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13.6

Definition. The n-th cyclotomic polynomial is the monic polynomial

Φn(x) =
∏

1≤j<n,gcd(j,n)=1

(x− e
2jπ
n )

Theorem. Φn(x) ∈ Z[x]

Proof. By induction. Φ1(x) = x− 1 ∈ Z[x]. Suppose Φk(x) ∈ Z[x] for all k,

Φn(x) =
xn − 1∏

1≤d<n,d|n Φd(x)

which by long division of monic polynomials is in Z[x].

Theorem. Φn are irreducible in Q[x] (hence also in Z[x]).

Proof. Let 1 ≤ j < n such that gcd(j, n) = 1, ζ = e
2jπi
n , p prime and p ̸ |n.

Let f(x) be the minimal polynomial of ζ on Q, and Φn(x) = f(x)g(x), and ζp

is either a root of f or a root of g. f and g are both in Z[x] due to Gauss’s
Lemma.

• Firstly we show that ζp can not be a root of g.

– If so, there is h ∈ Z[x] such that g(xp) = f(x)h(x) (Gauss’s Lemma).

– Pass to Fp, we get

(ḡ(x))p = ḡ(xp) = f̄(x)h̄(x)

Hence q(x) = gcd(f̄(x), ḡ(x)) has degree > 0.

– This implies that Φ̄n(x) = f̄(x)ḡ(x) has a (q(x))2 factor, which im-
plies that xn − 1 has a (q(x))2 factor. This contradicts with the fact
that gcd(xn − 1, nxn−1) = 1 in Fp[x].

• Let f be the minimal polynomial of e
2πi
n . For any 1 ≤ j < n such that

gcd(j, n) = 1, j =
∏

k pk where pk are primes that don’t divide n. Re-

peatedly use the first step one gets e
2jπi
n is also a root of f , hence f = Φn.

Remark. As a consequence, [Q[e
2πi
n ] : Q] = φ(n).
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14.1

Definition. Let K be a field, F a subfield.

• Aut(K) is the set of automorphisms (isomorphisms from K to itself) of
K.

• Aut(K/F ) is the set of automorphisms of K which when restricted to F
is identity.

Example. We can calculate Aut(C/R): for any σ ∈ Aut(C/R), σ(a+bi) (where
a, b ∈ R) equals a+ bσ(i), and

−1 = σ(−1) = σ(i2) = σ(i)2

, Hence σ(i) = ±i, σ is either z 7→ z or z 7→ z̄.

The following properties are obvious:

Theorem. • Aut(K) and Aut(K/F ) are groups under composition.

• Aut(K/F ) is a subgroup of Aut(K).

• Any element in Aut(K) preserves the prime field (Fp or Q) k contained in
K. In other words Aut(K) = Aut(K/k).

The argument we used in the example above can be summarized as:

Theorem. • If α ∈ K be the root of a polynomial f(x) ∈ F [x], then so is
σ(α) for any σ ∈ Aut(K/F ).

• If K = F (α), then σ ∈ Aut(K/F ) is uniquely determined by σ(α).

Furthermore we have:

Theorem. If K = F (a), [K : F ] < ∞, there is a bijection from Aut(K/F ) to
the roots of the minimal polynomial of a in K.

Proof. The previous theorem implies that this map is well defined and injective.
We only need to show surjectivity. Suppose a′ is a root of the minimal polyno-
mial f(x) of a, then K ∼= F [x]/(f) and we identify the two by sending a to x.
Now define a map σ′ : K[x] → K by sending x to a′, then

ker(σ′) = {g ∈ F [x] : g(a′) = 0} ⊇ (f)

Hence σ′ induces a homomorphism from K to K, which is identity when re-
stricted to F and sends a to a′. Because K is a field it must be injective, and
because K is a finite dimensional F -vector space it must be bijective.

As a consequence we have:
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Example. • Aut(Q(
√
3)/Q) = {id, (

√
3 7→ −

√
3)}

• Aut(Q(31/3)/Q) = {id}

• F8 = F2[x]/(x
3 + x + 1). Suppose α is the root of x3 + x + 1, then so is

α2 and α4 = α2 + α, hence Aut(F8/F2) is a cyclic group of order 3.

