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13.6
Definition. The n-th cyclotomic polynomial is the monic polynomial
D () = 11 (x—en)
1<j<n,ged(j,n)=1
Theorem. ¥, (x) € Z[z]
Proof. By induction. ®1(x) = 2 — 1 € Z[z]. Suppose ®(z) € Z[z] for all k,

" —1
P, (2) =
HlSd<n,d|n (bd(x)
which by long division of monic polynomials is in Z[z]. O

Theorem. ®,, are irreducible in Q[z] (hence also in Z[z]).

Proof. Let 1 < j < n such that ged(j,n) = 1, ¢ = e%, p prime and p /n.
Let f(z) be the minimal polynomial of ¢ on Q, and ®,(z) = f(x)g(z), and ¢?
is either a root of f or a root of g. f and g are both in Z[z] due to Gauss’s
Lemma.

e Firstly we show that (P can not be a root of g.

— If so, there is h € Z[x] such that g(z?) = f(x)h(z) (Gauss’s Lemma).
— Pass to IF),, we get

(9(=))" = g(a") = f(x)h(z)

Hence q(z) = ged(f(x),g(x)) has degree > 0.

— This implies that @, (z) = f(x)g(x) has a (¢(z))? factor, which im-
plies that 2" — 1 has a (¢q(x))? factor. This contradicts with the fact
that ged(z” — 1,na™ 1) =1 in F,[z].

e Let f be the minimal polynomial of e’ . For any 1 < j < n such that
ged(j,n) = 1, j = [[, pr where p; are primes that don’t divide n. Re-
peatedly use the first step one gets e is also a root of f, hence f = ®,,.

O

2mi

Remark. As a consequence, [Q[e™ | : Q] = p(n).



14.1

Definition. Let K be a field, F' a subfield.

o Aut(K) is the set of automorphisms (isomorphisms from K to itself) of
K.

o Aut(K/F) is the set of automorphisms of K which when restricted to F
is identity.

Example. We can calculate Aut(C/R): for any o € Aut(C/R), o(a+bi) (where
a,b € R) equals a + bo (i), and

—1=0(-1) =0(i*) = 0(i)*
, Hence o (i) = i, o is either z +— z or z — Z.
The following properties are obvious:
Theorem. o Aut(K) and Aut(K/F) are groups under composition.
o Aut(K/F) is a subgroup of Aut(K).

e Any element in Aut(K) preserves the prime field (F, or Q) k contained in
K. In other words Aut(K) = Aut(K/k).

O
The argument we used in the example above can be summarized as:

Theorem. e If & € K be the root of a polynomial f(z) € F[z], then so is
o(a) for any o € Aut(K/F).

o If K = F(a), then 0 € Aut(K/F) is uniquely determined by o(a).

O
Furthermore we have:

Theorem. If K = F(a), [K : F] < oo, there is a bijection from Aut(K/F) to
the roots of the minimal polynomial of a in K.

Proof. The previous theorem implies that this map is well defined and injective.
We only need to show surjectivity. Suppose a’ is a root of the minimal polyno-
mial f(x) of a, then K = F[z]/(f) and we identify the two by sending a to x.
Now define a map ¢’ : K[z] — K by sending z to a’, then

ker(o') = {g € Flx] : g(a’) =0} 2 (f)

Hence ¢’ induces a homomorphism from K to K, which is identity when re-
stricted to F' and sends a to a’. Because K is a field it must be injective, and
because K is a finite dimensional F-vector space it must be bijective. O

As a consequence we have:



Example. o Aut(Q(v3)/Q) = {id, (V3 — —v3)}
o Aut(QEY*)/Q) = {id)

o Fg = Fa[z]/(z® + 2 + 1). Suppose « is the root of 2° + z + 1, then so is
a? and ot = o? + a, hence Aut(Fg/F3) is a cyclic group of order 3.
o Aut(C(z)/C) = {z > 2L - ad — be # 0} = PSL(2,C)

e Let K be the splitting field of 2® — 2 on Q, then Aut(K/Q) = S3, the
isomorphism can be obtained via permuting the three roots of =3 — 2.

