
1 9/5 Matrices, vectors, and their applications

Algebra: study of objects and operations on them.

Linear algebra: object: matrices and vectors. operations: addition, multiplication etc.

Algorithms/Geometric intuition/sets and maps

m× n matrix: numbers forming a rectangular grid, m rows and n columns. Motivation: coefficients of a
system of linear equations. Data tables in statistics.

(i, j)-th entry of a matrix.

Vectors: matrices with one row/column. Motivation: coordinates in plane and space.

Operations: (1) Addition. (2) Scalar multiplication. (3) Matrix-vector multiplication. (4) Transpose.

Example: A =

(
1 1
1 0

)
, x =

(
1
1

)
. Ax, A(Ax).

Example: Averaging over columns. Covariance? Other statistical concepts?

Laws: The usual laws one may expect. e.g. A(x + y) = Ax + Ay, (A + B)T = AT + BT , (AT )T = A.
Note: A(Bx) 6= B(Ax)!

Zero and one matrix. Standard vectors.

Example: Rotation by 60 degrees (or π/3).

Consequence: Matrix is completely determined by its action on the standard vectors! Matrix-matrix
multiplication.

Example: 2× 2 case.
The concept of linear combination. Relationship with matrix-vector multiplication.

Example: Rotation and Translation.

Example: Random walk on graphs.

2 9/8 Linear equations

Review:

• Matrix multiplications

• Transposes

• Standard vectors

• Identity Matrix

• Rotation matrix
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• Stochastic matrix

*****
Linear systems as matrix equations. Coefficient matrix and augmented matrices

Elementary row operations: swap, multiply, add. Property: reversible, and preserves solution set.

Row echelon form: The first non-zero entry (called pivot) of each row is to the right of the previous.
Reduced row echelon form: The first non-zero entry is 1 and is the only non-zero entry in that column.
Uniqueness under row operations.

Algorithm (Gaussian elimination):

• Write augmented matrix.

• Use row operations, turn it into reduced echelon form.

• General solution from RREF (Example: x1 + 2x2 + x3 + x4 = 3, x1 + 3x3 − x4 = 8).

Structure of solutions:
Pivot at last col. No pivot at last col.

All coefficient col. have pivot None One
Some coeff. col. have no pivot None Inf

Examples of the 4 cases.

True or false:

• A system of 3 linear equations with 6 variables can not have just one solution.

• A system of 3 linear equations with 6 variables must have infinitely many solutions.

*****
Counting: number of arbitrary constants and the number of pivots. Rank and dimension.

Explicit algorithm from RREF to general solutions.

3 9/12 Linear equations cont.

3.1 Review

• Augmented matrix, row operations.

• RREF.

• Condition for no/one/infinitely many solutions.

• General solution: write basic variables in terms of free variables, or the vector form.

3.2 Gaussian elimination

Augment matrices to REF or RREF through finitely many elementary row operations.

For r=1, 2, . . . n:
Find the left-most non-zero entry among the r, r + 1, . . . n rows. If there aren’t any, terminate.
Exchange rows to move this entry to the r-th row.
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Multiply the r-th row and add it to the r+1, . . . rows to eliminate all entries on the left-most non-zero
column.

To Further turn it into a RREF (backward pass):

Multiply to each non-zero row to make the first entry 1.
For each non-zero row, multiply and add it to each of the rows above it to turn the entries on pivot

columns 0.

Reason for distinguish forward/backward passes: forward pass is a permutation matrix with a lower
triangular matrix with 1 on the diagonals, backward pass is a upper triangular matrix. Row pivoting.

Example:

 0 1 2 3
2 2 4 7
2 0 1 0

. RREF? General solution?

3.3 Uniqueness of RREF

Key idea: read the RREF from matrix using linear combinations of rows or columns!
Appendix E uses columns. One can also use rows as follows: Let R be the space of linear combination

(span) of the row vectors. The last non-zero row in RREF is the one in R with the most number of 0 entries
on the left and the first non-zero entry 1. Let the index of the first non-zero entry be c1. The preceding row
in RREF is the one in R with c1-th entry 0, first non-zero entry 1, and the most possible number of 0 on
the left, etc.

