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1

Topological Manifolds

Section 1.1 of textbook

Firstly let’s recall some basic concepts from topology:

1.

Let X be a non-empty set. A topology is a subset O of its power set
P(X), such that X € O, @€ O, A< O then | JA € O (here | J A is defined
as |JA = Upea V), and if P,Q € O then P n Q € O. Elements of O are
called open sets, their complements are called closed sets. (X,0) is
called a topological space.

Let (X, O) be a topological space, B < O is called a basis of the topology,
if for any U € O, U = Uyepycy V- It is easy to see that a subset
B ¢ P(X) is a basis of some topology, as long as | J,,.5 V = X, and for
any two elements C, D € B, any x € C' n D, there is some FE € B such that
reEcCnD.

Let X be a non-empty set, d : X x X — Ryq is called a metric if
d(a,b) = 0iff a = b, d(a,b) = d(b,a), and d(a,c) < d(a,b) + d(b,c). (X,d)
is called a metric space. It is easy to see that a metric on X would
induce a topology Oy which is generated by basis

By={{ye X :d(z,y) <r}:reRog,ze X}

Let X be a subset of R™. Unless specified otherwise, we always assume
the topology on X is the one obtained via the Euclidean metric

Let (X, O) be a topological space. A open cover is a subset of O whose
union is X. We say X is compact, if any open cover of X has a finite
subcover. From analysis classes we know that a subset of R™ with subspace
topology (a subset is open iff it is the intersection with an open set in R™)
iff it is bounded and closed in R™.

. A map f between two topological spaces (X, 0) and (Y, O’) is called con-

tinuous, if for any V e O’, f~3(V) e O. If f: X — Y is a bijection and
both f and f’ are continuous, we call f a homeomorphism.

Definition 1.1. A topological space M is called a topological manifold, if
it satisfies the following three conditions:

e It is Hausdorff: for any =,y € M, x £ y, there are open sets U and V'

such that r e U, ye Vand UnV = .

e It is Second Countable: the topology on M has a countable basis B.



e It is Locally Euclidean: for any x € M, there is an open set U < M such
that x € U and U is homeomorphic to an open disc in R"™. We require the
number n to be a constant for all x € M, and it is called the dimension
of M.

Remark 1.2. Any topology induced by a metric is Hausdorff. Because if x = y,
we can let U and V' be balls centered at « and y respectively and radius d(z, y)/3.

Example 1.3. The following are examples of topological manifolds:
1. R™, open subsets of R"™.
2. S" = {(zg,...,Ty) : X3 + - - - + 22 = 1}, with subspace topology.

3. {(zo,...,xn) : Tg = A/23 + -+ + 22}, because it is homeomorphic to R™
by (xg,...xn) — (T1,...2n).

Example 1.4. The followings are non-examples of topological manifolds:

1. When n > 1, {(xo,...,7,) : 22 = 23 + ...22}. This is Hausdorff and
second countable but not locally Euclidean at (0,...,0).

2. Line with a Double Point: Two copies of R glued together at (—o0,0)u
(0,00). More precisely, consider quotient set M = R x {0,1}/ ~ where
(a,i) ~ (b,j)ifa=b+0o0ra=>b=0,1i=j and we say a subset of
M is open iff its preimage under the quotient map is open (i.e. take the
quotient topology) in R x {0,1}, where the topology is the product
topology between the Euclidean topology on R and the discrete topol-
ogy on {0,1}. M is second countable, locally Euclidean but not Hausdorff
(there are no disjoint neighborhoods of the points (0,0) and (0, 1)).

3. Long Line: We say a set is well ordered if it has a linear order < such
that any non-empty subset has a minimal element. Let w; be the first
uncountable ordinal, i.e. an uncountable, well ordered set such that for
any T € wy, {y € wy : y < x} is countable. Give the set wy x [0,1) the
Lexicographical order, then the long ray is w; x [0,1) with the topology
being the order topology (the topology generated by the basis consists
of all the open intervals (a,b) = {c€ X : a < ¢ < b}). The Long Line
is defined as two copies of the long ray glued together at the left end points.

The long line is locally Euclidean, because any countable, well ordered
set has an order preserving embedding to any open interval in R. It
is also Hausdorff which can be verified directly. However it is not sec-
ond countable: consider the uncountable set of disjoint open subsets
{((z,1/3),(x,2/3)) : * € w1}. Let B be any basis of the topology, then
each of these disjoint open subset must contain one distinct element from
B, hence B is uncountable.



Definition 1.5. A topological space is called paracompact if any open cover
has a locally finite refinement, i.e. if (X,0) is the topological space, C < O,
JC = X, then there is some C’ < O, such that:

e For every U € C’, there is some V € C such that U € V.
o YO =X.

e For every x € X, there is some U, € O, such that z € U, and {V € C" :
V nU, + ¢} is finite.

The main theorem of this section is the following:

Theorem 1.6. Any open cover of a topological manifold has a countable, locally
finite subcover. In other words, any topological manifold is paracompact.

Lemma 1.7. If X is Hausdorff, then any non-empty compact subset of X is
closed.

Proof. Suppose V € X is compact. For any b€ X\V, any c € V, there are open
sets U, U, in X such that c € U,, b e U and U.nU, = . Hence by compactness
there are finitely many points ¢1,...¢, € V such that V < (J, U,. Let
Wy = ﬂ?=1 Ul,. It is a finite intersection of open sets, hence is open, and by
construction W, € X\V. Now we have X\V' = ¢ y\;y W} hence must be open,
which implies that V' is closed. O

Lemma 1.8. If X is a second countable topological space, C' is an open cover
of X, then C has a countable subcover.

Proof. Let B be a countable basis of the topology of X. For every U € B, if it
is contained in some element V' € C', pick one such element and denote it as Vi
(here we are using the axiom of countable choice). Then {Vy;} is a countable
subset of C' which is also an open cover of X. O

Lemma 1.9. If M is a topological manifold, then there is a countable open
cover C, such that all elements of C' are homeomorphic to open discs in R™, and
their closures are homeomorphic to closed discs.

Proof. For any p € M, let U, be an open set containing p which is homeomorphic
to an open disc, and let 4, : U, — D be this homeomorphism. Let D, be an
open disc centered in ip,(p) which is contained in D, then B, = i, '(D,) is an
open subset of M which is homeomorphic to an open disc, and its closure in U,
is homeomorphic to a closed disc. Because closed discs are compact, by Lemma
the closure of B, in U, are closed in M as well, hence it is the closure of B,
in M. Apply Lemma to the open cover {B, : p € M} we get the required

countable cover of M. O

Lemma 1.10. If M is a topological manifold, then M has a exhaustion by
compact sets, i.e. a sequence of compact subsets Xo € X7 € X5 ... such that
X is contained in the interior of X;,; for all i € N.



Proof. Let C = {Cy,C1,Cs,...Cp,...} be the countable cover of M from
Lemma [1.9] We build the compact sets X; inductively as follows:

1. Let XO = Cio

2. Suppose we already constructed compact set X;. Find finitely many in-
tegers ny,...ny such that X; U C; € Gy, U -+ U Cpy,, and let X;4q =
Ule C’inj Repeat this step then we get the exhaustion by compact sets
XocS X1....

O

Proof of Theorem[I1.6] Let C be a open cover of the topological manifold M,
Xo <€ X1 € X5 ©... a compact exhaustion in Lemma Let Uiq1,...,Uip,
be finitely many elements in C' that cover the compact subset X;, then

{U071, ceey UO,”O’ Ul,l\X07 ey Ulml\XQ, ceey Uj,k\Xj—la e }
is a locally finite refinement of C. O

Remark 1.11. As an exercise, we can further show that any topological man-
ifold is metrizable (the topology is induced by a metric).



2 Smooth Structure, Smooth Functions and Smooth
Maps

Sections 1.2, 1.3 and 2.1 of textbook

Definition 2.1. Let M be a topological manifold. By a coordinate chart,
we mean a homeomorphism from an open subset of M to an open subset of R"™.
An smooth atlas is a set of coordinate charts {i, : U, — V,, € R™}, such that

e J,Us =M.
o If Uy nUp #+ J, then
igoint tia(Ua nUg) —ig(Us N Up)

is a smooth bijection whose inverse is also smooth (we call such maps
diffeomorphisms).

e A coordinate chart f is said to be compatible with a smooth atlas A, if
A v {f} is also a smooth atlas.

The followings follow immediately from the fact that compositions of diffeo-
morphisms are diffeomorphisms:

Remark 2.2. e Let A be a smooth atlas on M, B a set of coordinate charts
that are compatible with A, then A U B is a smooth atlas.

e Every smooth atlas A is contained in a unique maximal (in the sense of
containment) smooth atlas A* = {g : g is a coordinate chart compatible with A}.
Such a maximal smooth atlas is called the smooth structure defined by
A. A topological manifold with a smooth structure is called a smooth
manifold or a differentiable manifold.

e Two smooth atlases A and B define the same smooth structure, iff every
chart in A is compatible with B, iff A U B is a smooth atlas.

Remark 2.3. We can replace “smooth” with other kinds of maps, e.g. C*, C?,
real analytic, or affine, and define concepts like “C'' manifolds”, “C? manifolds”,
“real analytic manifolds” or “affine manifolds”.

Example 2.4. On topological manifold M = R,
Ar={i: M >R,z z}

and
Ay ={i' : M - R,z — 2%}

are two smooth atlases which define different smooth structures.



Example 2.5. e If U is an open subset of R™, the default smooth structure
is the one defined by the atlas {id : U — U < R"}.

o Let M =S" = {(20,...,2,) € R"™ : 3. 27 = 1} be the n dimensional
sphere. Let Uy = S"\(1,0,...,0), Uy = S™\(—1,0,...,0), ip : Uy — R™ be
the polar, or stereographic projection map:

. Z1 Ty

zo(xo,...,xn)7(1_330,...,1_%)
and 7:1:U; — R" be

. x1 Tp

Zl(an"'a‘rn)7(1_‘_];03"'71_’_1‘0)

then the default smooth structure on M is the one defined by atlas {ig, 1}.

e Let RP" be the n-dimensional real projective space, let Uy, k= 0,...,n
be Uy = {[xo,...,xn] : zx F 0}, ix : Uy — R™ be irp([xo,...,2n]) =
(o/Tky -y The1/Th, Tho1/Thy -« -+, Tn/x). The default smooth structure

on RP" is the one defined by {ix}. Similarly one can define the default
smooth structure on the complex projective space CP".

