of heat equations in higher dimensions?
$u_{t}=u_{x}+u_{x x}$
Method of mirrors: IBV problem.

5 9/18 Wave equation

$$
u_{t t}=u_{x x}
$$

Model 1: String vibration: $u_{t t}$ proportional to force which is characterized by $u_{x x}$.

Model 2: Sound wave in 1-dimension: $\rho_{t}=-(\rho v)_{x},(\rho v)_{t}=-\left(\rho v^{2}\right)_{x}-p_{x}, p=k \rho^{\gamma}$.
Review: general solution.
Solution for initial value problem.
Sound speed.
Initial-boundary value problems with one boundary (mirror), initial-boundary value problems with 2 boundaries, periodicity.
(Optional) Sepherical waves in higher dimensions.

6 9/21 Wave equation, boundary conditions, review of multivariable calculus

Correction: derivation of the general solution of 1-D wave equation:

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
\left(\partial_{t}+c \partial_{x}\right)\left(\partial_{t}-c \partial_{x}\right) u=0 \\
\left(\partial_{t}+c \partial_{x}\right) u=f(x+c t) \\
u=G_{1}(x-c t)+\int_{o}^{t} f(c s+(x-c t)+c s) d s \\
F_{1}^{\prime}=f \\
u=G_{1}(x-c t)+\left(F_{1}(x+c t)-F_{1}(x-c t)\right) / c=\left(G_{1}-F_{1} / c\right)(x-c t)+\left(F_{1} / c\right)(x+c t)
\end{gathered}
$$

Now let $G=G_{1}-F_{1} / c, F=F_{1} / c$.
Boundary conditions: Dirichlet, Neumann, Robin.
Homogeneous boundary condition.
Example: $u_{t t}=u_{x x}, u(0, t)=0, u_{X}(1, t)=0$, general solution?
Example: non-homogeneous boundary and non-homogeneous equations
Example: $u_{t t}=u_{x x}+\sin x$.
Vector field in 3 dimension: $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. grad, div and curl. Stokes theorem in $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}$.

7 9/26 Heat equation in high dimension, Laplace equation

Mass balance in high dimension: $u_{t}+\operatorname{div} \phi=0$. Heat: $\phi=-\operatorname{kgrad}(u)$.
Steady-state: Laplace equation.

Maximal principle, uniqueness.
Example of solutions. Fundamental solution.
Variational principle.
$* * * * * * *$
Laplacian in sepherical coordinates. Sepherical harmonics.

8 9/28 Types of PDEs

Consider 2nd order equation $A u_{x x}+B u_{x y}+C u_{y y}+f\left(u, u_{x}, u_{y}, x, y\right)=0$. It is called elliptic/parabolic/hyperbolic iff $A x^{2}+B x y+C y^{2}$ is positive or negative definite/degenerate/indefinite.

Canonical forms: $u_{x x}+u_{y y}+\cdots=0, u_{x y}+\cdots=0, u_{x x}+\cdots=0$
Example: different types at different places.
Example: type remains unchanged under coordinate change: polar coordinate.

9 10/3 Heat equation

Formula for the Green's function/fundamental solution $G(x, t)$.
Properties: $\int_{-\infty}^{\infty} G(x, t) d x=1, \lim _{t \rightarrow 0^{+}} \int_{|x|>c>0} G(x, t) d x=0, G_{t}=k G_{x x}$.
Poisson integration formula: is a solution: linearality; initial condition: the properties above.
Non-uniqueness of the solution: Tychonov 1935
Higher dimension.
Theorem (Poisson integration): If f is a bounded continuous function, then a solution of $u_{t}=k u_{x x}$ when $t>0, u(x, 0)=f(x)$ is:

$$
u=\int_{\mathbb{R}} f(y) G(x-y, t) d y
$$

Proof: By computation we know that:

1. $\int_{\mathbb{R}} G(x, t) d x=1$
2. For any $c>0, \int_{x \notin[-c, c]} G(x, t) d x \rightarrow 0$ as $t \rightarrow 0$.
3. $G_{t}=k G_{x x}$
$u_{t}=k u_{x x}$ follows from 3. and the fact that all infinite integrals involves converges absolutely. Now we need to show the initial condition, i.e. that $u(x, t) \rightarrow f(x)$ as $t \rightarrow 0^{+}$. Let M be a bound of $|f(x)|$.

For any $c>0$,

$$
|u(x, t)-f(x)|
$$

$$
\begin{gathered}
\leq\left|\int_{x-c}^{x+c} f(x) G(x-y, t) d y-f(x)\right|+\left|\int_{x-c}^{x+c}(f(y)-f(x)) G(x-y, t) d y\right|+\left|\int_{y \notin[x-c, x+c]} f(y) G(x-y, t) d y\right| \\
\leq\left|f(x) \int_{y \notin[-c, c]} G(y, t) d y\right|+\sup _{x-c<y<x+c}|f(y)-f(x)|+M\left|\int_{y \notin[-c, c]} G(y, t) d y\right|
\end{gathered}
$$

Now, for any $\epsilon>0$, let c be small enough so that $\sup _{x-c<y<x+c}|f(y)-f(x)|<\epsilon / 2, t$ be small enough so that $\left|\int_{y \notin[-c, c]} G(y, t) d y\right|<\epsilon / 4 M$, then $|u(x, t)-f(x)|<\epsilon$. Hence $u(x, t) \rightarrow f(x)$ as $t \rightarrow 0$. Furthermore, because any continuous function is absolutely continuous when restricted to a bounded closed neighborhood, the convergence is uniform when x is restricted to any bounded interval. Hence u is continuous on $t=0$.