3.4 Rank and nullity

Rank of A: num. of pivots in A=num. of non-zero rows in REF of A=num of basic variables in Ax = b
Nullity of A: num of non-pivot columns in A=num. of columns of A-rank of A=num of free variables in
Ax = b

True or false:

• The rank of [A B] must be no smaller than the sum of the ranks of A and B.

• The nullity of [A B] must be no smaller than the sum of the ranks of A and B.

• The RREF of a square matrix of no nullity must be the identity matrix

• The nullity of A is non-zero iff some row of A is a linear combination of the others.

• [A B] has the same rank as B iff the columns of A are linear combinations of the columns of B.

******
Structure of the general solution in terms of rank or nullity:

If rank(A) < rank([A, b]):
No solution.

Else:
If nullity(A) = 0:

One solution.
Else:

Infinitely many solutions.

Example:

(
a b c
e f g

)
.
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4 9/15 Span

Review:

• Augmented matrix and row operations

• REF, RREF, pivot

• free and basic variables

• Rank and Nullity

**********
Linear combination: S is a set of matrices of the same size, v is called a linear combination of S iff there

exist finitely many matrices A1 . . . An in S, and scalars a1, . . . an, so that v =
∑

k akAk.

Span: The span of a set is the set of all linear combinations of that set. S is called a generating set of
the set Span(S).

Example: span of the standard vectors.

Span closed under addition and scalar multiplication.

Transitivity.

b is in the span of columns of A iff Ax = b has a solution.
Rn: all vectors of n entries. Span is Rn iff matrix is full rank iff ...

Example: use linear equation to detect spans.

Implication on the rank of the matrices while adding columns.

*****
Algorithm for minimal generating set. Example.

True or false:

Row operation changes the span of the column vectors.

A matrix is in REF, then the span of the columns are the span of some standard vectors.

5 9/18 Linear dependency

5.1 Review

Notation: when A and B has the same number of rows, by [A B] we mean a larger matrix formed by stacking
them together horizontally.

relationship between matrices, system of equations Ax = b, and the column vectors:

The followings are equivalent:

• Ax = b has a solution (is consistent).

• b lies in the span of the columns vectors of A.
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• The span of the columns of A is the same as the span of the columns of A and b.

• rank([A b]) = rank(A).

• Nullity([A b]) = Nullity(A) + 1.

• In the RREF of [A b], the last column does not contain a pivot.

Examples.

The followings are equivalent:

• Ax = b has a solution (is consistent) for all b.

• The span of the columns vectors of A is Rm.

• rank(A) = m.

• Nullity(A) = n−m.

• In the RREF of A, every row contain a pivot.

• The RREF of A does not contain zero rows.

Examples.

5.2 Linear dependence/independence

A set S is called linearly independent, if for any sequence of distinct elements x1, . . . xk ∈ S, c1x1 +
. . . ckxk = 0 implies that c1 = c2 = · · · = 0. If a set is not linearly independent it is linearly dependent.

a1 . . . an are linearly dependent if and only if [a1 . . . an]x = 0 (the homogeneous eq.) has one (hence
infinitely many) non-zero solutions. (hence [a1 . . . an]x = b has infinitely many solutions for some b, hence
has free variables, hence the nullity of A is non-zero).

Example: 1 or 2 vectors.

Linear dependency in standard vectors.

Linear dependency in RREF.

Linear dependency in vector form of the general solution.

5.3 Number of rows and columns

m > n: column vectors may or may not be linearly dependent, but can never span Rm.

m < n: column vectors may or may not span Rm, but can never be linearly independent.

m = n: column vectors span Rm iff they are linearly independent.
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5.4 Adding and removing vectors

If S is linearly independent, any subset of S is linearly independent and has a smaller span, S∩{v} is linearly
independent iff v is in the span of S.

If S is linearly dependent, so is any set larger than S.

Examples.

******Optional*******

Row vectors under row operation.

Rank=num. of linearly independent column vectors.

Vertical stacks of matrices.

Relationship between homogeneous and non-homogeneous equations.