Definition. Let S C Aut(K/F), the fixed field is
K% ={a€ K :0(a) =afor all 0 € S}
It is easy to check that:
Theorem. e K% is a subfield of K.
e If SC S, then K5 C K.

o If F C K; C Ky C K is a sequence of subfields, then Aut(K/Ks) C
Aut(K/Ky).

o I C KAut(K/F)
o Aut(K/K%) D (S)
O

Definition. Let K/F be a finite extension. If KA“K/F) = [ we call K/F a
Galois extension, and Aut(K/F) the Galois group.

14.2
A key theorem for automorphism group of finite extension is the following:
Theorem. If G C Aut(K) is a finite subgroup, then [K : K¢] = |G|.

Proof. Suppose [K : K¢] < |G|. Let G = {oy,...,0,}, then these n elements
are K-linearly dependent as functions from K to K. Without loss of generality
suppose o1, ..., 0y are K-linearly independent and o1 = Zle cio;(x), where
¢; € K. Then for any z,y € K

k E ok
N cioi(@)oily) = ora(zy) = o(2)o(y) = Y D cicjoi()o;(y)
i=1 =1 j=1

Hence for all 1 <i <k,

k
cioi(x) = Z cicjo;(x)
j=1



which implies that at most one ¢; is non-zero, and the non-zero one must be 1,
a contradiction.

Suppose [K : K¢] > |G|. Let G = {01,...,0,}, then there must be n + 1

KG@-linearly independent elements in K, denote them as 1, ..., 2,41. Consider
g1 (.’L’Z)

the vectors v; = € K", these n + 1 vectors must be K-linearly
On (xz)

dependent. Without loss of generality, suppose vy,...,v; are K-linearly in-

dependent, and v, = Zle ¢;v;. Then ¢; can not all be in K& due to the

fact that v1,...,v,41 are K-linearly independent. Suppose o € G such that

o(c1) # c1, then vpyy = Zle o(ci)v;, hence

k

> (i —o(ei))vi =0

i=1
a contradiction. O

Remark. The first part of the proof above also showed that if [K : F] < co
then |Aut(K/F)| < [K : F], and the elements of Aut(K/F) must be K-linearly
independent.

Remark. The theorem above implies that When [K : F] < co, K/F is Galois
iff |[Aut(K/F)| = [K : F].

Example. e Q(2Y/%)/Q is not Galois, Q(21/4)A“t(Q(21/4)/Q) = Q(v2), and
Q(2Y/4)/Q(V/2) is Galois.

e Cyclotomic extensions over Q are all Galois.

o ((Fa(2))[y]/(y? — x))/(Fo(z)) is not Galois.

Theorem. A finite extension K/F is Galois iff it is the splitting field of some
separable (i.e. ged(f, f’) = 1) polynomial.

Proof. <= : Suppose f(x) € F[z], without loss of generality assume that it
has no roots in F. If a is a root of f, let p(z) be the minimal polynomial of «
in F, which has d roots oy = «, ..., 4. By extensions of isomorphisms of split-
ting fields, Aut(K/F) acts on {aq,...,aq} transitively, hence |Aut(K/F)| =
d|Aut(K/F(a))|, which because p is separable, equals [F'(«) : F||Aut(K/F(a))|.
Induction on [K : F] one gets the conclusion.

= Let {w;};—1,.. [k:F) be a F-basis of K, consider the set S = {o(w;) :
o€ Gal(K/F),1 <i<[K: FJ}, and f = [[,cq(x —s). f is evidently sepa-
rable as it has all roots with multiplicity 1, and coefficients of f are symmetric
functions on the elements of S, and by construction any element in the Galois
group permutes elements of S hence won’t change f, hence f € F|x]. O



Remark. The theorem above implies that if K/F is a finite Galois extension,
E is a subfield of K that contains F, then K/F is also a Galois extension.