• Aut(C(x)/C) = {x 7→ ax+b
cx+d : ad− bc ̸= 0} ∼= PSL(2,C)

• Let K be the splitting field of x3 − 2 on Q, then Aut(K/Q) ∼= S3, the
isomorphism can be obtained via permuting the three roots of x3 − 2.

Definition. Let S ⊂ Aut(K/F ), the fixed field is

KS = {a ∈ K : σ(a) = a for all σ ∈ S}

It is easy to check that:

Theorem. • KS is a subfield of K.

• If S ⊆ S′, then KS′ ⊆ KS .

• If F ⊆ K1 ⊆ K2 ⊆ K is a sequence of subfields, then Aut(K/K2) ⊆
Aut(K/K1).

• F ⊆ KAut(K/F )

• Aut(K/KS) ⊇ ⟨S⟩

Definition. Let K/F be a finite extension. If KAut(K/F ) = F , we call K/F a
Galois extension, and Aut(K/F ) the Galois group.

14.2

A key theorem for automorphism group of finite extension is the following:

Theorem. If G ⊆ Aut(K) is a finite subgroup, then [K : KG] = |G|.

Proof. Suppose [K : KG] < |G|. Let G = {σ1, . . . , σn}, then these n elements
are K-linearly dependent as functions from K to K. Without loss of generality
suppose σ1, . . . , σk are K-linearly independent and σk+1 =

∑k
i=1 ciσi(x), where

ci ∈ K. Then for any x, y ∈ K

k∑
i=1

ciσi(x)σi(y) = σk+1(xy) = σ(x)σ(y) =

k∑
i=1

k∑
j=1

cicjσi(x)σj(y)

Hence for all 1 ≤ i ≤ k,

ciσi(x) =

k∑
j=1

cicjσj(x)
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which implies that at most one ci is non-zero, and the non-zero one must be 1,
a contradiction.

Suppose [K : KG] > |G|. Let G = {σ1, . . . , σn}, then there must be n + 1
KG-linearly independent elements in K, denote them as x1, . . . , xn+1. Consider

the vectors vi =

 σ1(xi)
. . .

σn(xi)

 ∈ Kn, these n + 1 vectors must be K-linearly

dependent. Without loss of generality, suppose v1, . . . , vk are K-linearly in-
dependent, and vk+1 =

∑k
i=1 civi. Then ci can not all be in KG due to the

fact that v1, . . . , vn+1 are KG-linearly independent. Suppose σ ∈ G such that

σ(c1) ̸= c1, then vk+1 =
∑k

i=1 σ(ci)vi, hence

k∑
i=1

(ci − σ(ci))vi = 0

a contradiction.

Remark. The first part of the proof above also showed that if [K : F ] < ∞
then |Aut(K/F )| ≤ [K : F ], and the elements of Aut(K/F ) must be K-linearly
independent.

Remark. The theorem above implies that When [K : F ] < ∞, K/F is Galois
iff |Aut(K/F )| = [K : F ].

Example. • Q(21/4)/Q is not Galois, Q(21/4)Aut(Q(21/4)/Q) = Q(
√
2), and

Q(21/4)/Q(
√
2) is Galois.

• Cyclotomic extensions over Q are all Galois.

• ((F2(x))[y]/(y
2 − x))/(F2(x)) is not Galois.

Theorem. A finite extension K/F is Galois iff it is the splitting field of some
separable (i.e. gcd(f, f ′) = 1) polynomial.

Proof. ⇐= : Suppose f(x) ∈ F [x], without loss of generality assume that it
has no roots in F . If α is a root of f , let p(x) be the minimal polynomial of α
in F , which has d roots α1 = α, . . . , αd. By extensions of isomorphisms of split-
ting fields, Aut(K/F ) acts on {α1, . . . , αd} transitively, hence |Aut(K/F )| =
d|Aut(K/F (α))|, which because p is separable, equals [F (α) : F ]|Aut(K/F (α))|.
Induction on [K : F ] one gets the conclusion.

=⇒ : Let {wi}i=1,...,[K:F ] be a F -basis of K, consider the set S = {σ(wi) :
σ ∈ Gal(K/F ), 1 ≤ i ≤ [K : F ]}, and f =

∏
s∈S(x − s). f is evidently sepa-

rable as it has all roots with multiplicity 1, and coefficients of f are symmetric
functions on the elements of S, and by construction any element in the Galois
group permutes elements of S hence won’t change f , hence f ∈ F [x].
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Remark. The theorem above implies that if K/F is a finite Galois extension,
E is a subfield of K that contains F , then K/E is also a Galois extension.