Definition 2.6. 1. A real valued function f on a smooth manifold M is
called smooth, if for any coordinate chart ¢ : U — V in the smooth
structure of M, foi~! is smooth on V. A function taking value in R™ is
called smooth if every component of it is smooth.

2. A map between two smooth manifolds f : M — N is called smooth, if
for every p € M, any coordinate chart i : U — V in the smooth structure
of M such that the domain contains p, any coordinate chart j : U" — V'
in the smooth structure of N such that the domain contains f(p), there
is some neighborhood V,, of i(p) in V such that foi~1(V,) < U’, and
jo foi~!issmooth on V.

3. A bijection between two smooth manifolds which is smooth, and has

smooth inverse, is called a diffeomorphism.

Remark 2.7. It is easy to see that to check a function is smooth or a map is
smooth, one need to only verify it for an atlas of the domain.

Definition 2.8. e If M is a smooth manifold and U € M an open subset,
U can be made into a smooth manifold by restricting the coordinate charts
of M to U, and U is called an open submanifold.

e Let M and N be two smooth manifolds, of dimensions m and n respec-
tively. Let A be a smooth atlas on M, B a smooth atlas on N, both
subsets of the respective smooth structure, then

Ax B={(p,q) — (i(p),j(q) : i€ A, j e B}

is a smooth atlas on M x N. We call M x N with the induced smooth
structure the product manifold.



Definition 2.9. A group G is called a Lie group, if it is also a smooth manifold
and the multiplication and inverse functions are both smooth.

Example 2.10. Consider the general linear group GL(n,R), which we see
as an open subset of R™*™. Linear algebra implies that it is a Lie group.

Another way of constructing smooth manifolds is by “patching” together
locally Euclidean pieces. Namely:

Theorem 2.11. If M is a set, {U,} a set of subsets of M, | J, Uy = M. For
every U,, there is a bijection i, from U, to an open subset of R?, denoted as
Vo If

(1)
2) If U, nUy # &, then iyi; ! :iq(U, 0 Up) — iy (Uy 0 Up) is smooth.
)
)

(
(3) There is a countable subset of {U,} whose union is M.
(

U, nUp + &, then i,(U, n Up) is an open subset of V.

4) If p,q € M, either there is some U, containing both p and ¢, or there are

U, Uy such that pe U,, g€ Uy and U, n U, = .
Then:

1. M is a topological manifold under the topology

O={UC< M :i,(UnU,) is open in V, for all o}

2. {is} is a smooth atlas on M, which makes it a smooth manifold.

Proof. Tt is clear that O is a topology. Condition (1) implies that all U, are
open in this topology, hence {U,} is an open cover of M. Condition (2) implies
that i,04, ! are all homeomorphisms, which together with Condition (1), implies
that for any open subset V < V,,, i;*(V) is open in M, which implies that i,
are all homeomorphisms, i.e. the topology on M is locally Euclidean. This
together with Condition (4) implies that the topology on M is Hausdorff, and
together with the condition (3) implies that the topology is second countable.

This proved part 1. Now Part 2 follows immediately from Condition (2). O



3 Partition of Unity and smooth approximation
of functions

Sections 2.2 and 6.4 of textbook

From now on unless specified otherwise, whenever we talk about a coordi-
nate chart on a smooth manifold we require that it be in the smooth structure.

Definition 3.1. Let X be a topological space, f a real valued function. The
support of f, denoted as supp(f), is defined as {x € X : f(z) F 0}.

Lemma 3.2. Let M be a smooth manifold, : : U — V a coordinate chart. Let
f be a compactly supported smooth function on V, then g : M — R defined as

_ JfGp) peU
g(p) = {0 b U

is smooth on M.

Proof. Let i’ : U' — V' be another coordinate chart in the smooth structure of
M, and qge V'. If i'~1(q) € U, in a neighborhood of q we have goi’~! = foios'~!
hence is smooth. If not, by Lemma there must be a neighborhood of i~(q)
in M which is disjoint from the support of g, hence in a neighborhood of ¢ the

function g o'~ = 0. O

Lemma 3.3. Let U be an open subset of R, V' < U a bounded closed set. Then
there is a compactly supported smooth function g on R™ such that supp(g) € U
and g is positive on V.

Proof. Pick € > 0 small enough such that the closure of the e-neighborhood of
V' is contained in U. Let

J(x) = {6 —2dist(x,V) dist(x,V) < ¢€/2

0 dist(xz,v) = €/2
Then we can let g = ¢’ * ¢, where ¢ is a smooth bump function:

{6—1/(3/4—2,- z?) Y a <€/

¢(1‘17...,$n): 0 Zi$?>€2/4

This is a stronger version of Lemma 1.9

Lemma 3.4. Let M be a smooth manifold, C an open cover. There is a count-
able refinement of C, denoted as D, such that each element in D is homeomorphic
to an open disc, and its closure is homeomorphic to a closed disc and contained
in the domain of some coordinate chart of M.

10



Proof. The proof is almost identical to Lemma Only differences are that
the homeomorphism i, are required to be in the smooth structure of M, and
also the neighbors B, have to be sufficiently small so they are subsets of some
element of C. O

Lemma 3.5. Let X be a topological space, C a locally finite cover of X, A € X
compact. Then there is an open set U € X, such that A € U and U intersects
with only finitely many elements of C.

Proof. For every z € X, let U, be a neighborhood such that there are only
finitely many elements in C that have non-empty intersection with U,. Com-
pactness implies that there are finitely many points z1,...,z, such that X =
Ui, Us,, and we can let U = J;_, Uy,. O

Lemma 3.6. Let X be a Hausdorff topological space, C a locally finite cover of
X such that the closure of all elements of C are compact. Then there is another
locally finite cover C’ and a surjection I : C — C’, such that for any U € C,
U< I(U), and I(U) is compact.

Proof. For any U € C, by Lemma [3.5] there are finitely many elements in C
that have non-empty intersection with U. Let I(U) be their union. It is easy
to show that I(U) n I(U’) £ ¢ iff there are V,W € C such that U n'V % &,
VAW £ @and WU + @F. It is easy to see that given any U there are only
finitely many such U’. Let ¢’ = {I(U) : U € C}. O

We will now prove the main theorem:

Theorem 3.7 (Partition of Unity). Let M be a smooth manifold, C an open
cover. Then:

1. There is a countable, locally finite refinement C’ of C, such that for every
D e (', D is compact, and there is a non-negative, compactly supported
smooth function fp on M with supp(f) < D, and 1 =)}, fp.

2. For every U € C, there is a non-negative smooth function fyy on M whose
support is in U, such that 1 = >, fu. Here the right hand side always
have finitely many non-zero terms.

Proof. Apply Theorem to the cover D from Lemma we get a countable
locally finite refinement denoted as C”. Apply Lemma we get D' = {I(W):
W e C"}. For every W € C”, there is a coordinate chart iy : Uy — Vi such
that W < Uyy. Let J(W) = I(W) n Uy, C' = {J(W)}, then C’ is a countable
locally finite cover by elements whose closures are compact.

Now apply Lemmato iw (W) S iw (J(W)), and apply Lemmato the
resulting smooth functions, we get smooth non negative functions gy which is
positive on W and has compact support contained in J(W). Then we can let

B ZWGC”,J(W):D Jw

o e i

11



To show part 2, for every D € C’, pick some Up € C such that D < Up, and let
fu=") fp
Up=U

As an application, we have the following results:

Lemma 3.8 (Smooth Extension Lemma). Let M be a smooth manifold, A € M
a closed set. Let f be a real valued function on A, such that for every p € A,
there is some open set U, containing p, some real valued function f, which is

smooth on Uy, and fp|a~v, = flanu,. Then there is a smooth function g on M
such that f|A = g|A.

Proof. Consider the open cover of M:
C={Up:pe A} u{M\A}

Apply part 2 of Theorem let g = ZpeA fu, fo- O
Remark 3.9. It is easy to see that the condition of A being closed is necessary.

Remark 3.10. If f satisfies the assumptions of Lemma|3.8] we say f is smooth
on A.

Theorem 3.11 (Smooth Approximation for Functions, first version). Let M
be a smooth manifold, f a continuous, real valued function on M, and let € be
any positive real valued function on M. Then there is a smooth function g on
M such that |f — g| <e.

Proof. Let D be the open cover from Lemma [3.4] apply Theorem part 1 we
get a countable, locally finite refinement D’ and a set of compactly supported
smooth functions {fp : D € D’}. Now every D € D’ lies in some U € D. Let iy
be the corresponding smooth coordinate chart, and ip = iy|p. Then (ffp)oip!
is a continuous function with compact support hence uniformly continuous, and
the support is contained in open set ip (D) € R™.

Because D is compact, by Lemma the cardinality of the set {D’ € D’ :
Dn D' + &} is finite. Let Np € Z~¢ be this cardinality. Because any continuous
function with compact support is uniformly continuous, by convolution with a
smooth bump function (or alternatively, the Stone-Weierstrass theorem), we can
find a smooth function hp with compact support contained in ip(D) such that
|hp — (ffD) oi51| < ﬁ Now let g = > pcp 9p, Where gp = hp oip on D
and is 0 elsewhere. O

Theorem 3.12 (Whitney’s Smooth Approximation for Functions). Let M be
a smooth manifold, f a continuous, real valued function on M, which is smooth
on closed set A. Let € be any positive continuous function on M. Then there is
a smooth function g on M such that |f — g| <€, and f = g on A.