Theorem. (Theorem 14 in Dummit & Foote, Fundamental Theorem of Galois
Theory) Let K/F be a finite Galois extension with Galois group G = Gal(K/F).
There is a bijection from the set of subgroups of Gal(K/F) and subfields of K
that contains F defined by H < G — K" C K, E C K — Aut(K/E) < G,
such that if £ = K2, B/ = KH' then

1. H<H' T E'CE.
2. [K:E|=|H|, [E: F|=|G/H|.
3. K/E is always Galois, Gal(K/FE) = H.

4. E/F is Galois iff H is a normal subgroup of G, in which case Gal(E/F) =
G/H. In general, embeddings of E into K that preserves F' are in 1-1
correspondence with cosets of H in G.

5. ENE = K(HH),

Proof. e Firstly show bijection. It is evident that for any H < G, H <
Aut(K/K™). However |Aut(K/K™)| < [K : K¥] = |H|, hence they are
equal. On the other hand, if F is a subfield of K that contains F', then
K/F is Galois, hence E = KAutK/E),

e 1, 5 are obvious, 2, 3 follows from the fact that K/FE is Galois. For 4,
consider the G-action on the set of embeddings of E into K by o -7 =
o o 1. The fact that this action is transitive is due to the extension of

isomorphisms of splitting fields, and 4 follows.
O

Midterm 2 Review

Topics covered:
e Splitting fields (13.4)
e Separability (13.5)
e Cyclotomic polynomial (13.6)
Practice problems:

e Let F =TF,, p prime number, K be the splitting field of 2 — 1. What is
[K : F)?

e Let F' = F5(¢), f € F[z] monic with degree 3, K the splitting field of f.
Find f such that [K : F] =1,2,3,6.

e Let F be a field of characteristic p, K/F a finite extension. Show that if
p J[K : F] then K/F is separable.



14.7

Galois group of generic polynomials

Definition. Let k be a field, a polynomial in k[x1, ..., z,] is called symmet-
ric if it is invariant under permutation of z;. The elementary symmetric
polynomials ey, ..., e, are defined by

n

H(Jc —x;) = Z(—l)"‘ien_imi

i =0

In other words,

i
ei(xla-“axn): Z H‘Tjk

1<j1<g2 < <ji<n k=1

Theorem. (Fundamental Theorem of symmetric polynomial) Let k be a field,
then any symmetric polynomial over k£ can be uniquely written as a polynomial
of the elementary symmetric polynomials. In other words, the sub-ring of sym-
metric polynomials in k[x1, . .., 2,] is isomorphic to polynomial ring k[t1, . .., 5]
b'y t; — e;.

Remark. A common proof is via Noether normalization lemma. Another proof
is outlined in the exercises of Dummit & Foote.

Proof. Define a linear order <; on N” (seen as set of degrees of a monomial
d dy, .
Ady,...d, T1" ... TH") as:

(d1,...,dn) <1 ( i,,d%)
iff
d; < dj and dj = d for all j < i
another linear order <5 such that
(di,...,dp) <2 (dy,...,d))
iff
Then one can verify the following:

1. If f is a symmetric polynomial in k[xy, ..., z,], then the leading non-zero
term under <y is of the form adlw,dnxfl .. .J:Z" where dy > dy > -+ > d,,.

2. If f,g are in k[xy,...,2,], the leading non-zero term (under <;) of fg is
the product of the leading non-zero terms of f and of g.



3. It follows from statement 2. above, that the leading non-zero term of

d .
ef' ... edn under < is

dn

dyteootdy, o doteotdy,
Ly Lo . n

X

4. Statement 3. above implies that if the leading term of g under <s is

biy,...in it ... xlr, then the leading term of g(eq,...,e,) under < is
it iatehd in
biy,... 0,71 "Ly o

Now given any symmetric polynomial f, statement 1 above implies that the
leading term of f under <; is of the form

d dn
fay,.an eyt -,

and dy > de > ...d,. Statement 3 above implies that the leading term of

di—da do—d dn
f - fdl,.“,dnef 2622 3. [

under <; is lower than the leading term of f. Because there are only finitely
many n-tuples (dy,...,d,) that satisfy d; > --- > d,, smaller than any element
in N™ under <1, repeating the procedure one would eventually terminate, hence
f can be written as g(ey,...,e,) where g is a polynomial.