10 10/5 Examples, Poisson problem for wave equation

$u_{t}=u_{x x}, u(x, 0)=\chi_{[-1,1]}$
$u_{t}=u_{x x}, u(x, 0)=e^{-x^{2}}$
erf function: $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
d'Alembert from change of variable: $u_{t t}=k^{2} u_{x x}, p=x+k t, q=x-k t$, then $u_{p q}=0, u=F(p)+G(q)$. Now $u(x, 0)=f(x), u_{t}(x, 0)=g(x)$, which in p, q-coordinate means $F(x)+G(x)=f, k F^{\prime}(x)-k G^{\prime}(x)=0$. Solve for F and G then one gets the d'Alembert formula.

Negative and positive characteristics, domain of influence and domain of dependence

11 Review for Midterm I

The following may appear in the first midterm:

- Simplify PDE by substitution
- Prove properties of the solution by chain rules, fundamental theorem of calculus, and divergence theorem
- Solve PDE by reducing it to ODE either through restriction to a curve or through the use of symmetry.
- Obtain particular solution from the general solution by applying boundary condition.
- Method of characteristics
- General solution of 1-dimensional wave equations
- Poisson integration representation for initial value problem of the heat equation
- Can recognize elliptic, parabolic and hyperbolic 2nd-order equations

Practice problems:

1. Solve the initial value problem $u_{t}+\sin t u_{x}=1, u(x, 0)=\sin x$.

Solution: By method of characteristics, the general solution is $u(x, t)=t+F(x+\cos t)$, so $u(x, t)=$ $t+\sin (x+\cos t-1)$.
2. Find the steady state solution of $u_{t}=u_{x x}+x u_{x}$.

Solution: The steady state solution satisfies $u_{x x}+x u_{x}=0$, hence $u=A \int_{0}^{x} e^{-t^{2} / 2} d t+B$. You can also write it using the erf function.
3. Consider the equation: $u_{t t}=u_{x x}+u_{y y}$. If a solution satisfy $u=\sin t v(x, y)$, what is the PDE v satisfies? Can you find a solution when v depends only on y ?
Solution: By product law, we get $v_{x x}+v_{y y}+v=0$. If v depends only on y then $v=A \cos y+B \sin y$.
4. Consider the boundary value problem $u_{t t}=u_{x x}-u_{t}, u(0, t)=u(1, t)=0$. Show that the function $\int_{0}^{1} u_{t}^{2}+u_{x}^{2} d x$ is decreasing. What's the limit of u as $t \rightarrow \infty$?
Solution: $\frac{d}{d t} \int_{0}^{1} u_{t}^{2}+u_{x}^{2} d x=\int_{0}^{1} 2 u_{t} u_{t t}+2 u_{x} u_{x t} d x=\left.2\left(u_{t} u_{x}\right)\right|_{0} ^{1}-2 \int_{0}^{1} u_{t}^{2} d x \leq 0$. As $t \rightarrow \infty$, the energy $\int_{0}^{1} u_{t}^{2}+u_{x}^{2} d x$ will decay towards 0 , and the limit will be 0 .

12 10/10 Well posed problem, review

Some known solutions of IVP:

- $u_{t}=u_{x}, u(x, 0)=f(x)$

Answer: $u(x, t)=f(x+t)$.

- $u_{t t}=u_{x x}, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$

Answer: $u(x, t)=\frac{1}{2}(f(x+t)+f(x-t))+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s$.

- $u_{t}=u_{x x}, u(x, 0)=f(x), u$ bounded. $\left(\right.$ or $\left.\leq C e^{C x^{2}}\right)$

Answer: $u(x, t)=\int_{\mathbb{R}} f(s) G(x-s) d s$.
In all cases, we have: (1) solution exist. (2) solution is unique. (3) solution depends on the initial condition continuously. Hence we call them well posed problems.

Example of non-well-posed problems:
Nonlinear advection.
Reverse heat equation.
$u_{x x}+u_{t t}=0$.
Review:

1. $u_{t}=t u_{x}, u(x, 0)=x^{2}$.
2. $u_{t t}=u_{x x}-u:$ steady state?

13 10/17 Semi-infinite domain, Dahamel's Principle

Example 1: $u_{t}=u_{x x}, u(x, 0)=f, u(0, t)=0: u=\int G(x-y, t) \phi(y) d y$, so $\phi(x)=f(x)$ when $x>0$ and $-f(-x)$ when $x<0$.