12



Proof. Let h be the smooth extension of f|4 in Lemma U4 be a neigh-
borhood of A on which |f — h| < €/2. Then {Ua, M\A} is an open cover
of M. Apply Theorem let g; be a smooth function on M\A such that
lg1 — f| < €/2. Now apply Theorem [3.7| part 2 to the above-mentioned open
cover, and let g = fuy,h + fan a91- O

13



4 Rank Theorem, Immersion, submersion and
embedding

Chapters 4 and 5 of the textbook

The goal of this section is to study the local normal form of a smooth map
between smooth manifolds.

Definition 4.1. Let f : M — N be a smooth map, pe M. Let i : U — V be
a coordinate chart on M whose domain contains p, j : U’ — N a coordinate
chart on N whose domain contains f(p), then the rank of f at p is rank of the
derivative of j o foi~! at i(p).

Recall that if f is a smooth function from an open set in R™ to R", f =
(f1,-.-, fn), then the derivative D f at a point in the domain is the n x m matrix
where the (i, j)-entry is 0f;/0x;.

Remark 4.2. By chain rule and linear algebra, one can see that the rank is
independent of the choice of the coordinate charts.

Remark 4.3. It is easy to see that the rank of a smooth function is lower
semicontinuous.

The main theorem for this section is:

Theorem 4.4 (Rank Theorem). Let f : M — N be a smooth map, p € M
and the rank of f is r in a neighborhood of p. Let m = dim(M), n = dim(N).
Then there are coordinate charts 7 and j whose domain contains p and f(p)
respectively, such that i(p) and j(f(p)) are the origins of R™ and R", and
jofoi~tis (z1,...,2m)— (1,...,2,,0,...,0).

The proof is based on this fact from analysis:

Theorem 4.5 (Inverse Function Theorem). Let f : D € R™ — R™ be a smooth
map defined on a neighborhood of 0, f(0) = 0 and D f|y is non singular, then
there are neighborhoods U and V both containing 0 such that f|y is a diffeo-
morphism from U to V.

O
There are many ways to prove inverse function theorem, e.g. by finding a
fixed point of a contraction map.

Proof of Theorem[{.J] Without loss of generality we can assume M and N be
open subsets of R™ and R™ containing the origin, f = (f1,..., fn) sends the

origin to origin, and its derivative at origin is [ OT 8 ] Apply Theorem 4.5

to the map i : M — R™ defined as

i(xl,...,a:m) = (fhnwfrvl'r-&-la-”axm)

14



Then 7 is a local diffeomorphism around the origin hence a local coordinate
chart after restriction. Let

Hj(ylv""yr) = fj(iil(yla"'ay?“aoa"'))

By assumption the function f o4i~! is rank 7 in a neighborhood of 0, and f o

i N @1, Tm) = (@1, Ty fra1 007, oL fr 07 Y), by linear algebra, if I,k > r
then
A(fioi ")
anct )y
6xk
Hence

foiT @y, tm) = (Hi(en,ar),o o Hinla, 7))

Now we can let

JWisyn) = Wi Y Yt — Hepr(yn, - 0) ooy — Ho(y1,- -2, )
and finish the proof. O

Remark 4.6. When m > n = r, the first half of the proof above implies the
implicit function theorem below:

Theorem 4.7 (Implicit Function Theorem). Let L, M, N be smooth manifolds,
dim(M) = dim(N), f : Lx M — N is smooth, and on some point (a,b) € Lx M,
the rank of f(a,-) has rank dim(M) at b. Let ¢ = f(a,b). Then, there is a
neighborhood U of a, a neighborhood V of b, a function g : U — V that sends
a to b, such that on U x V, f(x,y) = c iff y = g(z).

O
Definition 4.8. A smooth map f: M — N is called
e An immersion if Df always define an injective linear map.
e A submersion if Df always define a surjective linear map.

e An embedding if it is an immersion and a homeomorphism from M to
f(M) with subspace topology. When f is inclusion map we call M an
embedded submanifold of N.

e A local diffeomorphism if it is both an immersion and a submersion.
Remark 4.9. Open submanifolds are special cases of embedded submanifolds.

Example 4.10. e The map f : R? — R defined as (x,y) — = —y? is a
submersion.

e The map f: R — R? defined as x — (z,2%) is an embedding.

e The unit sphere in R"*! is an embedded submanifold.

15



Example 4.11. Let M = R?, A = {(x,y) : y*> = 2%(z + 1)} is the image of an
immersion (e.g. R — R? defined as t — (¢t —1,#> —t)) but not the image of an
embedding.

Example 4.12. The map t — (2 —1,¢3 —t) from (—1,0) to R? is an injective
immersion but not an embedding.

Theorem 4.13. Let M be a smooth manifold, A € M. The followings are
equivalent:

1. A is an embedded submanifold of dimension r

2. For every p € A, there is a coordinate chart i, : U, — V}, such that
p € Up, ip(p) = 0€V,, and ip(A N U,) is an open subset of the subspace
of RIM(M) spanned by the first r coordinate vectors.

3. For every p € A, there is an open neighborhood U, a smooth submersion
h from U, to R4™M)=" "such that A n U, = h=1(0).

Proof. 1 = 2: Apply rank theorem to the embedding map. Shrink V if
needed.

2 — 3: Use the same U, in 2, let h be the projection to the last dim(M)—r
coordinates.

3 = 2: Apply rank theorem to h.

2 = 1: Because M is a manifold, A with subspace topology is Hausdorff
and second countable. Condition 2 implies that A is locally Euclidean, and
one can further verify that i,|4~u, composed with the projection to the first r
coordinates form a smooth atlas on A. O

Remark 4.14. The condition that the rank is locally constant is needed, for
example, consider map f : R? — R? defined as f(z,y) = (z,yx?), and p = (0,0).

Remark 4.15. The proof above implies that if A € M is an embedded subman-
ifold then the smooth structure on A that makes inclusion map an embedding
is unique.

Example 4.16. {[z¢ : z1 : 23] € CP? : 23z — 2% + 2120 = 0} is an embedded
submanifold of CP?.

Example 4.17. Classical matrix groups like SL, SO, O, U, SU, SP etc are
all embedded submanifolds of the corresponding general linear group.

et 0
0 elnt
but not an embedded submanifold, because 7 is irrational which implies that
the image is not locally connected.

Example 4.18. { [ 1te ]R} is the image of an injective immersion
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5 Manifold with boundary

Section 1.4 of textbook

Definition 5.1. e A topological manifold with boundary of dimension
n is a Hausdorff, second countable space where each point has a neigh-
borhood that is homeomorphic to either a disc or a half disc. Let M be a
topological manifold with boundary, p € M, if any neighborhood of p can
only be homeomorphic to a half disc but not a disc, we call it a bound-
ary point. The set of boundary points of a manifold with boundary M
is denoted as oM.

e A smooth manifold with corner is a topological manifold M with
boundary with a smooth structure, i.e. a smooth atlas such that the
codomains are open subsets of [0,00)" x R™™". If one can make all r <
1, we call M with this smooth structure is a smooth manifold with
boundary.

Example 5.2. The closed ball {(z1,...,2,) € R" : > | 2? < 1} can be made
into a smooth manifold with boundary via the default smooth structure on R™.

Remark 5.3. e Let M be a smooth manifold of dimension m, N € M an
embedded submanifold of dimension m — 1, then one can “cut open” M
along N to get a smooth manifold with boundary.

e Let M be a smooth manifold with boundary, one can glue two copies
of M at the boundary to get a manifold without boundary, the original
boundary set became an embedded submanifold. This is called doubling.
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6 Vector Bundles

Chapters 10 of the textbook

In Section [4 we know that if f : M — N is a smooth map between smooth
manifolds, p € M, i a chart defined on a neighborhood of p and j a chart defined
on a neighborhood of f(p), then the rank of D(j o f oi~!) is independent of
the choice of 7 and j, yet the matrix it self does depend on the choice of these
coordinates. To have a well defined concept of “derivative” on manifolds one
need to introduce the concept of bundles.

Definition 6.1. Let M be a smooth manifold. A (smooth) rank d-real vector
bundle over M (called the base) is a smooth manifold E (called the total
space), a smooth map 7 : E — M, such that there is an open cover C of M,
and

1. For any U € C, there is a diffeomorphism (called a trivialization): jy :
71 (U) — U x R%, such that jy(q) = (7(q),-). (In other words, if m; :
U xR? — U is the projection to the first factor 71 (p,v) = p, then 705y =
7T|7r*1(U)')

2. For any two U,U’ € C, if U n U’ + &, then there is some smooth map
tyu : UnU" — GL(d,R), called transition function, such that for any
pE Un U/v v E Rda jU’(jl}l(pvv)) = (pa tU’,U(p)U)'

For any p € M, the preimage 7w !(p) is called a fiber, denoted as E,. One can
also define complex vector bundles analogously.

Remark 6.2. E, has vector space structure inherited from the trivialization
maps.

Remark 6.3. If the transition function factors through some Lie group homo-
morphism G — GL(d) then we call it a G-bundle. It is clear that a rank d
complex bundle is a rank 2d GL(d,C)-real bundle, where the homomorphism
from GL(d,C) to GL(2d,R) is by identifying C? with R2.

Example 6.4. M xR? with the projection map is a vector bundle, called trivial
bundle. The corresponding ¢y iy can be chosen to be constant function Ig.

Example 6.5. Let M = CP" which we identify with 1-dimensional complex
subspaces of C"*1 let E = {(p,q) € CP" x C"*! : g e p}, 7 : (p,q) — p. (E,p)
is called the tautological line bundle, denoted as O(—1).

Definition 6.6. Let (E,7: E — M), (E', 7’ : E' — M’) be two vector bundles,
a bundle homomorphism is a smooth map g : E — E’, such that there is a
smooth map f : M — M’ such that:

e Tog=fom
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e For every q € E, there is a trivialization j : #71(U,) — U, x R%, j :
T (Uy(g)) = Ug(gy x RY, such that w(q) € U, = M, 7'(g(q)) € Uyy) S
M’, and there is a matrix A € My q(R) such that jogo j=(w(q),v) =
(7'(g9(q)), Av) (in other words, it is linear on the fiber).