On the other hand, statement 4 above implies that the leading coefficient of
g under <5 must be identical to the leading coefficient of f under <;. Let this

leading term of g be m, then carry out the same argument on f —m(ey,...,e,)
and g — m, we can show that all coefficients of g are uniquely determiened by
coefficients of f, hence the uniqueness. O

Example. The proof above provides an algorithm to write a symmetric poly-

nomial as polynomials of e, ..., e,. For example, when n = 3, f = 23 + 3 +a3.

Leading term under <; is %, hence subtract by 1-e3 %3 %4 = e3, we get

f- e‘;’ = —337%.’1)2 — 3:6%953 — 333%9(;1 — 337%5(:3 — 3x§a:1 — Sscgacg — 6x12273
Now leading term is —3z2z btract by —3-e2 el Y0 = —3 t
g {T2, subtract by el ey e3 = —3ejeq, we ge

3
f—el +3e1ea = 3x12973

So ‘
f = 6‘% — 36162 + 363

An immediate consequence is the following:

Theorem. Let k be a field, F = k(t1,...,t,), K the splitting field of z™ +
tiz" 4.+ t,, then Gal(K/F) = S,.

O



Nested Roots and Solvable extension

Theorem. If F is characteristic 0 and has all primitive n-th root of unity (e.g.
F =C(t1,...,tn)), K is the splitting field of irreducible polynomial ™ — a €
F[z], then Gal(K/F) = Z/n.

Proof. Let a be a root of 2™ —a in K, ¢ be a primitive root of 1, then the roots
of 2™ —a are (*a, where 0 < k < n, and Galois group elements are o,(a) = (o
where 0 < k < n. Tt is easy to see that this group is isomorphic to Z/n. O

Theorem. If F is char 0 and has all primitive roots of unity. K/F a finite
Galois extension, L splitting field of irreducible polynomial z™ — a € K]|x],
then there is a finite extension L'/K, such that L C L', L'/F is Galois, and
Gal(L'/K) is abelian.

Proof. Let g € F[x] such that K is the splitting field of g, let A = {o(a)} be
the orbit of a under Gal(K/F), then [, o4 (2" — a’)g(x) € Flz], let L' be its
splitting field over F', then L C L'.

For any a’ € A, let ay be a root of 2™ — a’ in L/, then any element of
Gal(L'/K) sends aq to some (¥ oy, here ¢ € F is a primitive n-th root of
unity. This gives an injection from Gal(L'/K) to (Z/n)!4l, hence Gal(L'/K) is
abelian. O

Definition. A group G is called solvable if there is a finite sequence of nested
subgroups
0=CGp<Gui<--<G=G

Such that Gi11 is normal in Gy and Gy /Gg41 are all abelian.

Remark. Solvability is closed under subgroups, quotients and extensions. As
a consequence, if a can be written down using arithmetic operations, elements
in I as well as nested k-th roots, (more precisely, if « is an element in a finite
extension which is a finite composition of extensions of the form (K[z]/(z* —
a))/K) then « lies in some finite Galois extension where the Galois group is
solvable.

Example. The roots of 2°+t;2* +tox3 4+ t322 +t424t5 can not be written using
constants, t; and taking successive roots. Because if otherwise, the splitting field
of this polynomial over C(¢1,...,t5) will be a quotient of a solvable group hence
solvable, and S5 has a normal subgroup As which is a finite simple group.

Cyclic extensions

Theorem. If F' has characteristic 0, contains all primitive n-th roots of unity,
K/F a Galois extension and Gal(K/F) is a cyclic group of order n. Then K is
the splitting field of a polynomial of the form =™ — a where a € F.