Example 2: $u_{t t}=u_{x x}, u(x, 0)=f, u_{t}(x, 0)=g, u_{x}(0, t)=0, x \geq 0, t \geq 0: u=\frac{1}{2}(\phi(x-t)+\phi(x+t))+$ $\frac{1}{2} \int_{x-t}^{x+t} \psi(s) d s$. So ϕ and ψ are even extension of f and g respectively.

Example 3: L linear operator in the space of functions on $x . u_{t}=L u, u(0)=\alpha$ has solution $u(t, \alpha)$. Then, $u_{t}=L u+f(t), u(0)=\alpha$ has solution $u(t)=u(t, \alpha)+\int_{0}^{t} u(s, f(t-s)) d s$.

Example 4: $u_{t t}=u_{x x}+\sin (x+t), u_{t}(x, 0)=u(x, 0)=0$. Let $U=\left[u, u_{t}\right]^{T}$, use the principle above.
Example 5: $u_{t}=u_{x x}, u(0, t)=t$. Solution: combine ideas from problem 1 and 3.

14 10/19 Laplace Transform and Fourier Transform

Review: Homogeneous boundary: mirroring; Non-homogeneous equation: $w(t, \alpha)$ being the solution of $w_{t}=T w, w(0)=\alpha$, then $u_{t}=T u+f(t), u(0)=b$ has solution $u=w(t, b)+\int_{0}^{t} w(t-s, f(s)) d s$. Hence, to solve non-homogeneous equations, first solve for w then put it in the formula.

Laplace transform: $L(f)=\int_{0}^{\infty} e^{-s t} f(t) d t$.
Properties: $L\left(f^{\prime}\right)=s L(f)-f(0), L(f * g)=L(f) L(g)$. Here f and g are 0 on $(-\infty, 0)$.
$L(f)=0$ iff f a.e. 0 . When f is analytic, $L^{-1}(f)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f(s) e^{s t} d s$, but we won't use this.
Formulas we will use:
(1): $L\left(\frac{1}{\sqrt{4 \pi t}} e^{-a^{2} /(4 t)}\right)=\frac{1}{\sqrt{4 s}} e^{-|a| \sqrt{s}}$.
(2): $L\left(\frac{a}{2 t^{3 / 2}} e^{-a^{2} /(4 t)}\right)=\sqrt{\pi} e^{-a \sqrt{s}}$.

Example 1: $u_{t}=u_{x x}, u(x, 0)=f(x), f$ compactly supported (or have similar decay condition)
$s L(u)-f(x)=(L u)_{x x}$, hence $(L u)(x, s)=\frac{1}{2 \sqrt{s}}\left(e^{-\sqrt{s} x} \int_{-\infty}^{x} e^{\sqrt{s} r} f(r) d r+e^{\sqrt{s} r} \int_{x}^{\infty} e^{-\sqrt{s} r} f(r) d r\right)=$ $\frac{1}{\sqrt{4 s}} \int_{-\infty}^{\infty} e^{-\sqrt{s}|x-r|} f(r) d r=L\left(\int_{-\infty}^{\infty} G(x-r, t) y(r) d r\right)$. Here we use (1), and also the formula for solving non-homogeneous 2nd order ODE: $y=y_{2} \int_{a}^{x}\left(y_{1} f / W\right) d s-y_{1} \int_{a}^{x}\left(y_{2} f / W\right) d s$.

Example 2: $u_{t}=u_{x x}, u(x, 0)=0, u(0, t)=f(t)$.
$s L(u)=(L u)_{x x}$, so $(L u)(x, s)=L(f) e^{-\sqrt{s} x}$ so $u=L^{-1}(L(f)) * \frac{x}{\sqrt{4 \pi t^{3}}} e^{-\frac{x^{2}}{4 t}}=\int_{0}^{t} f(\tau) \frac{x}{\sqrt{4 \pi(t-\tau)^{3}}} e^{-\frac{x^{2}}{4(t-\tau)}} d \tau$.
How about $f=1$?

15 10/24 Laplace and Fourier transform

Steps for solving PDEs using integration transform:

1. Do transform, turn it into ODE.
2. Apply initial/boundary conditions.
3. Solve ODE, take the inverse transform.

Example 1: $u_{t}=u_{x}, u(x, 0)=f(x)$, use Laplace transform on t.
$s L u-f(x)=(L u)_{x}$, so $L u=F(s)+\int_{x}^{\infty} f(r) e^{s(x-r)} d r=F(s)+L(f(x+\cdot))$. So $u=L^{-1}(F)+f(x+t)$, by initial condition $F=0$.

Example 2: (PIP) $u_{t}=K u_{x x}, u(x, 0)=0, u(0, t)=f$, find K from $u_{x}(t, 0)$.
$u=\int_{0}^{t} f(\tau) \frac{x}{\sqrt{4 K \pi(t-\tau)^{3}}} e^{-\frac{x^{2}}{4 K(t-\tau)}} d \tau=-2 K \int_{0}^{t} G_{x}(x, t-\tau) f(\tau) d \tau=-2 \int_{0}^{t} G(x, t-\tau) f^{\prime}(\tau) d \tau=\ldots$ Do everything for x small then take limit.