If M = M’ and f = idy; we call it a bundle homomorphism over M. By
Theorem one can show that if a bundle homomorphism is bijective then its
inverse is also a bundle homomorphism, and we call it a bundle isomorphism.
Similarly we can define bundle isomorphism over M.

Remark 6.7. By Theorem to specify a real rank d vector bundle over a
smooth manifold M, one needs only the following data:

1. An open cover C of M.

2. For any U,U’ € C, it UnU’ % (J, there is a smooth map tyr .y : UnU" —

GL(d,R)
such that
1. tU,U = Id

2 UHUNU nNU"+ &, thenon UnU nU", tyru(p) = tur v (p)tu,u(p)
(cocycle condition).

If (E, ) is a vector bundle, it is evident that the ¢y in Definition satisfy
the two conditions above. If we have functions ¢y ;7 that satisfy the conditions
above, consider disjoint unions of U x R?, glue them together using tyru (the
two conditions above implies that this gluing is via an equivalence relation),
then apply Theorem to a refinement of the cover C.

Remark 6.8. Two sets of transition functions ¢y 7, t’U,’U gives vector bundles
that are isomorphic over M iff for every U € C, there is a smooth map sy :
U — GL(d,R), such that ty, ;;(p) = sv(p)tor,v(su(p))~", which is called the
“coboundary condition”.
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7 Tangent Bundles, Cotangent Bundles

Section 8 and 11 of textbook

Definition 7.1. Let M be a smooth manifold of dimension n, let A = {i, :
U, — V4 } be a smooth atlas, C be the domains of coordinate charts in A, for
every U € C, there is a unique chart iy : U -V € R”

o If tyy(p) = D(iy o i51)|iU(p), the resulting bundle (via Remark is
called the tangent bundle, denoted as T'(M) or TM.

o Iftyy(p) = (D(iv Oi‘_/l)|iv(p))T, the resulting bundle is called the cotan-
gent bundle, denoted as T*(M) or T* M.

The fibers of TM and T* M on p € M are called tangent space and cotangent
space, denoted as T,(M) (or T,M) and T*p(M) (or T, M), their elements are
called tangent vectors and cotangent vectors respectively.

To understand these bundles geometrically we need coordinate-free ways to
describe their elements:

Theorem 7.2. Let M be a smooth manifold of dimension n, C* (M) is the
vector space of real valued smooth functions. For any p € M, let N, be the
subspace consisting of functions whose rank at p is 0. Then there is a bijection
from the disjoint union of C*(M)/N, for all p € M to T*(M), such that the
map from each C*(M)/N,, to cotangent space T,(M) is linear.

Proof. Recall from Remark [6.7] 7% (M) can be seen as a quotient of the disjoint
union of U x R™ where U € C. Pick some U containing p, define the map as

(p: [f]) = (0 (D(f o i vy ()") €U x R”

By chain rule and the definition of transition function of T*(M) we know that
this definition is independent on the choice of U (hence the map is well defined),
and by linearlity of derivatives, it is linear from C*(M)/N, to T,j(M). By
construction, [f] get sent to 0 iff f € N, which shows that this is injective on each
C*(M). Let P; : R™ — R be Pj(t1,...,t,) = t;, then for any (a1, ...,a,) € R",
consider f = >}, a;(P; oiy) (and then extended to M by Partition of Unity
(Theorem [3.8))), we see that this map is a surjection. O

Definition 7.3. Let M be a smooth manifold of dimension n, p € M. We say
~v: 1 — M is a smooth path starting at p, if I € R is an open set containing 0,
~ is a smooth map and v(0) = p. We say two such paths +, 4" have the same
velocity at 0, if under a coordinate chart iy : U — V such that p € U, we have
D(iy o) = D(iy o4'). By chain law, whether or not two paths starting at p
have the same velocity at p doesn’t depend on the choice of the chart.

Theorem 7.4. Let M be a smooth manifold, there are bijections between:
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e The set of equivalence class of paths starting at p, where two paths are
equivalent iff they have the same velocity.

e (C*(M)/Np)* (linear maps from C*(M)/N, to R) as in Theorem [7.2]
o T, M.

As a consequence, TM can be seen as either disjoint unions of the set of equiva-
lence classes of paths starting at some p € M, or disjoint unions of (C*(M)/N,)*

Proof. Recall from Remark T*(M) can be seen as a quotient of the disjoint
union of U x R™ where U € C. Pick some U containing p, define the two map
to T, (M) as:

(p,[7]) = (p, D(iv ©7)lo) € U x R"

and
(0, f) = (p, (f([Pj oiv])j=1,..n)) €U x R"

Where functions p; are defined in the proof of Theorem[7.2] We can verify these
are well defined bijections as in [7.2 O

Remark 7.5. When there is no ambiguity, let j; : 771 (U) — U x R? be a local
trivialization, p € U, we can write points in the fiber jal(p, v) e 1(p) as v.

Example 7.6. If M is an open submanifold of R™, T'M and T*M are both
isomorphic over M to the trivial bundle.

Example 7.7. Let S? be the unit sphere in R3, S? = {(zg, 21, 72) € R®. It has
two coordinate charts

io : {(mo,xl,xg) € 52 X % 1} — RQ
(20, 21, 22) = (21/(1 — 20), 22/(1 — 0))
Z.l : {(.’Eo,xhirz) € 52 ) :it —].} — R2
(1‘0,1‘1,332) — (1‘1/(1 + .To),xg/(l + 3?0))
Hence
io oy (Y1, y2) = i1 odg (Y1, v2) = (a/(WE +43), v2/ (U7 +43))
The transition function of T'S? is

_ 1 [~y + Y3 20100
tio(ig? , = — ! 2
w(io (1,32)) W2 +v2)2 | —2ny2 Y-V
And the transition function of T*S? is
_ 1 [ -yl +ys —2u1y |
t10 (i (1, _ 1 2
10l (91,92)) W2 +y22 | —2ny2 vi—vs
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Consider point p = (0,1,0) =iy *(1,0) € S, let f(2o,21,22) = To + T2, then

2 2
- yr +y3 —1 2y
foigt(yr,y2) =

0 vi+ys+1 yi+us+1

So in Theorem the cotangent vector [f] under the trivialization associated
to 49 becomes (1,1), while under the trivialization associated to i; should be

-1 0 1] | -1
0 1 1| 1
which is the derivative of

1—yi—y3 2y2
v+ys+1l yi+s+1

foir (yr,y2) =

at (1,0).

Remark 7.8. Let pe M, i: U — V < R" a coordinate chart whose domain
contains p. Then {[ Py oi]} form a basis of T} M, which we denote as {dz}. The
dual basis in TV can be denoted as {0/0x} or {0x}. The path v, corresponding
to 0, in Theorem [7.4]can be picked as, for example, 75, (t) = i~ (i(p) +tey,) where
ey, is the k-th standard basis in R™.

Remark 7.9. We often write z;, as z¥ under Einstein notation which means
summing over any index that appear as both a subscript and a superscript.
Then the & in dz® is a superscript while the & in (7% is a subscript.

Remark 7.10. Theorem and [7.4) imply that:

1. There is a canonical bilinear form on T, M x Ty M defined as (I,
U([f]) (if T, M is seen as the dual of C*/N,), or ([v],[f]) = (for)
T, M is seen as the set of equivalence classes of paths).

[f]) =
'(0) (if
2. A smooth map g : M — N induces a linear map gy : T,M — Ty, N,

and a linear map g* : T;‘(p)N — TyM, such that for every x € T,M,

aeT* N,
9(p)

(z,9%(a)) = (9x(x), a)

(this property is called “adjoint”).

These maps can be defined as

g ([fD) = [f e gl

and (when see TM as equivalence classes of paths)

9+([7]) = [g o]
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3. We can write down g* and g, under coordinate chart as follows: let p € U,
fp)eU, iy : U >V cR™and iy : U — V' € R" be smooth coor-
dinate charts on M and N respectively, then let e; be the j-th standard
basis vector in R™, we have

g*(e;) = g*(dy’) = [P? oipn 0 g] = D(Pj 0y o g gl )

_[oGy ogoig') iy ogoiyy
- P e e

_ i i Ogsiﬁl)j,dx"’
= ox

Under Einstein’s notation, this can be written as

oy
%75 _ k
gy’ = Gerde
where the map iy o go ial is (1, xm) — (Y1, - -3 Yn)-

Now let e; be the j-th standard basis vector of R™, let v; : R — M be
such that v;(0) = p, D(iy ©7;)|o = ej. Then we have

g«(ej) = 9+(05) = gx([;]) = [927] = D(iv’ 2 g o v5)lo

. 1 oy"
= D(iv ogoiy )|iywe = @ak
Where the map iy ogo 2‘51 is(1,...@m) = (Y1, Yn)-

From this we can see that g, can be made into a bundle homomorphism,
and ¢g* is a bundle homomorphism if ¢ is a diffeomorphism.

4. By definition we have (f 0 g)x = fx 0 gx, (fog)* = g* o f*.

Example 7.11. Consider the smooth embedding map ¢ of the unit 2-sphere
into R3, pick p = (0,1,0), local coordinate chart of S? around p being (t!,?) =
(xt/(1 — 2°),22/(1 — 2°)), and local coordinate chart around p in R? being the
identity. Then the map (t',t?) — (20, 21, 2?) is

1o (t1)2 + (t2)2 _ 1 2t1 2t2
(t",t°) — ((t1)2 F ()21 ()2 + (22)2+ 17 ()2 + (22)2 + 1>
So
tx(01) = 0o
L*(az) = 0

Note that (1,0,0) and (0,0, 1) form a basis of the space of tangent vectors
of $? at (0,1,0) in Euclidean geometry.
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8 Sections, Vector fields and 1-forms

Chapters 8, 10, 11

Definition 8.1. Let (E,7) be a smooth vector bundle over M. A smooth
section is a smooth map s : M — E such that 7 o s = idy;. A smooth section
of the tangent bundle is called a vector field, a smooth section of the cotangent
bundle is called a 1-form.