Proof. Let ¢ be a primitive n-th root of unity in F, ¢ be a generator of
Gal(K/F). Because the elements of Gal(K/F) are K-linearly independent,
there is some a € K such that the Lagrange Resolvent

(0.0)= 3 Fo(a) £0

It is easy to see that
o(a,¢) = (e, Q)
Hence
(o, Q)" € F

Let a = (o, ()™, then the splitting field of ™ — a over F' is F'((«,()). On the
other hand, any non-identity element in Gal(K/F) does not fix («, (), hence
F((a,¢)) = K. O

Remark. It is evident that for any n-th root of unity ¢, (o, ()™ € F. By linear
algebra, o can be solved from the values of («, () where ¢ goes through all n-th
root of unity. This shows that if F' has all roots of unity and Gal(K/F) is
solvable, then elements in K can be written using elements in F', arithmetic
operations and successive k-th roots.

Final Review
o If K/F finite, then |Aut(K/F)| < [K : F].
e Let G be a finite subgroup of Aut(G), then [K : K¢ = |G].
e Let K/F be a finite extension. The followings are equivalent:
_ F — RAut(K/F)

— |Auwt(K/F)| =K : F)
— K is the splitting field of some separable polynomial.

and when any of these is true we say K/F a Galois extension, and call
Aut(K/F) the Galois group Gal(K/F).

e Fundamental Theorem of Galois Theory

Practice Problems:

1. Show that Q(v/2,v/3)/Q is Galois, calculate its Galois group, and show
that the minimal polynomial of v/2 + /3 has degree 4.

Answer: This is the splitting field of separable polynomial (22 —2)(z2 —3).

The extension is of degree 4 because [Q(v/2,v3) : Q(v/2)] = [Q(v2) : Q] = 2.

Any element in the Galois group permutes the two roots of 22 — 2 and the



two roots of x2 — 3, and is determined by its action on these 4 roots, hence
Gal(@(\/i, \/g)/Q)Z/Q X 7/2. V24 1/3 is not fixed by any non-zero element of
the Galois group, hence can not lie in any intermediate fields between Q(v/2, v/3)
and Q, hence its minimal polynomial must have degree 4.

2. Let p be an odd prime, K the splitting field of 2P — 2, find Gal(K/Q).

Answer: K = @(62;”, {/2), and the minimal polynomial of e ' and /2
over Q have degrees p — 1 and p respectively, hence [K : Q] < p(p—1). Because
K, = Q%) and Ko = Q(%/2) are both subfields of K, [K; : Q] = p — 1,
[K2 : Q] = p, both p — 1 and p are factors of [K : Q], hence [K : Q} =p(p—1).

Let 2z, = 5" {/2, then {2z : 0 < k < p} are all the roots of 2P — 2, and
K = Q(z0, #1), hence an element in Gal(K/Q) is uniquely determined by its
action on zp and z;. On the other hand, because 2P — 2 € Q[z], o has to send
zo and z1 to some z; and z; respectively, and ¢ # j. Hence we can label the
elements of Gal(K/Q) by a tuple (i,j) € Z/p x Z/p, such that i # j, denoted
as {0;,;}. By computation it is easy to see that the identity element is ¢ ; and
the multiplication operation is ¢; ;o j1 = O (j—i)4i,itj’ (j—i)-

3. Let K be the splitting field of (2 — 2)(2?® — 3), find Gal(K/Q).

Answer: By an argument similar to 2 above we get [K : Q] = 18. Let
Zp = 75" V2, 2 = 5" V/3, then any element of Gal(K/Q) is uniquely de-
termined by its action on the sets Z = {z¢, 21,22} and W = {wq, w1, wy}, i.e.
Gal(K/Q) C SzxSw C Szuw. There are 3! x3! = 36 elements in Sz x Sy how-
ever, but if we impose an extra restriction, that o(z1)/o(20) = o(w1)/o(wo), will
cut this number down to 18. In conclusion, Gal(K/Q) is isomorphic to a sub-
group of Szuw = S generated by (21, z2) (w1, w2), (20,21, 22) and (wo, w1, w2).