Fourier transform: $F(f)=\int_{\mathbb{R}} e^{i s t} f(t) d t$. Properties: $\quad F\left(f^{\prime}\right)=-i s F(f) . \quad F^{-1}(f)=\frac{1}{2 \pi} e^{-i s t} f(t) d t$. $F(f * g)=F(f) * F(g) .\left(F^{-1}(f * g)=\frac{1}{2 \pi} F^{-1}(f) F^{-1}(g)\right)$

Example 3: $u_{t}=u_{x x}, u(x, 0)=f . F$ on $x:(F u)_{t}=-y^{2}(F u), F u=e^{-t y^{2}} F(f), u=F^{-1}\left(e^{-t y^{2}}\right) * f=\ldots$. Here, one uses that $\int_{\mathbb{R}} e^{(-x+i y)^{2}} d x$ does not depend on y.

16 10/26 Fourier transform

Review: Definition, derivatives, convolution, inverse.
Example 1: $u_{t t}=4 u_{x x}+f(x, t), u(x, 0)=g(x), u_{t}(x, 0)=0$.
Fourier transform on $x, v=F(u)$: $v_{t t}=-4 s^{2} v+F(f), v(s, 0)=F g, v_{t}(s, 0)=0$. So $v(x, t)=$ $(F g)(s) \cos (2 s t)+\int_{0}^{t} \frac{1}{2 s} \sin (2 s(t-r))(F f)(s, r) d r$. Now by the inverse formula, we have $F^{-1}(\cos (2 s t)$. $F g)(x, t)=\frac{1}{2}(g(x-2 t)+g(x+2 t))$, and $F^{-1}\left(\frac{1}{2 s} \sin (2 s(t-r)) \cdot F f\right)=F^{-1}\left(\frac{1}{4 i s}(F(f(x+2 t-2 r, r)-f(x-2 t+\right.$ $2 r, r))))=\frac{1}{4} \int_{x-2 t+2 r}^{x+2 t-2 r} f(y, r) d y$. Hence the solution is $u=\frac{1}{2}(g(x-2 t)+g(x+2 t))+\frac{1}{4} \int_{0}^{r} \int_{x-2 t+2 r}^{x+2 r} f(y, r) d y$.

Example 2: $u_{t t}+u_{x x}=0, u(x, 0)=f(x), u$ bounded on $t>0$. (a model for electric potential, current field, Newtonian gravity etc.)

Fourier transform on $x: v=F(u)$, then $v_{t t}=s^{2} v, v(s, t)=F(f)(s) e^{-|s| t}, u=F^{-1}\left(F(f)(s) e^{-|s| t}\right)=$ $f * \frac{t}{\pi\left(t^{2}+x^{2}\right)}$.

Example 3: 3-dimensional wave equation: $u_{t t}=\Delta u, u_{t}(x, 0)=f(x), u(x, 0)=0$.
Multi-variable Fourier transform on $x, v=F(u)$, we get $v_{t t}=|s|^{2} v . \quad v=\frac{\sin (|s| t)}{|s|} F(f)$. Calculate $\frac{F^{-1}(\sin (|s| t)}{|s|)}$ in coordinate system (r, h, θ) where $h=s \cdot x$, one gets that it is a distribution concentrated at $|x|=t$. Huygen's principle.

Example 4: $u_{t t}=u_{x x}-u_{t}, u(x, 0)=0, u_{t}(x, 0)=f(x)$.
Do Fourier transform in x direction, one gets $\hat{u}=-\hat{f}(s) \cdot\left(1-4 s^{2}\right)^{-1 / 2}\left(e^{-\frac{1+\sqrt{1-4 s^{2}}}{2} t}-e^{-\frac{1-\sqrt{1-4 s^{2}}}{2}}\right)$. So $u=f * \Phi, \Phi(x, t)=-\frac{1}{2 \pi} \int_{\mathbb{R}}\left(1-4 s^{2}\right)^{-1 / 2}\left(e^{-\frac{1+\sqrt{1-4 s^{2}}}{2} t}-e^{-\frac{1-\sqrt{1-4 s^{2}}}{2} t}\right) e^{-i s x} d s$.

17 10/31 Solving IBVP with Fourier series

Example: $u_{t}=u_{x x}, u(0, t)=u(1, t)=0, u(x, 0)=f(x)$.
Method 1: expand f into $\phi(x)=\left\{\begin{array}{ll}f(x-2 n) & 2 n<x<2 n+1 \\ f(2 n-x) & 2 n-1<x<2 n\end{array}\right.$. So $u=\int_{0}^{1} \sum_{n \in \mathbb{Z}} f(y)(G(x+2 n-y, t)-$ $G(x+2 n+y, t)) d y$, where $G(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}$.

Method 2: Note that $u(x, t)=e^{-n^{2} \pi^{2} t} \sin (n \pi t)$ satisfies both the equation and the boundary condition. Try to build the solution by linear combinations of such solutions. Suppose $f(x)=\sum_{n} c_{n} \sin (n \pi x)$. Then, $c_{n}=2 \int_{0}^{1} f(y) \sin (n \pi y) d y$. So, $u(x, t)=\sum_{n=1}^{\infty} 2 e^{-n^{2} \pi^{2} t}\left(\int_{0}^{1} f(y) \sin (n \pi y) d y\right) \sin (n \pi x)$.