Theorem. (Theorem 14 in Dummit & Foote, Fundamental Theorem of Galois
Theory) LetK/F be a finite Galois extension with Galois group G = Gal(K/F ).
There is a bijection from the set of subgroups of Gal(K/F ) and subfields of K
that contains F defined by H ≤ G 7→ KH ⊆ K, E ⊆ K 7→ Aut(K/E) < G,
such that if E = KH , E′ = KH′

then

1. H ≤ H ′ iff E′ ⊆ E.

2. [K : E] = |H|, [E : F ] = |G/H|.

3. K/E is always Galois, Gal(K/E) = H.

4. E/F is Galois iff H is a normal subgroup of G, in which case Gal(E/F ) ∼=
G/H. In general, embeddings of E into K that preserves F are in 1-1
correspondence with cosets of H in G.

5. E ∩ E′ = K⟨H,H′⟩.

Proof. • Firstly show bijection. It is evident that for any H ≤ G, H ≤
Aut(K/KH). However |Aut(K/KH)| ≤ [K : KH ] = |H|, hence they are
equal. On the other hand, if E is a subfield of K that contains F , then
K/E is Galois, hence E = KAut(K/E).

• 1, 5 are obvious, 2, 3 follows from the fact that K/E is Galois. For 4,
consider the G-action on the set of embeddings of E into K by σ · i =
σ ◦ i. The fact that this action is transitive is due to the extension of
isomorphisms of splitting fields, and 4 follows.

Midterm 2 Review

Topics covered:

• Splitting fields (13.4)

• Separability (13.5)

• Cyclotomic polynomial (13.6)

Practice problems:

• Let F = Fp, p prime number, K be the splitting field of x6 − 1. What is
[K : F ]?

• Let F = F3(t), f ∈ F [x] monic with degree 3, K the splitting field of f .
Find f such that [K : F ] = 1, 2, 3, 6.

• Let F be a field of characteristic p, K/F a finite extension. Show that if
p ̸ |[K : F ] then K/F is separable.
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14.7

Galois group of generic polynomials

Definition. Let k be a field, a polynomial in k[x1, . . . , xn] is called symmet-
ric if it is invariant under permutation of xi. The elementary symmetric
polynomials e1, . . . , en are defined by

∏
i

(x− xi) =

n∑
i=0

(−1)n−ien−ix
i

In other words,

ei(x1, . . . , xn) =
∑

1≤j1<j2<···<ji≤n

i∏
k=1

xjk

Theorem. (Fundamental Theorem of symmetric polynomial) Let k be a field,
then any symmetric polynomial over k can be uniquely written as a polynomial
of the elementary symmetric polynomials. In other words, the sub-ring of sym-
metric polynomials in k[x1, . . . , xn] is isomorphic to polynomial ring k[t1, . . . , tn]
by ti 7→ ei.

Remark. A common proof is via Noether normalization lemma. Another proof
is outlined in the exercises of Dummit & Foote.

Proof. Define a linear order <1 on Nn (seen as set of degrees of a monomial
ad1,...,dnx

d1
1 . . . xdn

n ) as:

(d1, . . . , dn) <1 (d′1, . . . , d
′
n)

iff
di < d′i and dj = d′j for all j < i

another linear order <2 such that

(d1, . . . , dn) <2 (d′1, . . . , d
′
n)

iff

(d1 + · · ·+ dn, d2 + · · ·+ dn . . . , dn) <1 (d′1 + · · ·+ d′n, d
′
2 + · · ·+ d′n, . . . , d

′
n)

Then one can verify the following:

1. If f is a symmetric polynomial in k[x1, . . . , xn], then the leading non-zero
term under <1 is of the form ad1,...,dn

xd1
1 . . . xdn

n where d1 ≥ d2 ≥ · · · ≥ dn.