4. Show that if K/F and K’'/F are two Galois extensions, and there is
an isomorphism f : K — K’ which is identity when restricted to F, then
Gal(K/F) = Gal(K'/F).

Answer: Define group homomorphism Gal(K/F) — Gal(K'/F) by o
fof~, and group homomorphism Gal(K'/F) — Gal(K/F) by o — f~lof,
then these two homomorphisms are inverses of one another hence are both iso-
morphisms.

5. Let F' = Fy(t) where ¢ is transcendental over Fo. Let K be the splitting
field of 8 + 22 4t over F. Find Aut(K/F) and KAwK/F),

Answer: Firstly we find the splitting field of 2+ 22 +¢. By Gauss’s Lemma
we can show that this is an irreducible polynomial (it doesn’t have root in F|t]
hence no factor of degree 1. If it has a factor of degree 2, there are a;, b; € Fa[f]
such that (22 + a12 + ag)(z* + b3x® + baz? + byx + bg) = 2% + 2% +t. Compare
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coefficients one get by = ay, by = ag + a?, by = a3, so a1by + ajag = 0, and
agby = t, that’s not possible. Similarly it can not have degree 3 factor).

Let K; be F adjoining one root a of 2° + 22 + ¢, then K; = Fo(a) and « is
transcendental over Fy. In K1 we have 26 + 2%+t = (v +a)?(2? +az +a?+1)2,
so to get the splitting field we need to add a root of x2 + aux + a? + 1, denoted
as 3. Now K = F(a,3), and the three roots of 2% + 22 + t are o, 3, + f3.

Elements of Aut(K/F) are uniquely determined by their action on this set
of 3 roots, so it is a subgroup of S3. Aut(K/K;) is a subgroup of order 2, and
we also know that there are elements of Aut(K/F) that sends « to 8 or a + «,
so Aut(K/K;) = Ss.

KAuE/F) = F(af(a+ B)).

6. Suppose K/F is a finite Galois extension. Show that so is K (¢)/F(t) and
these two extensions have the same Galois group.

Answer: Let g € F|x] be a separable polynomial where K is its splitting
field, then K (¢t)/F(t) is also the splitting field of g € (F(t))[x], and g is separa-
ble in (F(¢))[z] due to long division and Euclid’s algorithm for ged.

Any element in Gal(K/F) induces an element in Gal(K (t)/F(t)), by apply-
ing o to all coefficients. On the other hand, any ¢’ € Gal(K(t)/F(t)) has to
send ¢ to t and elements of K to other elements of K (because those are all
the elements of K (t) which are algebraic over F'). This shows that ¢/ must be
induced by some element in Gal(K/F).

7. Write down a Galois extension K/F such that Gal(K/F) = S3 x 7Z/3.
Let a € K, m, be the minimal polynomial of a in F[z], what are the possible
degrees of m,?

Answer: Let F' = C(t1,t2) be the field of rational functions with 2 parame-
ters. Let K be the splitting field of (#®+xz+t;1)(2® —t3). Let K; be the splitting
field of 2% + x +t; and K3 be the splitting field of 23 —t, then both K;/F and
K>/ F are Galois, hence Gal(K/K;) and Gal(K/K3) are two normal subgroups
of Gal(K/F) whose product is the whole group (because K; N Ky = F') and
intersection is 1 (because K is the smallest subfield of K that contains both K
and K3), hence Gal(K/F) is the product of these two groups. By calculation
and problem 6 above these two groups are Z/3 and S5 respectively.

The possible degrees of m, are just the possible degrees of extensions K'/F

where K’ is a subfield of K, in other words possible indices of subgroups of
Gal(K/F). These are: 1, 2, 3, 6, 9 and 18.
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