Remark 8.2. Suppose E is a rank n smooth real vector bundle (complex
bundles are similar) over smooth manifold M, and let s be a map such that
7o s = idy. Then under local trivialization ji : 7=1(U) = U x R", we have
s(M) n 7= 3(U) = s(U), and s is a smooth section iff ji(s(U)) is the graph
of some smooth map from U to R™. In particular, under a coordinate chart a
vector field is of the form a’d;, a 1 form is of the form a;dz?, where a; are smooth
real valued functions and the two formula above are in Einstein’s notation.

Remark 8.3. Let a, 8 be smooth sections of the vector bundle E over manifold
M, f asmooth function on M. We can define o+ 8 as (a+8)(p) = a(p) + 5(p),
(fa)(p) = f(p)a(p). Here the addition and scalar multiplication on the right
hand side is via the vector space structure on Ej, which we can obtain via local
trivialization. This makes the set of smooth sections I'(E) a C®(M)-module.

Example 8.4. Let M be a smooth manifold, f a real valued smooth function,
then p — f+ N, is a smooth section of T*M (one can verify this by calculation
in a coordinate chart then apply Remaurk7 which we denoted as df. Similarly,
if f: M xR — M is a smooth map where f(x,0) = z, then p — [f(p,-)] is a
smooth section of TM.

Remark 8.5. A rank d vector bundle is isomorphic over M to a trivial bundle
iff it has d sections that are linearly independent at every point.

Example 8.6. By rotation number one can see that there are no vector field
on 2-sphere S? which is everywhere non-zero. Hence T'S? is non-trivial. Use the
smooth atlas in Example consider the path ¢ — (0, cos(t),sin(t)). Because
the transition function between the two trivializations takes value in an angle
reversing map, suppose X is a section on 7'S? which is not zero on the path,
its turning angle along the path in two trivializations must sum up to be a
constant. Furthermore, because the path bound a disc, if we want X to have no
zero on the whole S? then both turning angles must be 0. By doing calculation
on any specific vector field we see that this sum can not be 0, a contradiction.

Example 8.7. By considering the sections g — [g-v(¢)] (see Example [8.4)) one
can see that any Lie group has trivial tangent bundle. Hence T'S® = T(SU(2))
is trivial.

Definition 8.8. We say a smooth vector bundle E is orientable if it has
a family of trivialization such that the determinant of the value of transition
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function is always positive. We say M is orientable iff 7'M is an orientable vector
bundle over M. In other words, iff it has a smooth atlas where the derivative
of transition functions i’ o i~! all have positive determinants.

Example 8.9. By Partition of Unity Theorem[3.7} any rank 1 orientable smooth
line bundle has a non-zero section hence is trivial. Another way to show this is
by coboundary condition, see Practice Problems 3 in the Appendix A5.

Remark 8.10. Let X be a smooth vector field, a be a 1-form, then p —
(X(p), a(p)) is a real valued smooth function on M.

Remark 8.11. If g : M — N is a smooth map, « a smooth section of T*N,
then p — g*(a(g(p))) is a smooth section of T* M, denoted as g*(«).
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9 Operations on Set of Bundles, Riemannian
metrics

Chapters 10, 12

Let X, Y and Z be three sets, f: X — Z, g : Y — Z two maps, the fiber
product is a subset of X x Y defined by X xzY = {(z,y) e X xY : f(z) =
9(y)}, with maps p; : X xzY — X defined by (z,y) — 2z and ps : X xzY - Y
defined by (z,y) — y. Then f o p; = g o py. Furthermore, for any set W, any
maps a : W — X and b: W — Y such that foa = gob, there is a unique
h:W — X xzY such that a = py o h, b = py o h. Actually, h can be written
as w — (a(w),b(w)).

Definition 9.1. Let f : M — N be a smooth map, (F,7) a smooth vector
bundle on N. Then the pullback of E, denoted as f*E, has total space the
fiber product between M and E: {(x,q) € M x E : f(x) = ©(q)}, and the
projection is (z,q) — x.

Remark 9.2. It is easy to show that f*E is a smooth vector bundle on M:
f*E is an embedded submanifold of M x E (which we can verify via coordinate
charts), hence is a smooth manifold. If E has a local trivialization associated
with an open cover C of N, where the transition functions are {¢vy}, then f*E
has a local trivialization associated with cover {f~1(U) : U € C}, with transition
functions t}fl(v)ffl(U) =tyyof.

Remark 9.3. If f: M — N, g: N — L are smooth, E a smooth vector bundle
on L, then by Definition[0.1} (9o f)*E = f*(¢*E).

Example 9.4. e If f is an injection, E' a bundle over N, 7 : E — N, then
f*E =a"YM). If E=TN we denote this f*(E) as TysN.

e If f is constant function sending every point to ¢ € N, then f*(FE) is trivial
bundle N x E..

Recall that if V and W are vector spaces over a field k (for our course, k = R
or C), then

e The dual of V is the vector space consisting of linear transformations
from V to k, with addition and scalar multiplication defined as (af)(z) =
a(f(x), (f + f)(x) = f(z) + f/(x). This space is denoted as V*.

— There is a canonical bilinear pairing V* x V' — k defined as (f,z) =
f ().

— If ¢ : V. — V' is a linear map, there is an induced linear map ¥* :
V* — V* defined as ¢¥*(f) = f o 4.

— (o))" =™ 0¥, (idy)* = idyx.

— If 4 is an isomorphism so is 1)*.
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e The

direct sum (or direct product) VAW is the vector space consisting

of elements in the Cartesian product V' x W, such that addition and scalar
multiplication are defined as

e The

(v,w) + (v, w') = (v+ v, w+w),r(v,w) = (rv,rw)
There are canonical isomorphisms between V@ W and W @V, and
between (VA V)@V and Ve (V' @ V).

If f:V >V, g: W — W are linear maps, then there is a linear
map f@g: VAW — V'@W’ defined as (f@g)(v,w) = (f(v), g(w)).

idy @idw =idvew, (fo f)®(goyg) = (f@g) o (f @7
If both f and g are isomorphisms then so is f @ g.

Tensor Product VW (or V ®; W) is defined as

VW = spang(V x W) /spani({a(v, w) — (av,w), a(v,w) — (v, aw),

The

Remark
VROEk~k®QV V.

(v+v,w) — (v,w) — (V,w), (v,w+w') — (v,w) — (v,w'):a €k,
v,v" € V,w,w' € W})

element represented by (v,w) in V ® W is denoted as v ® w.

There is a bilinear map ¢ : V x W — V @ W defined as (v,w) —

v ® w. For any bilinear map ¢ : V x W — L, there is a linear map
q : VW — L such that ¢ = ¢/ 0.

If {a;} is a basis of V, {b;} a basis of W, then a basis of V@ W is
{a; @b;}.

There are canonical isomorphisms between V ® W and W ® V', and
between (VR V') QV" and V@ (V' @ V).

If f:V >V, g: W — W are linear maps, then there is a linear
map f®g: VW — V'QW’ defined as (f®g)(v@w) = f(v)®g(w).

idy ®idw =idvew, (fo [)®(gog) =(f®g)o (' ®7).
If both f and g are isomorphisms then so is f ® g.
: V' — W is a linear map, ker(f) = {veV: f(v) = 0}.

VW, ff:V >W,g:V >V go: W — W satisfies
g2 o f = f"ogi, then gi|er(s) sends ker(f) to ker(f’).

If g1 and go are both isomorphisms, gi|xer(s) : ker(f) — ker(f’) is
also an isomorphism.

95. VW +W) =2 VW+VeW, Vel =0aV =V,

Example 9.6. The space of linear transformations from V to W, denoted as
Homy(V,W), is isomorphic to V* @ W.
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Definition 9.7. e Let F be a smooth real vector bundle of rank d over
manifold M, the dual bundle E* = v ep(E,)*, 7 sends elements of
(E;)* to x, with smooth structure derived from local trivializations defined
as follows: let ju : 7~ 1(U) — U x R? be a local trivialization of E, then
we define

G THU) = Uper (Be)* — U x (RY)* = U x R?
q— (7'(g), (v = (i ' (7'(g),))))

e Let (E,m), (E',7") be two smooth real vector bundles of rank d and d’
over manifold M, the direct sum bundle E® E’ = Lizep (B, ®EL), 7"
sends elements of E, @ E!, to x, with smooth structure derived from local
trivializations defined as follows: let ji : 7~ 1(U) — U x R? be a local
trivialization of E, ji; : #'~5(U) — U x R? be a local trivialization of E’,
p2 U xRY - RY and pfy : U x RY — R? are both projections to the
second component, then we can define

g U) = | | (B @ EL) - U x (REORY) = U x R
zeU

q— (7"(q), (p2(Gv (), Po (v (2))))

e Let (E,m), (E',7") be two smooth real vector bundles of rank d and d’
over manifold M, the tensor product bundle EQE’' = | |, _,,(E,®FE)),
7" sends elements of E, ® E/ to x, with smooth structure derived from
local trivializations defined as follows: let ji : 71 (U) — U x R? be a
local trivialization of E, ji; : 7'~1(U) — U x R be a local trivialization
of B/, py : U xR% - R% and p}, : U x RY — RY are both projections to
the second component, then we can define

i U) = | |(B. ®EL) > U x (RI@RY) = U x R
zelU

1®q — (7" (q® ), p2(jv(a0)) ® Py (ju(q)))

e Let (E,7), (E',7") be two smooth real vector bundles of rank d and d’
over manifold M, let f : E — E’ be a vector bundle homomorphism
over M such that the rank of f at every point x € M is constant r,
(rank(f|g, : Ex — E.) = r for all x € M), then the smooth embedded
submanifold {v € FE : f(e) = 0} is a smooth vector bundle, called the
kernel of f, denote as ker(f).

Remark 9.8. The above concepts can be defined for complex vector bundles
as well.