2. If f, g are in k[x1, . . . , xn], the leading non-zero term (under <1) of fg is
the product of the leading non-zero terms of f and of g.
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3. It follows from statement 2. above, that the leading non-zero term of
ed1
1 . . . edn

n under <1 is

xd1+···+dn
1 xd2+···+dn

2 . . . xdn
n

4. Statement 3. above implies that if the leading term of g under <2 is
bi1,...,inx

i1
1 . . . xin

n , then the leading term of g(e1, . . . , en) under <1 is

bi1,...,inx
i1+···+in
1 xi2+···+in

2 . . . xin
n

Now given any symmetric polynomial f , statement 1 above implies that the
leading term of f under <1 is of the form

fd1,...,dnx
d1
1 . . . xdn

n

and d1 ≥ d2 ≥ . . . dn. Statement 3 above implies that the leading term of

f − fd1,...,dn
ed1−d2
1 ed2−d3

2 . . . edn
n

under <1 is lower than the leading term of f . Because there are only finitely
many n-tuples (d1, . . . , dn) that satisfy d1 ≥ · · · ≥ dn smaller than any element
in Nn under <1, repeating the procedure one would eventually terminate, hence
f can be written as g(e1, . . . , en) where g is a polynomial.

On the other hand, statement 4 above implies that the leading coefficient of
g under <2 must be identical to the leading coefficient of f under <1. Let this
leading term of g be m, then carry out the same argument on f −m(e1, . . . , en)
and g −m, we can show that all coefficients of g are uniquely determiened by
coefficients of f , hence the uniqueness.

Example. The proof above provides an algorithm to write a symmetric poly-
nomial as polynomials of e1, . . . , en. For example, when n = 3, f = x3

1+x3
2+x3

3.
Leading term under <1 is x3

1, hence subtract by 1 · e3−0
1 e0−0

2 e03 = e31, we get

f − e31 = −3x2
1x2 − 3x2

1x3 − 3x2
2x1 − 3x2

2x3 − 3x2
3x1 − 3x3

3x2 − 6x1x2x3

Now leading term is −3x2
1x2, subtract by −3 · e2−1

1 e1−0
2 e03 = −3e1e2, we get

f − e31 + 3e1e2 = 3x1x2x3

So
f = e31 − 3e1e2 + 3e3

An immediate consequence is the following:

Theorem. Let k be a field, F = k(t1, . . . , tn), K the splitting field of xn +
t1x

n−1 + · · ·+ tn, then Gal(K/F ) = Sn.
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Nested Roots and Solvable extension

Theorem. If F is characteristic 0 and has all primitive n-th root of unity (e.g.
F = C(t1, . . . , tn)), K is the splitting field of irreducible polynomial xn − a ∈
F [x], then Gal(K/F ) ∼= Z/n.

Proof. Let α be a root of xn−a in K, ζ be a primitive root of 1, then the roots
of xn−a are ζkα, where 0 ≤ k < n, and Galois group elements are σk(α) = ζkα
where 0 ≤ k < n. It is easy to see that this group is isomorphic to Z/n.

Theorem. If F is char 0 and has all primitive roots of unity. K/F a finite
Galois extension, L splitting field of irreducible polynomial xn − a ∈ K[x],
then there is a finite extension L′/K, such that L ⊆ L′, L′/F is Galois, and
Gal(L′/K) is abelian.

Proof. Let g ∈ F [x] such that K is the splitting field of g, let A = {σ(a)} be
the orbit of a under Gal(K/F ), then

∏
a′∈A(x

n − a′)g(x) ∈ F [x], let L′ be its
splitting field over F , then L ⊆ L′.

For any a′ ∈ A, let αa′ be a root of xn − a′ in L′, then any element of
Gal(L′/K) sends αa′ to some ζka′αa′ , here ζ ∈ F is a primitive n-th root of
unity. This gives an injection from Gal(L′/K) to (Z/n)|A|, hence Gal(L′/K) is
abelian.

Definition. A group G is called solvable if there is a finite sequence of nested
subgroups

0 = Gn ≤ Gn−1 ≤ · · · ≤ G0 = G

Such that Gk+1 is normal in Gk and Gk/Gk+1 are all abelian.

Remark. Solvability is closed under subgroups, quotients and extensions. As
a consequence, if α can be written down using arithmetic operations, elements
in F as well as nested k-th roots, (more precisely, if α is an element in a finite
extension which is a finite composition of extensions of the form (K[x]/(xk −
a))/K) then α lies in some finite Galois extension where the Galois group is
solvable.

Example. The roots of x5+t1x
4+t2x

3+t3x
2+t4x+t5 can not be written using

constants, ti and taking successive roots. Because if otherwise, the splitting field
of this polynomial over C(t1, . . . , t5) will be a quotient of a solvable group hence
solvable, and S5 has a normal subgroup A5 which is a finite simple group.