One can show that they are the same by Poisson summation formula. One needs only to show: $\sum_{n \in \mathbb{Z}} e^{-n^{2} \pi^{2} t+i n x}=$ $\frac{1}{\sqrt{\pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{(x+2 n)^{2}}{4 t}}$. This is by using Poisson summation formula $\sum_{n} F(n)=\sum_{n} \int_{\mathbb{R}} F(x) e^{2 \pi i n x} d x$, on function $F(y)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x+2 y)^{2}}{4 t}}$.

Example 2: same, for Neumann boundary condition.

18 11/2 Fourier series

$L^{2}(M)$: L^{2} integrable functions on M (defined up to measure 0 set). Inner product: $(u, v)=\int u \bar{v} \leq$ $\left(\int|u|^{2} \int|v|^{2}\right)^{1 / 2}$.

Complete orthonormal system: $\left\{f_{n}\right\} \in L^{2}(M)$, orthonormal, and $\left(g, f_{n}\right)=0$ for all n implies $g=0$. Then, $g=\sum_{i}\left(g, f_{i}\right) f_{i}$,(in L^{2} sense), $\sum\left|\left(g, f_{i}\right)\right|^{2}=\|g\|^{2}$ (Parseval's equality).

Other convergence: reduce to the periodic case. It can then be upgraded to uniform when $g \in C^{1}$, and pointwise when there is Dini criterion $\left(\int_{0}^{L / 2}\left|\frac{g\left(x_{0}+t\right)+g\left(x_{0}-t\right)}{2}-l\right| \frac{d t}{t}<\infty\right)$.

Some complete orthonormal systems for $L^{2}([0, l]):\{\sin (2 n \pi x / l), \cos (2 n \pi x / l)\},\{\sin (2 \pi x / l)\},\{\cos (n \pi x / l)\}$, $\left\{e^{2 i n \pi x / l}\right\}$.

Example: $\sin (\pi x)$ expand under $\cos (n \pi x)$.
Application: Poisson summation formula: $F(x)=\sum_{n} f(x+n)$, do Fourier expansion on [0, 1] using $e^{2 i n \pi x}, F(x)=\sum_{n} \int_{0}^{1} \sum_{n} f(y+n) e^{-2 i n \pi y} d y e^{2 i n \pi x}=\sum_{n} \int_{0}^{1} \sum_{n} f(y+n) e^{-2 i n \pi(y+n)} d y e^{2 i n \pi x}$. Let $x=0$.

Example of solving PDE with Fourier series: $u_{t}=u_{x x}, u_{x}(0, t)=0, u_{x}(1, t)=f(t), u(x, 0)=0, f(0)=0$: $v=u-\frac{x^{2}}{2} f(t)$, then $v(x, 0)=0, v_{t}+\frac{x^{2}}{2} f^{\prime}(t)=v_{x x}+f(t)$. Let $v(x, t)=\sum_{n} v_{n}(t) \cos n x$, then $v_{n}^{\prime}+C_{n} f^{\prime}(t)=$ $v_{n}+D_{n}$, where $C_{n}=\frac{1}{n \pi}(-1)^{n}-\frac{2}{n^{2} \pi^{2}}(-1)^{n-1}$ when $n>0, C_{0}=\frac{1}{6}, D_{n}=0$ for $n>0, D_{0}=1$.

19 11/7 Review for Chapter 2 \& 3

The Heaviside function H is defined by $H(x)=1$ when $x \geq 0$ and 0 when $x<0$.
The Dirac mass δ is defined by $\int \delta(x) f(x) d x=f(0)$. Hence, $\delta * f=f$ for any f.
χ_{A} : characteristic function of A.
The solution of IVP for 1-d wave equation can be written as $\frac{1}{2}\left(\delta_{c t}+\delta_{-c t}\right) * f+\frac{1}{2 c} \chi_{[-c t, c t]} * g$.
Effect of translation and scaling for L and F.
Reason for odd/even extension.
Example 1: $u_{t}=u_{x x}-u+f(x), u(x, 0)=0, t>0$.
Solution 1: Change of variable $u=e^{-t} v$, then $v_{t}=v_{x x}+e^{t} f(x), u=\int_{0}^{t} e^{\tau-t} \int_{\mathbb{R}} G(x-y, t-\tau) f(y) d y d \tau$.
Solution 2: Fourier transform in the x direction: $v=F u, v_{t}=-s^{2} v-v+F(f), v(s, t)=F(f)\left(e^{-\left(s^{2}+1\right) t}-\right.$ 1) $\frac{1}{1+s^{2}}, u(x, t)=\frac{1}{2}\left(f * e^{-t} G-f\right) *\left(e^{-|x|}\right)$.