Remark 9.9. If F and E’ both have trivilizations associated to the same open
cover C, so are E*, E@® E’ and E® E’. This is NOT true for kernel bundles
which can be seen in the example below. If the transition functions of E and
E’ are {tyy} and {t},;}, the corresponding transition functions for E*, E@ E’

and E® E' are ty};, tyy @ty and tyy @ ), respectively.
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Example 9.10. Consider the map f : R® — R defined as f(xq,72,23) =
2?2 + 23 + 2%, the unit 2-sphere S? is the embedded submanifold f~1(1). Let i
be the inclusion map from S? to R3, then f induces a bundle homomorphism
from i* (TR3) to (foi)*(TR') (which are both trivial) whose kernel is isomorphic
to T'S? (which us not trivial by Example Furthermore, TS? @ (52 x R) =~
S¥ x R3.

Remark 9.11. If E, E’ are bundles over M, g : E — E’ a homomorphism
of constant rank, f : N — M a smooth map, then f*(E*) = (f*(E))*,
[*(BOE") = *(E)®f*(E'), f*(EQF') = f*(E)®f* (E). Let f*(g) be the ho-
momorphism from f*(E) to f*(E’) induced by g, then ker(f*(g)) = f*(ker(g)).

Recall that a quadratic form on a vector space V is a symmetric bilinear
form, hence can be written as an element in ¢ € V* ® V* such that under map
s:a®b— b® a we have s(q) = q. Hence:

Definition 9.12. Let E be a smooth real vector bundle over manifold M,
s: E*®@E* — E*® E* be defined as s(u®v) = v®u. Then, a smooth section
of ker(id — s) is called a quadratic form on S. It is called positive definite iff
its value at all x € M is positive definite. A positive definite quadratic form on
TM is called a Riemannian metric.

Remark 9.13. Riemannian metric gives one a way to measure the length of
tangent vectors as well as angles between tangent vectors, which allow us to do
geometry as we had done in Euclidean space.

Theorem 9.14. Any smooth vector bundle has a positive definite quadratic
form. In particular, any smooth manifold has a Riemannian metric.

Proof. Let jiy : m=1(U) — U x R™ be a set of local trivializations of E, e1,...e,
the standard basis of R". For any p € U, {j;;'(p,e;)} is a basis of E,, let {a'}
be the dual basis in E, then ¢y = > o' ® o' is a smooth positive quadratic
form on E|y. Let C be an open cover such that for every U € C there is a local
trivialization of F denoted as jy, {#y} a set of partition of unity functions, then

we can set ¢ = > ;.0 YUqu- O

Remark 9.15. If f : E — FE’ is an injective bundle homomorphism, we call
E a subbundle of E’. A positive definite quadratic form gives a constant
rank bundle map p : E/ — E via orthogonal projection, ker(p) is called the
orthogonal complement bundle or the quotient bundle or the cokernel
bundle, denoted as E+ or E'/E or coker(f).

Remark 9.16. The orthogonal complements defined by different quadratic
forms are isomorphic.

Example 9.17. If M is an embedded submanifold of M’, there is a bundle
homomorphism iy : TM — Ty (M), the orthogonal complement of TM in
Tr (M) is called the normal bundle.

Definition 9.18. Let M be a smooth manifold.
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e A (p,q) tensor bundle is the bundle TM®? @ T* M®? when p > 0 or
q > 0, and the trivial bundle M x R when p = ¢ = 0.

e A smooth section of the (p, ¢) tensor bundle is called a (p, q) tensor field.

e When p > 0, ¢ > 0, there is a bundle homomorphism from the (p, ¢) tensor
bundle to (p — 1,¢ — 1) tensor bundle, defined by

(01® - ®ap) (D' ®- - ®b7) = (ap,b7) (1 ®- - ®ap-1)D(b' ®- - -®bI ™)
Where (a,, b?) is the bilinear pairing between tangent and cotangent spaces.
Remark 9.19. Under local coordinate chart we have:

A (p, q) tensor field can be written as (under Einstein’s notation) allt 0, ®

J1---Jq
...@5% Rdri* ® -+ ® dria.

i1y
J1.+da
(summing over all k, according to Ein-

The contraction map sends a tensor field with coefficient functions a

. . i1enip_1k
to one with coefficients a;'""77'
J1---Jgq—1

stein’s notation).

e Riemannian metric is a (0, 2) tensor field.

A (1,1) tensor field is a bundle homomorphism from TM to TM. Its
contraction is the trace function.

30



10 Flows, Lie derivatives, Foliations

Chapters 8, 9 and 19 of textbook

Picard’s theorem of the existence and uniqueness of solutions of ODE implies
that:

Theorem 10.1. Let M be a smooth manifold, X a vector field on M. There
is an open neighborhood U = ., {x} x I, of M x {0} in M x R, where I, are
open intervals containing x, and a map ¥ : U — M such that:

e U(z,0)=2x

e For any (x,r) € U, the value of X at U(x,r) is represented by the path
t— U(z,r +t). We can write this as £ W¥(z,t)i—, = X (¥(z,7)).

e U is “maximum” in the following sense: if there is an interval J containing
0, a smooth map v : J — M such that £v(t)l;—s = X(v(s)), then J <
L0y and (t) = ¥((0),¢).

This ¥ is called the flow corresponding to vector field X.

The proof is by the following Picard’s Theorem for the existence of solutions
of ODEs:

Theorem 10.2 (Picard’s Theorem). Let U be an open set in R*, V < U
a compact subset, f : U x R — R"™ smooth, then there exists some ¢ > 0
such that there is a map Y : V x (—e,€¢) — U, such that Y (p,0) = p, and

LY (p,t) = f(Y(p,t),t).

Picard’s Theorem can be proved by contraction principal or Euler’s Method.
To show Theorem [10.1] from Picard’s Theorem, cover the manifold with smooth
coordinate charts, such that the domain of each chart contains an open subset
which is sent to the interior of a closed disc under coordinate chart, and these
open subsets form an open cover of M. Now apply Picard’s Theorem to the
codomain of these coordinate charts, “glue” the resulting solutions together by
uniqueness of solutions of ODEs.

Remark 10.3. If X is compactly supported, the flow ¥ is defined on X xR. The
argument outlined above shows that there is some € > 0 such that M x (—¢,€) <
U. Making use of the fact that ¥(z,t + t') = U(¥(x,t),t’'), we can extend the
domain of ¥ to X x R.

Example 10.4. M =R, if X = 0/0,, then ¥(z,t) =z +t. If X = 220, then

0 rz=0
V(@ t) = {—1/(15 “1z) x40

Example 10.5. M = T'S', where S is the unit circle {(cos6,sin ) € R%}. Let
i be a coordinate chart on S! defined as (cos ,sin #) — 6, then it induces a coor-
dinate chart on M which we denote as I, and I(v) = (0,¢) iff v € T(Cosgﬁing)sl,
v = cOg.
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e The vector field X on M defined as X (I~'(6,c)) = I;'(cdp) has flow
(I 1(0,c),t) = 00| (cos(0+ct),sin(0+ct))- Physically this is traveling around
the unit circle with constant speed.

e The vector field Y defined as X (I7'(0, c)) = I *(c0p —cos(0)d..) represents
the dynamics of the simple pendulum.

Remark 10.6. The vector field X in Example can also be written down
under other coordinate charts. Suppose j is another local coordinate chart on
S1, sending a point p in some U < S! to s € R. Let J be a coordinate chart on
Ty (S') defined as J(v) = (s,d) iff v € Tj-1(5)S', v = dd;. Then by Definition

-1
X(J7Hs,d)) = X(I (1057 Y)s, (i0571)]sd))

S YR 0s od
= LMoY ludn) = T (G0 7Y ud(550 + 5500))
=T (107 |sd((Goi™) i1 s + (1057 |s(G 071" ig-1(s))d0a))
(057 )"]s
=d0s — ———57d°0
(o) "
Now consider a Riemannian metric on S* defined by g = d0®d6, then under
coordinate chart .J it becomes g = (i0j~1)2ds®ds. Let gss = (i0j~1)"2, then

(o™ h)"ls a2 = 188(93(9)

— = d?
(ioj=1)s 2 gss

This idea can be extended to higher dimension to get the geodesic flow: let
M be a smooth manifold, j a local coordinate chart sending points in U € M
to (s',...,5%) € V < R% then a coordinate chart of TM can be defined as
J:TyM — VxR Jw) = (st,...s4p",...pd)ifve Ti1(sr,.. sty M, v = p'dgi.
Let g be a Riemannian metric defined as g = g;;ds’ds?, [¢"] = [gij]7". Now we
can define vector field on TM:

X(J7YNst st pt L p?) = J*_l(piasi —g"( o

os! 2 0sJ

This definition is independent of the choice of j (which will be left as a practice
problem), hence the vector field is well defined.

A key concept that one can define using flows is the Lie derivative:

Definition 10.7. Let X be a smooth vector field, ® the flow defined by X.
By the theory of ODE we know that for small ¢, ®; : - — ®(-,¢) is locally a
diffeomorphism. We can now define the Lie derivative which is a map from
the set of smooth (p, ¢) tensor fields to smooth (p, ¢) tensor fields, as follows:

1. If p = ¢ = 0, i.e. the tensor field is a smooth function f, Lx(f) is defined
as

(Ex(7)(&) = 5 F(®i2)lmo
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2. If X, are vector fields, o/ are 1-forms, then

(Lx(X1® - ®X,Q0a'®---®a?))(x)
-2 (@(@)J&(@(@) @@(@o*a%@t(z))) o
Here (®;);! can also be written as (U_,),.

Intuitively, Lie derivative described how fast a tensor field changes with the
family of diffeomorphisms ®;.

Example 10.8. M =R, X = z0,, f(z) = 23, then ®;(z) = e'z, (Lx(f))(z) =
323,

Remark 10.9. fe C®(M), then Lx f can also be denoted as X f.

Theorem 10.10. X, Y are smooth vector fields, f a smooth function, a, b
tensors.