Cyclic extensions

Theorem. If F has characteristic 0, contains all primitive n-th roots of unity,
K/F a Galois extension and Gal(K/F ) is a cyclic group of order n. Then K is
the splitting field of a polynomial of the form xn − a where a ∈ F .
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Proof. Let ζ be a primitive n-th root of unity in F , σ be a generator of
Gal(K/F ). Because the elements of Gal(K/F ) are K-linearly independent,
there is some α ∈ K such that the Lagrange Resolvent

(α, ζ) =

n−1∑
j=0

ζjσj(α) ̸= 0

It is easy to see that
σ(α, ζ) = ζ−1(α, ζ)

Hence
(α, ζ)n ∈ F

Let a = (α, ζ)n, then the splitting field of xn − a over F is F ((α, ζ)). On the
other hand, any non-identity element in Gal(K/F ) does not fix (α, ζ), hence
F ((α, ζ)) = K.

Remark. It is evident that for any n-th root of unity ζ, (α, ζ)n ∈ F . By linear
algebra, α can be solved from the values of (α, ζ) where ζ goes through all n-th
root of unity. This shows that if F has all roots of unity and Gal(K/F ) is
solvable, then elements in K can be written using elements in F , arithmetic
operations and successive k-th roots.

Final Review

• If K/F finite, then |Aut(K/F )| ≤ [K : F ].

• Let G be a finite subgroup of Aut(G), then [K : KG] = |G|.

• Let K/F be a finite extension. The followings are equivalent:

– F = KAut(K/F )

– |Aut(K/F )| = [K : F ]

– K is the splitting field of some separable polynomial.

and when any of these is true we say K/F a Galois extension, and call
Aut(K/F ) the Galois group Gal(K/F ).

• Fundamental Theorem of Galois Theory

Practice Problems:

1. Show that Q(
√
2,
√
3)/Q is Galois, calculate its Galois group, and show

that the minimal polynomial of
√
2 +

√
3 has degree 4.

Answer: This is the splitting field of separable polynomial (x2−2)(x2−3).
The extension is of degree 4 because [Q(

√
2,
√
3) : Q(

√
2)] = [Q(

√
2) : Q] = 2.

Any element in the Galois group permutes the two roots of x2 − 2 and the
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two roots of x2 − 3, and is determined by its action on these 4 roots, hence
Gal(Q(

√
2,
√
3)/Q)Z/2×Z/2.

√
2+

√
3 is not fixed by any non-zero element of

the Galois group, hence can not lie in any intermediate fields between Q(
√
2,
√
3)

and Q, hence its minimal polynomial must have degree 4.

2. Let p be an odd prime, K the splitting field of xp − 2, find Gal(K/Q).

Answer: K = Q(e
2πi
p , p

√
2), and the minimal polynomial of e

2πi
p and p

√
2

over Q have degrees p− 1 and p respectively, hence [K : Q] ≤ p(p− 1). Because

K1 = Q(e
2πi
p ) and K2 = Q( p

√
2) are both subfields of K, [K1 : Q] = p − 1,

[K2 : Q] = p, both p− 1 and p are factors of [K : Q], hence [K : Q] = p(p− 1).

Let zk = e
2πik

p
p
√
2, then {zk : 0 ≤ k < p} are all the roots of xp − 2, and

K = Q(z0, z1), hence an element in Gal(K/Q) is uniquely determined by its
action on z0 and z1. On the other hand, because xp − 2 ∈ Q[x], σ has to send
z0 and z1 to some zi and zj respectively, and i ̸= j. Hence we can label the
elements of Gal(K/Q) by a tuple (i, j) ∈ Z/p × Z/p, such that i ̸= j, denoted
as {σi,j}. By computation it is easy to see that the identity element is σ0,1 and
the multiplication operation is σi,jσi′,j′ = σi′(j−i)+i,i+j′(j−i).