Example 2: $u_{t t}=u_{x x}, u_{x}(0, t)=0, u_{t}(x, 0)=0, u(x, 0)=f(x), x>0, t>0$.
Solution 1: Even extension: $u(x, t)=\frac{1}{2}(f(|x+t|)+f(|x-t|))$.
Solution 2: Laplace transform in t direction: $v=L u$, then $s^{2} v-s f=v_{x x}, v_{x}(0, s)=0$. So $v(x, s)=$ $\int_{0}^{x}\left(\frac{f(r)}{2}\left(e^{s(x-r)}-e^{-s(x-r)}\right)\right) d r+C(s)\left(e^{s x}+e^{-s x}\right)=\int_{0}^{x}\left(\frac{f(x-r)}{2}\left(e^{s r}-e^{-s r}\right)\right) d r+C(s)\left(e^{s x}+e^{-s x}\right)$. Here $\int_{0}^{x}\left(\frac{f(x-r)}{2}\left(e^{s r}-e^{-s r}\right)\right) d r=\frac{1}{2}\left(e^{x s} L\left(\chi_{[0, x]} f\right)-L(f(-\cdot))\right)$. Let $x \rightarrow \infty$, we have $C(s)=-\frac{L(f)}{2}$. Now take L^{-1} one gets the solution.

Example 3: $u_{t t}=u_{x x}, u_{x}(0, t)=u_{x}(2, t), u(0, t)=u(2, t), u_{t}(x, 0)=0, u(x, 0)=f(x)$.
Solution 1: Do periodic extension: $u(x, t)=\frac{1}{2}\left(f\left(x+t-2\left\lfloor\frac{x+t}{2}\right\rfloor\right)+f\left(x-t-2\left\lfloor\frac{x-t}{2}\right\rfloor\right)\right)$.
Solution 2: Fourier series expansion. $u(x, t)=\frac{1}{2} \int_{0}^{2} f(s) d s+\frac{1}{2} \sum_{n=1}^{\infty} \int_{0}^{2} f(s) \cos (n \pi s) d s(\cos (n \pi(t+x))+$ $\cos (n \pi(t-x)))+\frac{1}{2} \sum_{n=1}^{\infty} \int_{0}^{2} f(s) \sin (n \pi s) d s(\sin (n \pi(t+x))+\sin (n \pi(x-t)))$.

Example 4: $i u_{t}=u_{x x}$.

20 Review for Midterm 2

Topics that will be covered in the second midterm:

- Definitions of Laplace and Fourier transform.
- Use odd/even extension for boundary-value problems
- Dahamel's principle
- Solving PDE on bounded domain using Fourier (sine, cosine etc.) series.

The Heaviside function H is defined by $H(x)=1$ when $x \geq 0$ and 0 when $x<0$. The Dirac mass δ is defined by $\int \delta(x) f(x) d x=f(0)$. Hence, $\delta * f=f$ for any f.

Practice problems:
(1) Find the Laplace transform of $f(x)=x^{-1 / 2}$.

Solution: $\int_{0}^{\infty} x^{-1 / 2} e^{-s x} d x=\frac{2}{\sqrt{s}} \int_{0}^{\infty} s^{-s x} d s^{1 / 2} x^{1 / 2}=\frac{2}{\sqrt{s}} \frac{\sqrt{\pi}}{2}=\sqrt{\frac{\pi}{s}}$.
(2) If f is continuous with bounded support defined on $(0, \infty)$, find bounded solution of $u_{x x}+u_{t t}=0$, $u_{x}(0, t)=0, u(x, 0)=f(x)$, on the region $\{x, t: x>0, t>0\}$.

Solution: Because $u_{x}(0, t)=0$, the problem can be reduced to $u_{x x}+u_{t t}=0, u(x, 0)=f(|x|), t>0$. So the solution is $\int_{\mathbb{R}} \frac{t}{\pi\left((x-r)^{2}+t^{2}\right)} f(|r|) d r$.
(3) Find the bounded solution of $u_{x x}+u_{t t}=1, u(x, 0)=u(0, t)=u(1, t)=0$, on the region $\{x, t: t>0,0<x<1\}$.

Solution: Do sine expansion, we have $u(x, t)=\sum_{n} C_{n}(t) \sin (n \pi x)$, and $C_{n}^{\prime \prime}-n^{2} \pi^{2} C_{n}=\frac{1-(-1)^{n}}{2 n \pi}$ so $C_{n}(t)=\frac{1-(-1)^{n}}{2 n^{3} \pi^{3}} e^{-n \pi t}-\frac{1-(-1)^{n}}{2 n^{3} \pi^{3}}$, and $u(x, t)=\sum_{n} \sin (n \pi x)\left(\frac{1-(-1)^{n}}{2 n^{3} \pi^{3}} e^{-n \pi t}-\frac{1-(-1)^{n}}{2 n^{3} \pi^{3}}\right)$.

21 11/14 Review of separation of variables

Example 1: $u_{t}=k u_{x x}-h u, u(0, t)=u(L, t)=0, u(x, 0)=f(x)$.
Example 2: $u_{t}=k u_{x x}-h u, u(0, t)=u_{x}(L, t)=0, u(x, 0)=f(x)$.

Example 3: $u_{t}=k u_{x x}-h u, u(0, t)=u_{x}(L, t)=0, u(x, 0)=0, u_{t}(x, 0)=f(x)$.