L. Lx(fa) = Lx(f)a+ fLx(a)
2. Lx(a®b) = Lx(a) ®b+ a@Lx(b)
3. Lx commutes with contraction of tensors.

4. Ly vf=LxLyf—LyLxf

Proof. The proof of 1 and 2 are similar to the proof of product rule for deriva-
tives. The proof of 3 is similar to the proof of linearlity of derivatives. For 4,
without loss of generality assume M = R", X = X%0;, Y =Y?0;, LxY = Z'0;.
Let F be the R™"-valued function (X?!,...,X™), G be the R"-valued function
(Y',...,Y"™), H be the R"-valued function (Z!,...,2Z").

Now let @ and ¥ be the flows defined by X and Y, ®;(-) = ®(-,¢), Us(-) =
U(-,t), then
®,(c) = c+tF(c) + O(t?)

Ty (c) = ¢+ tG(c) + O(t?)
Now by definition,

(®0)aY (2(e) = Lo 0,,(0)
= %(((c +tF(c) + O(t?)) + sG(c + tF(c) + O(t?)) + O(s?))

—tF((c+tF(c) + O(t?)) + sG(c + tF(c) + O(t*)) + O(s%)) + O(t*))]s=o

= Gle+ tF(e) + () — - F((e+ LR () + O(12)) + G +tF(e) + O(1)))am
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So

_4d
Cdt

Hence the i-th entry of H is

H L Gle+ tF()leo — LF(c + 5G(0))] o

(@—)xY (@e(0))) =0 = - ds

Z'=X70;Y' - YIio; X'
LxY = X9(0;,Y")0; — Y'(0;X7)0;
and 4 follows. O

Remark 10.11. Because a vector field X can be recovered from X f for all
smooth function f, the theorem [I0.10] above provided a way to calculate Lie
derivatives of any tensor field explicitly.

Remark 10.12. LxY can also be denoted as [ X, Y] and called the Lie Bracket.
It is easy to see from Theorem [10.10| part 4 that

[X, Y] = —[Y, X]
and there is the Jacobi identity
[Xa [Yv Z]] + [Ya [Za X]] + [Zv [Xv Y]] =0

Furthermore, from Theorem [10.10| part 4 and Green’s theorem, we have the
following:

Theorem 10.13. [X,Y] = 0 iff the flows defined by X and Y commutes.

O
Combine Theorem [10.13| and inverse function theorem, we have:

Theorem 10.14. If X, ..., X}, are vector fields such that [X;, X;] = 0, and are
linearly independent everywhere, then for every p € M there is a local coordinate
chart around p such that the flow of X; under the chart is ((z!,...,2"),t) —
(b, .. 2kt 2.

Proof. Without loss of generality assume that M is a open submanifold of R”.
Consider the smooth function ® : U € M xR*¥ — M, such that M x (0,...,0) <
U, ®(x,t1,...,t) = ®f ... ®F (), where ®* is the flow defined by X; and
oF(z) = ®F(x,t). Pick n — k indices i1,...49,— such that the iy,...,i,_g-th
standand basis together with (X7),...,(X7) € R¥ are linearly independent, and
apply inverse function theorem to the map

(tl,...,tk,sl,...,sn_k)»—»‘I)((xl,...,xil -|—$1,...,$i’C +Sk,...),t1,...,tk)

We see by construction that the inverse of the map above is a local coordinate
chart satisfying our requirement. O
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Remark 10.15. By uniqueness of the solution of ODEs, the local coordinate
charts defined in Theorem has the property that if ¢ : U — V and 4 :
U’ — V' be two coordinate charts, p € U n U’, there is a neighborhood W of p
such that on ¢(W), if

ioi a2 = (.. )

Then (y**1 ... y™) is a smooth function of (z**1 ... z™). If coordinate charts

with this property form an atlas, we call this atlas a foliation of dimension
k.

Example 10.16. Flows are foliations of dimension 1.

Remark 10.17. If A is a foliation of dimension k& on smooth manifold M,
for every i : U — V in A, we can decompose U with immersed submanifolds
i {2t xR R ) st 2R e R (2t 2R R ) e V).
The definition of foliation means that if two such immersed submanifolds in-
tersects, their union is also an immersed submanifold. Patch the intersecting
immersed submanifolds together we can get a collection of path connected im-
mersed submanifolds whose union is M, these submanifolds are called leaves
of foliation A.

One can weaken the aassumption of Theorem |10.14] while still getting a
foliation:

Theorem 10.18 (Frobenious Theorem). Let D < T'M be a rank k subbun-
dle (we call this a distribution, note that this is unrelated to the concept of
distribution in analysis). Then the followings are equivalent:

1. For any two smooth sections X and Y of D, [X,Y] is a smooth section of
D.

2. There is a foliation on M of dimension k, such that at every p e M, let N,
be the leaf passing through p, i, : N, — M be the embedding map, then
(i)« (TpNp) = D,. This is called the foliation defined by distribution
D.

Proof. 2 implies 1 is obvious. To show 1 implies 2, we need to build the foliation
from distribution D.

We will show, by induction on k, that around every point p € M, there are
smooth sections X7,..., X of D, such that [X;, X;] = 0 and Xq,..., X}, are
linearly independent on this neighborhood, then we can apply Theorem
to them to get the coordinate charts that can be used to define this foliation.
The case when k = 1 is trivial because [X, X| = 0 for any vector field X.

If £ > 1, we first pick some section X1, ..., Xy of D, which are linearly inde-

pendent on a neighborhood of p. Apply Theorem [10.14]to {X7}, we get a local
coordinate chart under which the flow defined by X is ®}(z!,...,2") = (2! +
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t,a?,...,a"), ie. X1 =0p. Then for j =2,... k, X; = X]’@-. Without loss of
generality we can assume that Xj = 0 for all j, then [X1, X;] = >, , a* Xy
By solving an ODE (with 2! being the variable), we can find non-zero smooth
functions ¢z, ..., ¢ such that [Xy,¢;X;] = 0. Write down [+, -] using local co-
ordinates we see that a—glchj’: = 0 for all j,% > 1, in other words, the formula
of ¢; X; under the local coordinate chart does not contain z'. Now apply the
inductive hypothesis on c3 Xs, ..., cp Xk. O

Example 10.19. If f : M — N is a smooth submersion, £ = {v € TM :
f«(v) = 0}, then E is a distribution that satisfies Frobenious theorem and hence
defines a foliation. The leaves of this foliation are the connected components of
the level sets. This is because from Theorem we know that if f4 (X (p)) =
X'(f(p)), ®, @, are the flows defined by X and X', then ®}(f(p)) = f(P:(p)).
Hence, from Definition we know that if f.(Y(p)) =Y'(f(p)), then

F (X, Y(p) = X" Y'](f ()

Example 10.20. If G is a Lie group, let g be the space of vector fields on G
which is invariant under left multiplication, then g is isomorphic to T.G as a
vector space and also closed under [-,-]. (g,[,-]) is called the Lie Algebra of
Lie group G.

As an example, suppose G = GL(2,R),

X(g)—jtg[(l)

d 1 0
Y(g):dtg[t 1 ]|t0

Then under local coordinate charts

- 1+at x?
it (2t 2?23, 1) - [ 3

T 1+t
, we have
X =0+aY0 + 230,
Y = 1'261 + (1 + 1‘4)(’)3
So
d 1+t 0
[X,Y] = (1420 + 2305 — 2205 — (1 + 2*)04 = P [ 0 1—t¢ ] lt=0
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11 Sard’s theorem and Whitney’s embedding

Chapter 6 of textbook

Let f: M — N be a smooth map. We say y € N is a regular value, if ei-
ther f~1(y) is empty, or for every z € f~1(y), the map f is locally a submersion
around x. Other points of IV are called critical values.

We say a subset A € M is a null set, if for any coordinate chart i : U — V,
i(A n U) has Lebesgue measure 0. It is easy to see that to check a set is a
null set one only need to check the coordinate charts of any compatible smooth
atlas.

Theorem 11.1 (Sard’s Theorem). Let f : M — N be a smooth map, then the
set of critical values is a null set in .

The intuition is that if y € N is a critical value, the preimage of a tiny
neighborhood of y must be much larger in M. Hence the measure of the set of
critical values can not be too large.

Example 11.2. If dim(M) < dim(N), every point in f(M) is a critical value.
Hence Sard’s theorem implies that f(M) is a null set of N, in particular f(M) +
N. As a consequence, even though there are continuous space filling curves,
there can not be any smooth curve that fills higher dimensional spaces.

Theorem 11.3. If M is an embedded submanifold of RY | dim(M) = n, then
M is diffeomorphic to an embedded submanifold of R27+1,

Proof. If N < 2n+1 this is trivial. So assume N > 2n+1, then the unit sphere S
in RY is a smooth manifold of dimension N —1. Consider f : M x M\{(z,z) : x €
M} — S defined as (z,y) — (x —y)/distg~ (x,y), where distgn is the Euclidean
distance, then by Example the image of f is a null set in S. Consider
g : TM\{image of zero section} — S as g(v) = N(i4x(v)), where i : M — RY
is the embedding and N(a%0,:) = W(al, ...,a™) € S, then by Example
the image of ¢ is also a null set in S. Hence there is some v € S which is
not in the image of either f or g. Composing with orthogonal projection on v+
we get an embedding of M into RV—1. O

Theorem 11.4 (Whitney’s Weak Embedding Theorem). Any smooth manifold
of dimension n has an embedding into R?"*1.

Proof. If the manifold M can be covered by the domains of finitely many coor-
dinate charts iy, : Uy — Vi, let {fi} be the partition of unity function for the
finite open cover {U}, then M can be embedded into some RY as

z— (fi(@)ir(x), f1(2), f2(2)i2(2), fo(),...)
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Here fi(z)igx(z) : M — R™ is defined as the zero vector if = ¢ U,. Now apply
Theorem we see that M can be embedded into R??*1.