6 9/22 Review of Chapter 1, more on matrix multiplication

Important concepts to remember:

• Matrix

– Identity matrix

– Zero matrix

– Scalar multiplication

– Addition

– Linear combination

– Span

– Linear independence

– Transpose

– Symmetric matrix

– Row operation

– REF, RREF

– Pivot

– Rank

– Nullity

• Vector

– Standard vectors

– Rn

• System of linear equation

– Homogeneous equation
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– consistence

– Augmented matrix

– Coefficient matrix

– Free variable

– Basic variable

– General solution

– General solution in vector form

True or false:
A set of 3 vectors in R3 is either linearly dependent or spans R3.
If the nullity of A is greater than 0, then Ax = b has infinitely many solutions.
If Ax = b has a unique solution, then the nullity of the augmented matrix is 1.

Fibonacci series.

Unique circle passing through 3 points.

x+ ay = b, cx+ dy = e.

7 9/26 Matrix algebra

Review:

Relationship between homogeneous and non-homogeneous system: if Ax = b is consistent, x0 is a solu-
tion, then any solution can be written as x0 + x1 where x1 is a solution of Ax = 0.

Finding minimal generating set: Put into matrix, find pivot columns.

Matrix multiplication: three equivalent ways of defining it:

• row-column rule

• multiple matrix-vector multiplication

• composition: AB = [A(Be1), A(Be2), . . . ].

Example using 2-by-2 matrices
Properties: the usual one, except

• No longer commutative.

• relationship with transposes.

Multiplication by identity matrix and diagonal matrix.
Example: matrix algebra and complex numbers. The idea of linear representation.

Example: non-commutativity of 3-d rotation.

7



8 9/29 Elementary matrix, inverses

Elementary row operation is left-multiplication by elementary matrices.

Column correspondence property.

Applications:

• Read linear relation from RREF.

• General solution of homogeneous equations.

• Row operation doesn’t change solution.

• General solution of non-homogeneous equation.

• Uniqueness of RREF

Definition of the Inverse of a matrix. Elementary matrices are invertable.

9 10/3 Invertibility

A matrix is invertable iff rank = #rows = #columns.

Algorithm for A−1.

Algorithm for solving AX = B.

Solution of Ax = b when A is invertable: x = A−1b.
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10 Midterm I review

The midterm exam will cover up to section 2.3. Please make sure you know the following:

• Able to calculate the product between matrices and vectors.

• Able to solve system of linear equations with Gaussian elimination.

• Know the meaning of the following terms: matrix, identity matrix, zero matrix, symmetric matrix,
diagonal matrix, elementary matrix, transpose, linear combination, span, linear dependency, row op-
eration, pivot, rank, nullity, free variable, basic variable.

• Able to translate statements about matrices to statements about linear equations and vice versa. For
example, the columns of matrix A are linear independent, then Ax = 0 has a unique solution.

Practice problems:

(1) Find t so that the vectors

 2
1
2

,

 0
2
2

,

 1
2
t

 are linearly dependent.

Solution: This is asking when

 2 0 1
1 2 2
2 2 t

 has rank smaller than 3. By Gaussian elimination you can

see that it has rank smaller than 3 iff t = 5/2.

(2) True or false:

a) Elementary row operations does not change the span of column vectors.

b) If Ax = b has at least two solutions, then the column vectors of A are linearly dependent.

Solution: a) is false. For example,

[
0
1

]
can be turned into

[
1
0

]
by exchanging the two rows, and

the span of the columns are not the same. b) is true, because Ax = b has more than one solution means
that Ax = 0 has non-zero solution, hence the columns of A are linearly dependent by the definition of
matrix-vector multiplication.

(3) Find matrix E so that E

[
1 0
−1 1

]
=

[
0 1
1 0

]
.

Solution: You can solve a system of linear equation, or alternatively, recognize that to turn

[
1 0
−1 1

]
into

[
0 1
1 0

]
one can first add the first row to the second then exchange the two rows, hence E =[

0 1
1 0

] [
1 0
1 1

]
=

[
1 1
1 0

]
.

(4) Show that the transpose of elementary matrices are also elementary matrices.

Solution: write down the three types of elementary matrices and see that their transposes are elementary
matrices of the same type.
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11 10/13 Block multiplication cont. Linear transformation and
matrices

11.1 Block multiplication

AB can be calculated by dividing A and B into rectangular blocks so that the block numbers and the sizes
of blocks matches.

Example: Divide A and B into row/column vectors.

11.2 Linear transformation

Linear transformation: A map T from Rn to Rm is a linear transformation iff T (x + y) = T (x) + T (y),
T (ax) = aT (x).