22 11/16 Sturm-Liouville problems

$L u=-\left(p(x) u^{\prime}\right)^{\prime}+q(x) u, p$ non-zero.
Regular SLP: $L u=\lambda u, \alpha_{1} u(a)+\alpha_{2} u^{\prime}(a)=\beta_{1} u(b)+\beta_{2} u^{\prime}(b)=0$.
Periodic SLP: $L u=\lambda u, u(a)=u(b), u_{x}(a)=u_{x}(b)$.
λ such that there is non-zero solution: eigenvalues, non-zero solution: eigenfunction.

For both SLPs:

Discrete eigenvalues: theory of compact operators.
Eigenvalues are real, eigenfunctions orthorgonal: self adjoint under $L^{2}: \int f \overline{L g}=\int f \overline{-\left(p g^{\prime}\right)^{\prime}}+(q f) \bar{g}=\ldots$.
For regular SLP:
Eigenspaces have dimension 1: theory of ODE.
Signs of eigenvalues: $\lambda=(u, L u) /(u, u)$, hence when $p>0, q>0, \lambda>0$.
Example 1: $u_{t}=u_{x x}, u(0, t)=u(1, t)+u_{x}(1, t)=0, u(x, 0)=f(x)$.

Example 2: $u_{y y}+u_{x x}=u, u(0, t)=u(1, t)+u_{x}(1, t)=0, u(x, 0)=f(x)$.

23 11/21 SLP cont.

1. Symmetric boundary conditions: if y_{1}, y_{2} both satisfy the condition, then $\left.p\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)\right|_{a} ^{b}=0$. Energy argyment: show that $(u, L v)>0$.
2. Weighted SLP: $L u=\lambda r u$, then inner product should be taken as $(u, v)=\int u r \bar{v}$.

Example 1: $u_{t}=u_{x x}+u_{x}, u(0, t)=u(1, t)=0, u(x, 0)=f(x)$.
3. Singular SLP: $p=0$ Example 2: Bessel's eq: $-\left(x u^{\prime}\right)^{\prime}=\lambda x u, u(0)$ bounded, $u(1)=0$.
4. SLP on infinite interval: Example 3: $-u^{\prime \prime}=\lambda u, u(0)=0, u$ bounded at ∞ : Fourier sine transform (i.e. Fourier transform after an odd expansion)

Example 4: $u_{t}=u_{x x}, u(x, 0)=f(x), u_{x}(0, t)=0, t>0, x>0$.
In the case when both sides are unbounded, this becomes Fourier transform.
Example 5: $-u^{\prime \prime}=\lambda u, u$ bounded at $\infty, u(0)-u^{\prime}(0)=0$.
Solution: The expansion is $f(x)=\int_{0}^{\infty} g(s)(\sin (s x)+s \cos (s x)) d s$. To get g from f, first solve ODE $h+h^{\prime}=f$, then do odd extension for h and do inverse Fourier transform.

24 11/28 Laplace on disc

Review: solve pde with separation of variables:
Step 1: write u as product form, make ODEs.
Step 2: apply boundary condition, get SLP in one or more directions.
Step 3: solve ODEs with eigenvalues.
Step 4: write solution in infinite series.
$\Delta=\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}^{2}$.
Example 1: $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, u(1, \theta)=f(\theta), r<1$.
Solution: $u=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) d s+\frac{1}{\pi} \sum_{n} r^{n} \int_{0}^{2 \pi} f(s) \cos (n(\theta-s)) d s=\frac{1}{2 \pi} f *\left(\frac{1}{1-r e^{i(\theta-\cdot)}}+\frac{1}{1-r e^{-i(\theta-\cdot)}}-1\right)$.
Poisson's integral formula, Poisson's kernel. Fundamental solution.

Example 2: same as above but $r>R$, bounded solution.
Solution: $u=\frac{1}{2 \pi} f *\left(\frac{1}{1-(R / r) e^{i(\theta-\cdot)}}+\frac{1}{1-(R / r) e^{-i(\theta-\cdot)}}-1\right)$.
Example 3: $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=f(r, \theta), u(1, \theta)=f(\theta), r<1$.
Solution: $f(r, \theta)=\sum_{n} f_{n}(r) \cos n \theta+\sum_{n} g_{n}(r) \sin n \theta$, where $f_{0}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r, s) d s, f_{n}(r)=\frac{1}{\pi} \int_{0}^{2 \pi} f(r, s) \cos n s d s$ when $n>0$, and $g_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(r, s) \sin n s d s$. Then, $u(r, \theta)=\sum_{n} A_{n}(r) \cos n \theta+\sum_{n} B_{n}(r) \sin n \theta$. The functions A_{n}, and B_{n} satisfies: $A_{n}^{\prime \prime}+\frac{1}{r} A_{n}^{\prime}-\frac{n^{2}}{r^{2}} A_{n}=f_{n}, B_{n}^{\prime \prime}+\frac{1}{r} B_{n}^{\prime}-\frac{n^{2}}{r^{2}} B_{n}=f_{n}$.