3. Let K be the splitting field of (x3 − 2)(x3 − 3), find Gal(K/Q).

Answer: By an argument similar to 2 above we get [K : Q] = 18. Let

zk = e
2πki

3
3
√
2, zk = e

2πki
3

3
√
3, then any element of Gal(K/Q) is uniquely de-

termined by its action on the sets Z = {z0, z1, z2} and W = {w0, w1, w2}, i.e.
Gal(K/Q) ⊆ SZ×SW ⊆ SZ∪W . There are 3!×3! = 36 elements in SZ×SW how-
ever, but if we impose an extra restriction, that σ(z1)/σ(z0) = σ(w1)/σ(w0), will
cut this number down to 18. In conclusion, Gal(K/Q) is isomorphic to a sub-
group of SZ∪W = S6 generated by (z1, z2)(w1, w2), (z0, z1, z2) and (w0, w1, w2).

4. Show that if K/F and K ′/F are two Galois extensions, and there is
an isomorphism f : K → K ′ which is identity when restricted to F , then
Gal(K/F ) ∼= Gal(K ′/F ).

Answer: Define group homomorphism Gal(K/F ) → Gal(K ′/F ) by σ 7→
fσf−1, and group homomorphism Gal(K ′/F ) → Gal(K/F ) by σ 7→ f−1σf ,
then these two homomorphisms are inverses of one another hence are both iso-
morphisms.

5. Let F = F2(t) where t is transcendental over F2. Let K be the splitting
field of x6 + x2 + t over F . Find Aut(K/F ) and KAut(K/F ).

Answer: Firstly we find the splitting field of x6+x2+t. By Gauss’s Lemma
we can show that this is an irreducible polynomial (it doesn’t have root in F2[t]
hence no factor of degree 1. If it has a factor of degree 2, there are ai, bi ∈ F2[f ]
such that (x2 + a1x+ a0)(x

4 + b3x
3 + b2x

2 + b1x+ b0) = x6 + x2 + t. Compare
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coefficients one get b3 = a1, b2 = a0 + a21, b1 = a31, so a1b0 + a31a0 = 0, and
a0b0 = t, that’s not possible. Similarly it can not have degree 3 factor).

Let K1 be F adjoining one root α of x6 + x2 + t, then K1 = F2(α) and α is
transcendental over F2. In K1 we have x6+x2+ t = (x+α)2(x2+αx+α2+1)2,
so to get the splitting field we need to add a root of x2 + αx+ α2 + 1, denoted
as β. Now K = F (α, β), and the three roots of x6 + x2 + t are α, β, α+ β.

Elements of Aut(K/F ) are uniquely determined by their action on this set
of 3 roots, so it is a subgroup of S3. Aut(K/K1) is a subgroup of order 2, and
we also know that there are elements of Aut(K/F ) that sends α to β or α+ α,
so Aut(K/K1) ∼= S3.

KAut(K/F ) = F (αβ(α+ β)).

6. Suppose K/F is a finite Galois extension. Show that so is K(t)/F (t) and
these two extensions have the same Galois group.

Answer: Let g ∈ F [x] be a separable polynomial where K is its splitting
field, then K(t)/F (t) is also the splitting field of g ∈ (F (t))[x], and g is separa-
ble in (F (t))[x] due to long division and Euclid’s algorithm for gcd.

Any element in Gal(K/F ) induces an element in Gal(K(t)/F (t)), by apply-
ing σ to all coefficients. On the other hand, any σ′ ∈ Gal(K(t)/F (t)) has to
send t to t and elements of K to other elements of K (because those are all
the elements of K(t) which are algebraic over F ). This shows that σ′ must be
induced by some element in Gal(K/F ).

7. Write down a Galois extension K/F such that Gal(K/F ) ∼= S3 × Z/3.
Let a ∈ K, ma be the minimal polynomial of a in F [x], what are the possible
degrees of ma?

Answer: Let F = C(t1, t2) be the field of rational functions with 2 parame-
ters. Let K be the splitting field of (x3+x+t1)(x

3−t2). Let K1 be the splitting
field of x3 +x+ t1 and K2 be the splitting field of x3 − t2, then both K1/F and
K2/F are Galois, hence Gal(K/K1) and Gal(K/K2) are two normal subgroups
of Gal(K/F ) whose product is the whole group (because K1 ∩ K2 = F ) and
intersection is 1 (because K is the smallest subfield of K that contains both K1

and K2), hence Gal(K/F ) is the product of these two groups. By calculation
and problem 6 above these two groups are Z/3 and S3 respectively.

The possible degrees of ma are just the possible degrees of extensions K ′/F
where K ′ is a subfield of K, in other words possible indices of subgroups of
Gal(K/F ). These are: 1, 2, 3, 6, 9 and 18.
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