A is a m× n matrix, then x 7→ Ax is a linear transformation.

Write down the matrix of linear transformations: [T (e1), . . . T (en)].

Composition, identity, surjectivity, injectivity, and inverse.

Examples.

Translation between the 3 viewpoints:

Equations¡—¿Matrices¡—¿Spaces and maps

***********

Real-life application of block multiplication: BLUP in linear mixed models.

Determinant in 2× 2.

12 10/17 Determinant

Recall: det: Defined on square matrices. the simplest poly. which characterizes invertability. Geometrically
related to volumns.

Definition: A square matrix, Aij A with i-th row, j-th column removed, cij = (−1)i+jdet(Aij) the cofac-
tor, then det([a]) = a, det(A) =

∑
i a1ic1i.

Properties:

(1) Linear for each column.

(2) det(I) = 1.

(3) Negative when switching columns.

(4) Linear for each row.
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(5) Negative when switching rows.

(6) Cofactor expansion for other rows/columns.

(7) Invariant under transposes.

(8) det(EA) = det(E)det(A).

(9) det(AB) = det(A)det(B).

(10) Inverse

(11) Cramer’s law

(12) For diagonal matrices, the det is the product of entries on the diagonal

Proof: (1)
(1)-(5) by induction. (6): the case for columns follows from (1), (3) while the case for rows follows from

the definition and (5). (7) follows from (6) and the definition, by induction. (8) follows from (4), (5). (9)
follows from (8). (10) follows from (6) and (11) follows from (10) and (6). (12) follows immediately from
the definition.

Examples: 2-by-2, 3-by-3, 4-by-4 computed using LU decomp.

13 10/20 Subspaces

Definition.

Example: span, null, col, row, generating set, kernel, range.

Relationship between null, col, row and matrix product and transposes.

Finding generator of null space: solving Ax = 0. Building matrix from a generating set of its null space.

14 10/24 Basis and Dimension

Definition of Basis.

Basis and linearly independent sets/generating sets.

Dimension.

Methods to find basis.

Application: rank(A) = rank(AT ).

15 10/27 Basis of col, row, nul. Coordinates.

Basis of col, row, nul.

Monotonicity.
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Application: Rank and matrix product.

Coordinate under a basis.

16 10/31 Coordinates, similarity, eigenvalues

B is a basis of V , then every element v in V can be written as a unique linear combination of elements of B,
the coeff. vector is called the coordinate of v under B, denoted as [v]B = M−1B v where MB is the matrix
whose columns are the elements of B.

Example.

Usage: simplify equations, tensors.

V = Rn, then a basis B gives a map from Rn to Rn: v 7→ [v]B . Representation of a linear map TM under
coordinate B. Similarity.

Example.

Things that are unchanged under similarity: rank, nullity, identity matrix, eigenvalues.

Definition of eigenvalues, eigenvectors, and eigenspaces. Disjointness of eigenspaces.

Example of finding eigenvalues and eigenvectors: eigenvalues: roots of char. poly; eigenvectors: solve
linear system. In practice: QR dec.

17 11/3 Eigenvalues and eigenspaces, charateristic polynomials

Review:

Similarity, eigenvalue, eigenspace, intersection of eigenspaces.

Example for calculation.

Examples: Rotation matrix, diagonal matrix, triangle matrix, symmetric matrix, antisymmetric matrix.
Relationship between multiplicity of eigenvalue and dimension of eigenspaces.

Applications: Matrix power. Solving ODE and PDE. Physics. PCA.

Example: exp

True or false:
A2 = I then the eigenvalues of A must be ±1.
Eigenvectors of A are also eigenvectors of AT .
Eigenspaces are invariant under similarity.
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18 11/7 Diagonalization

Theorem 1: The eigenvectors from different eigenvalues are linearly independent.

Theorem 2: The matrix A can be written in the form PDP−1 iff there is a basis of A consisting of
eigenvectors.

Example for calculating diagonalization.

Checking diagonalization: 1. roots and multiplicity; 2. dim=mult.

Application: power, exp, roots, Caylay-Hamilton.

Jordan normal form: example.

Symmetric matrices.
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19 11/10 Applications, dot product and norm

Review:

Eigenvalue, Eigenspace
Diagonalization, A = P−1DP then f(A) = P−1f(D)P for f polynomial or power series.