Now we solve $A_{n}^{\prime \prime}+\frac{1}{r} A_{n}^{\prime}-\frac{n^{2}}{r^{2}} A_{n}=f_{n} .\left(r^{2 n+1}\left(r^{-n} A_{n}\right)^{\prime}\right)^{\prime}=\left(-n r^{n} A_{n}+r^{n+1} A_{n}^{\prime}\right)^{\prime}=-n^{2} r^{n-1} A_{n}+r^{n} A_{n}^{\prime}+$ $r^{n+1} A_{n}^{\prime \prime}=r^{n+1} f_{n}$, so $\left(r^{-n} A_{n}\right)^{\prime}=r^{-2 n-1} \int_{0}^{r} s^{n+1} f_{n}(s) d s, A_{n}=-r^{n} \int_{r}^{1} h^{-2 n-1} \int_{0}^{h} s^{n+1} f_{n}(s) d s d h$. Similarly, $B_{n}=-r^{n} \int_{r}^{1} h^{-2 n-1} \int_{0}^{h} s^{n+1} g_{n}(s) d s d h$.

24.1 General theory of Laplace equation (for any dimension)

Divergence theorem: $\int_{\Omega} \operatorname{div} \phi d V=\int_{\partial \Omega} \phi \cdot n d A$.
Green's identities: $\int_{\partial \Omega} u g r a d u \cdot n d A=\int_{\Omega} u \Delta u d V+\int_{\Omega}\|g r a d u\|^{2} d V$
$\int_{\Omega} u \Delta v d V=\int_{\Omega} v \Delta u d V+\int_{\partial \Omega}(u g r a d v-v g r a d u) \cdot n d V$.
Uniqueness for Dirichlet problem: Green's first identity.
Dirichlet's principle for Dirichlet problem: Green's second identity.

25 11/30 More example on non-homogenuity. Heat equation on balls

Example 1: $u_{t}=u_{r r}+\frac{d-1}{r} u_{r}, u_{r}(0, t)=u(1, r)=0, u(r, 0)=f(r)$. $d=3, d=2$.

Example 2: $u_{t t}=c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right)$.
Example 3: parameter identification: $\lambda_{n} R_{n}=c(r)^{2}\left(R_{n}^{\prime \prime}+\frac{2}{r} R_{n}^{\prime}\right), R_{n}(1)=0$.
$\lambda_{n}\left(r R_{n}\right)=c^{2}\left(r R_{n}\right)^{\prime \prime}$, so $\lambda_{n} \int_{0}^{r} c^{-2} s R_{n}(s) d s=\left(r R_{n}\right)^{\prime}, \ldots$

26 12/5 Poisson equation

Example 1: $u_{t t}=u_{x x}, u(0, t)-\sin k t=u_{x}(1, t)=0, u(x, 0)=u_{t}(x, 0)=0$.
$\Delta u=\lambda u$, Dirichlet/Neumann boundary, then there is a orthogonal basis formed by eigenvectors.
Example 2: Ω be the region $[0, a] \times[0, b], \Delta u=f$ on $\Omega,\left.u\right|_{\partial \Omega}=0$.
Example 3: $u_{r r}+1 / r u_{r}+u_{\theta \theta}=f, u(1, \theta)=0$.
Fredholm alternative.
Green's functon.
Example 4: upper half space.
Example 5: $[0, \infty) \times[0, \infty)$.

27 Final review

Types of equations: advection, heat, wave, laplace, Poisson, linear, linear homogeneous.
Solution methods: method of characteristics, Poisson integration for heat equation, D'Alembert solution for 1-D wave equation
Method of mirror image, Duhamel's principle
Fourier and Laplace transform
Fourier method.
Exercises:

1. Solve the equation $u_{t}=u_{x x}+f(x), u_{x}(0, t)=u(2, t)=u(x, 0)=0$ on $0<x<2, t>0$.

Solution: $u=\sum_{n=0}^{\infty} \frac{1}{(n \pi / 2+\pi / 4)^{2}}\left(\int_{0}^{2} f(s) \cos ((n \pi / 2+\pi / 4) s) d s\right)\left(1-e^{-(n \pi / 2+\pi / 4)^{2} t}\right) \cos ((n \pi / 2+\pi / 4) x)$.
2. Find bounded solution of $u_{x x}+u_{y y}=0, u_{y}(x, 0)=f(x), u_{x}(0, y)=u_{x}(1, y)=0$ on $0<x<1, y>0$. Note that f has to satisfy some other constraint for such a solution to exist.

Solution: The constraint is that $\int_{0}^{1} f(s) d s=0 . u=-\sum_{n=1}^{\infty} \frac{2}{n \pi} \int_{0}^{1} f(s) \cos (n \pi s) d s e^{-n \pi y} \cos (n \pi x)$.
3. Find the general solution of $0=\left(x \partial_{t}+\partial_{x}\right)\left(\partial_{t}-\partial_{x}\right) u=x u_{t t}+(1-x) u_{x t}-u_{x x}$. $u_{t}-u_{x}=F\left(t-x^{2} / 2\right), u=G(x+t)+\int_{0}^{t} F\left(s-(x+t-s)^{2} / 2\right) d s$.