Stochastic matrix and Markov chain, pagerank
Stochastic matrix then 1 is an eigenvalue.
Regular (products non-zero) then the corresponding eigenvector is unique. (Peron-Frobenius, need some
calculus).

A diagonalizable, BA = AB iff B preserves eigenspaces of A. A matrix commutes with all diagonal
matrices iff it’s diagonal itself, a matrix commutes with all matrices iff it’s a multiple of the identity.

Linear difference relation, example

Linear ODE

20 11/14 Dot products and norms

Definition of dot products, norm and angle. Basic properties.
Caychy-Schwarz ineq., triangle ineq.

14



21 Midterm 2 review

Multiplication by elementary matrices and row operations, LU decomposition.
Inverse: definition, computation, properties, invertability.
Determinant: cofactor expansion, computation, application (Cramer’s rule)
Subspaces: definition, basis and dimension, row/col/nul space of a matrix, rank(A) = rank(AT )
Eigenvalues and eigenspaces: similarity, definitions, linear independence of eigenvectors in different
eigenspaces, diagonalization.

Review questions:

1. Find the characteristic polynomial of A =


1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

 and check if it is diagonalizable.

Solution: det(A − λI) =

∣∣∣∣∣∣∣∣
1− λ 1 1 1

2 2− λ 2 2
3 3 3− λ 3
4 4 4 4− λ

∣∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣∣∣
1 1− λ/2 1 1

1− λ 1 1 1
3 3 3− λ 3
4 4 4 4− λ

∣∣∣∣∣∣∣∣ =

−2

∣∣∣∣∣∣∣∣
1 1− λ/2 1 1
0 (3λ− λ2)/2 λ λ
0 3λ/2 −λ 0
0 2λ 0 −λ

∣∣∣∣∣∣∣∣ = 2λ3

∣∣∣∣∣∣∣∣
1 1− λ/2 1 1
0 3/2 −1 0
0 (3− λ)/2 1 1
0 2 0 −1

∣∣∣∣∣∣∣∣ = 2λ3

∣∣∣∣∣∣∣∣
1 1− λ/2 1 1
0 3/2 −1 0
0 0 2− λ/3 1
0 0 4/3 −1

∣∣∣∣∣∣∣∣ =

λ3(λ− 10). Because the nullity of A is 3 and the nullity of A− 10I is 1, it is diagonalizable.

2. True or false: if A is diagonalizable and invertable, then A−1 is diagonalizable.

Solution: True. A = PDP−1 for some diagonal D and invertable P , hence A−1 = PD−1P−1.

3. True or false: A non-zero vector can not be in both the null and the column space of A.

Solution: False, for example, A =

[
0 1
0 0

]
.

4. Find t so that




1
0
t
0

 ,


0
t
0
−t


 is a basis of the column space of


1 0 1
0 t t2

t 0 t2

0 −t −t

.

Solution: By Gaussian elimination, the column space is spanned by the first two columns if and only if
t2 = t hence t = 0 or 1. t = 1 is the only case when the set given is linearly independent.

22 11/22 Orthogonal vectors

Review: dot product, norm, distance, cosine theorem, Cauchy Schwartz, triangular inequality.

Orthogonal. Orthogonal projection to a line in 2-dimension.

Orthogonal projection to a line in general.

Orthogonal set: nonzero then linearly indep.

Orthogonal/orthonormal basis: coordinates, GS, QR (matrices with nullity 0).
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23 11/28 6.3 Orthogonal projection

Review: dot product, distance, orthogonlity, orthogonal basis, orthonormal basis, G-S.

Orthogonal to a set: check a basis of its span.

Geometric interpretation of GS: the concept of orthogonal projetion onto a subspace.

Definition. Uniqueness. Computation for orthonormal basis: formula for orthogonal basis, formula for
general basis (C(CTC)−1CT ). (CT (x− C(CTC)−1CTx) = CTx− CTx = 0). Examples.

G-S from the prespective of orthogonal projection: a 3× 3 example.

Applications of QR: (1) computation of determinant (2) solving linear system in a more stable way (3)
Find eigenvalues: QR = RQ then...

minimizing distance.

Orthogonal complement. Row space as orth comp. of nul space.

24 11/1 Application of orthogonal projection

Review: Orthogonal projection, QR, orthogonal complement.
Inconsistent equations: linear least square: projection to col
Solution with the smallest norm: projection to nul.
least square approximation.
Orthogonal matrix: 2-by-2 example.

25 11/5 Orthogonal matrix, diagonalization of symmetric matri-
ces

Review: orth. matrix, 2-by-2.

The followings are equivalent for square matrix A: A has orth. columns; ATA = I; A preserves dot
product; A preserves norm.

A orth then |det(A)| = 1, AT = A−1 orth, and if B is also orth then AB is orth.

Find orthogonal matrices with some given columns: find their orth complement, then do G-S.

Eigenspaces of symmetric matrices are orthogonal to each other.

The (complex) eigenvalues of a symmetric matrix is real.

Symmetric matrices are diagonalizable.

Proof: choose an orthnormal basis of the sum of all eigenspaces of M . Let C be orth with the first

columns the basis elements, then CTMC is symmetric of the form

[
D 0
0 M ′

]
.
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Applications:

Spectral decomposition and spectrial approximation. PCA.

26 11/8 Application of orthogonal matrices

Quadratic form. Conic sections.

SVD.

Rotation in 3 dimension.
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27 Final review

• Matrix multiplication, transpose, and inverse.

• Definition and calculation of determinant.

• Definition of subspace, span and basis, dimension, orthogonal complement, orthogonal and orthonormal
basis.

• Gaussian elimination, elementary matrix, rank, col row and nul space

• Definition of similarity, characteristic polynomial, eigenspace and eigenspaces.

• Diagonalization, LU and QR decomposition of matrices, diagonalization of symmetric matrix, spectral
decomposition.

1. Let A =

[
1 2 3 4 5
0 1 2 3 4

]
, B = ATA.

(1) Find an orthonormal basis for the rol, column and nul space of B.
(2) Find symmetric matrix C so that B = C2.

Solution: (1) The row and column spaces are the same and via Gram-Schmit process an orthonormal basis

is




√

1/5√
1/5√
1/5√
1/5√
1/5

 ,

−
√

2/5

−
√

1/10
0√
1/10√
2/5


, and an orthonormal basis for the nul space is





√
1
6

−
√

2
3√

1
6

0
0


,



√
2
15

−
√

1
30

−
√

8
15√
3
10

0


,



√
1
10

0

−
√

1
10

−
√

2
5√

2
5




.

(2) Diagonalize B into PDPT then take square root for D. The result is long to write down and can be ob-
tained via Mathematica or SageMath. We will not have computation as complicated as this in the final exam.

The following is the result from Sagemath:

√
64
√
2+299

1405

√
112
√
2+172

1405

√
80
√
2+163

1405

√
−32
√
2+272

1405

√
−224

√
2+499

1405√
112
√
2+172

1405

√
392
√
2+883

2810

√
140
√
2+1058

1405

√
−112

√
2+4043

2810 7

√
−8
√
2+68

1405√
80
√
2+163

1405

√
140
√
2+1058

1405

√
100
√
2+2803

1405

√
−40
√
2+5398

1405

√
−280

√
2+8843

1405√
−32
√
2+272

1405

√
−112

√
2+4043

2810

√
−40
√
2+5398

1405

√
32
√
2+20803
2810

√
112
√
2+17032
1405√

−224
√
2+499

1405 7

√
−8
√
2+68

1405

√
−280

√
2+8843

1405

√
112
√
2+17032
1405

√
784
√
2+27899
1405



2. Consider the matrix

 a 0 b
3/5 0 4/5
0 −1 0

.

(1) Find all a, b so that is it not invertable.
(2) Find all a, b so that is it has determinant 1.
(3) Find all a, b so that it is orthogonal.

Solution: (1) 4a = 3b. (2) 4a− 3b = 5. (3) a = ±4/5, b = ∓3/5.

3. True or false:
(1) If A and B has the same nul space then rank(ATB) = rank(B).
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Solution: False. For example, A =

[
1 0
0 0

]
, B =

[
0 0
1 0

]
.

(2) If A is diagonalizable, and has only two eigenspaces which are orthogonal complements of each other,
then A is symmetric.
Solution: True. The union of orthonormal basis of these two subspaces is an orthonormal basis of Rn where
A is of size n× n. So, A = PDPT for some orthogonal matrix P , hence A is symmetric.
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