In general, apply Lemma [I.8] find a countable cover of the manifold N by
domains of coordinate charts, denote these domains as Uy, Us,.... Let f; be
the partition of unity function for the open cover {Uy}, let F' = 3 nf,, then
F > 1 and F~1(I) for any finite interval I can be covered by finitely many Uy.
For all positive integers 4, let I; = (i — 1,7 + 1), then {I;} is an open cover of
(0, 0) hence has a set of partition of unity functions g;. Because F~1(I;) can be
covered by finitely many coordinate charts, let ¢; be an embedding of F~1(I;)
into R?"*!, Now there is an embedding of M into R***3 defined as

o () g(F@)eix), Y gi(F(2))i(x), F(x))

¢ odd,F(z)el; i even,F(x)€el;

Here summation is the zero vector if the index set is empty. Now apply Theorem
[[1.3] again one gets the conclusion. O

With “Whitney trick” one can strengthen the embedding theorem to em-
bedding into R?".

Combining Theorem and Theorem [3:12] we get:

Theorem 11.5 (Whitney’s Smooth Approximation for Maps). Let M, N be
smooth manifolds, f a continuous map from M to N, which is smooth on closed
set A. Then there is a smooth map ¢ : M — N such that there is a continuous
map H : M x [0,1] - N, H(z,0) = f(x), H(z,1) = g(z), H(z,t) = f(z) if
x € A. (This is called f is homotopic to g relative to A).

Proof. Let i : N — R¥ be an embedding which exist due to Theorem m
Consider the rank K bundle over N i*(TRX). For any z € N, the fiber of this
bundle is T,RX = {a?0;}. We identify this with R¥ by a’0; — (a',...,a%), and
give it a positive definite quadratic form via the Euclidean dot product. TN
is a rank dim(V)-subbundle by the map i, let N be the orthogonal comple-
ment of TN in i*(TRX). Now consider a smooth map F : N' — RX sending
a'o; € T(xl, o xBORE to (2 4 al,. .. 2% 4+ a). Tt is easy to see that F is
full rank on the image of the zero section, hence when restricted to an open
neighborhood Vj of this zero section, F'is a diffeomophism from V; to a neigh-
borhood U of N.

Now apply Theorem to f, we get a smooth map ¢, : M — U such that
g1 = f on A, and the interval in R¥ linking f to g; is completely contained in
U.Let g=moF togy,and H(x,t) =mo F~ 1o ((1—1t)f(x)+tg(x)). Here w
is the projection map for the bundle . O

Remark 11.6. The neighborhood U is called the tubular neighborhood of
the embedding from N to R*. Tubular neighborhoods can be constructed for
any embedding between smooth manifolds, by replacing the map F with the
geodesic flow (see Remark [10.6]).
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Remark 11.7. If H : M x [0,1] — N is smooth (here M x [0,1] is seen
as a manifold with boundary (Definition 7 fM—>Nandg: M - N
satisfy f(z) = H(x,0), g(x) = H(x,1), then we say f and g are smoothly
homotopic. Theorem [I1.5] implies that, between two smooth manifolds,

e Any continuous map is homotopic to a smooth map.
e Any two smooth maps that are homotopic must be smoothly homotopic.

e Any two smooth maps that are homotopic to the same continuous map
must be smoothly homotopic.

Proof of Theorem [11.1. Because countable union of null sets are null sets, and
manifolds are second countable, we can without loss of generality assume both
M and N be open submanifolds of R™ and R" respectively.

Now induction on m: if m = 0 this is obvious. Now assume m > 0. Let C},
be the set of points in M where D*f = 0, C be the set of points in M where
rank(f) < n.

e f(C\C})is anull set: do coordinate change one can assume without loss of
generality that f(z!,... 2™) = (z',...). Now apply inductive hypothesis
and Fubini.

o f(Ci\Cky1) is null: by rank theorem C;\Cy1 is contained in some sub-
manifold of lower dimension. Now use inductive hypothesis.

e When k is sufficiently large, f(Cy) is null: decompose M into tiny squares,
and see that under the map f a square of diameter r will be sent into a
square of diameter o(r*).

O
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12 Exterior Derivatives, Integration and Stokes
theorem

Chapters 14-16 in textbook

Reasons we care about exterior products and differential forms:

e We want to do definite integrals on manifolds.

e We want to study when a 1-form can be written as df.

Let V be a n dimensional vector space over R or C. ¢ € S; a permutation
(bijection from {1,...,k} to {1,...,k}). Recall that the parity of o is sgn(o) =
[Tie; 29=2U) & induces a self map on V®* defined as

i<j lo(i)—o ()]
a1 @@ ar = y1) @ - .. Ao (k)
e The k-th exterior product of V is the subspace of V®* such that o(z) =
sgn(o)z for all o € Sg, denoted as A"V
. k n
o dim(A"V) = (})

e There is a surjection from V®* to /\k V, defined as

We denote A(a1 ®as---®ag) as a; A ag -+ A ag.

e A linear map f from V to W induces a linear map A" f: A"V > AF W
ay Aag - Aag — flar) A flag) A -+ A flag). If f is isomorphism so is
AFf. Tt is easy to see that Ao @k f= /\k f oA, where ®k f is the map
from ®" V to ®" W induced by f.

o If fis a self map on V, A" f = det(f).

Similar to tensors of vector bundles, if F is a vector bundle one can also
define /\k E as a vector bundle. We can do so via the idea of kernel bundles as
in Definition[9.7] or by specifying the transition functions as in Remark [0.9 and
Remark Note that if k& > rank(E) this would be a rank 0 vector bundle.

Definition 12.1. A smooth section « of /\Ic T*M is called a smooth k-form,
denoted as a € QF(M).

Remark 12.2. If f : M — N is a smooth map, the pull backs of smooth 1-
forms induces pullbacks of smooth k-forms. Let a € QF(N), then (f*(a))(z) =

(A" f*)(a(f(@)).
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Definition 12.3. Let M be a smooth manifold and E a vector bundle over
M. We say F is orientable if it has a set of trivializations where the transition
function have positive determinant. A maximal set of such local trivializations is
called an orientation (compare this with the definition of smooth structure in
Remark [?]). We say M is orientable iff T M is orientable, and an orientation
on M is an orientation on T'M.

Theorem 12.4. The followings are equivalent:
1. TM is orientable.
2. T*M is orientable.

3. There is an atlas of M such that D(i’ 0i~1) always have positive determi-
nant.

Proof. 1 and 2 are equivalent because TM and T™* M are isomorphic due to the
existence of Riemannian metric (Theorem . If 3 is true, use the trivializa-
tion of T'M in Definition then 1 follows. If 1 is true, pick an orientation
O for TM, and a smooth atlas with path connected domains. For each chart
in the atlas, if the corresponding trivialization is not in O, replace it with its
composition with (z!,22%,...) — (=22, 2%,...). O

Definition 12.5. Let M be a smooth manifold with an orientation and di-
mension n, let C' be a countable open cover by domains of an atlas which is
compatible with this orientation, such that the closure of each element of C' is
homeomorphic to a closed disc (their existence is due to Lemma [3.4). Let {fu}
be a partition of unity corresponding to C, then f; all have compact support.
Now let o be a smooth m form, we define the integral of a on M as follows:

For each U € C, each chart i : U — V in the aforementioned atlas, let
(i H*(fva) = gudz® A -+ A dz™, then

o= gudxtdx?® ... dz"
Jur=Z Jo

UeC
Here the integral is the usual Riemann or Lebesgue integral.

Remark 12.6. Because the transition function of A™T*U between trivializa-
tions defined in Deﬁnition is tyuy(p) = A™(D(iy o i‘jl)|iv(p))T = det(D(iy o
i;1)|iv(p)), and standard argument from analysis, we know that if o is com-
pactly supported, or if a is non negative function times dz' A --- A dz”
(hence all the integrals involved are non negative), {, «a defined above is inde-

pent of the choice of coordinate charts and {fi/}.

Example 12.7. Let M be a smooth manifold with a Riemannian metric g,
with an atlas A correspond to a given orientation O, we can define the volume

form as
wglu = i*((det([9(3s, 0j)l1<ijo<n)) 2dat A - A da™)
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for every i : U - V < R™ in A. SM w is called the volume of M.

In the case of unit sphere S? in R3, let i be the embedding map, then
g = i*(dr! ® da! + da? ® dx? + d2® ® dx?®) is a Riemannian metric on S?,
and the volume corresponding to this metric is 4w. To show that, consider
coordinate chart

i {(z,y,2)a? + oy + 22 =12+ 1} — {(u,v) e R?}

As the complement of the domain of 7 is just a single point hence has volume
can be calculated via this coordinate chart.

2u 2v 2
1
= 1-—
? (’LL,U) (u2+v2+1’u2+v2—|—1’ u2—|—v2—|—1)
P (2(v2—u2+1) —4uv N du ¥
N 20241 T 240241 Y w2402 4177
—4uw 2(u? —v? + 1) 4v
av: az—f— Oy + az
w2 +v2+1 wH2+1 Y w2402 +1
So
g(ﬁu,av) = g(avvau) =0
4
auyau = avaa'u = 7T 5, 95 . 1\2
9( ) = 9( ) (u? +v2 + 1)2
So

J J 4dudv 4
w, = — =47
g2 g R2 (u2 + 02 + 1)2

Now we consider the question when is a 1-form of the form df: let o be
a 1-form, X, Y two vector fields. We denote the pairing between X and «, or
the contraction of X ® o, as a(X). Then, suppose o = df, we have a(X) = X f,
hence
X(aY)) - Y(a(X)) —o([X,Y]) =0

The left hand side is clearly bilinear and anti symmetric with respect to X and
Y. Furthermore, if X or Y equals 0 at a point then the left hand side equals 0
at that point: for example, if X (z) = 0, then at z, we have

YV(a(X)) = Ly ((X)) = (Lyo)(X) + o([Y, X]) = o[V, X])
Hence at point z,
X(a(Y)) =Y(a(X)) = 0—a([Y,X]) - ([X,Y]) = 0

As a consequence, the value of the left hand side at x € M is an antisymmet-
ric bilinear form on T, M, i.e. an element in /\2 T*M. Now we have a linear
map d : QY (M) — Q*(M), defined as

(da)(X,Y) = Xa(Y) - Ya(X) - a([X,Y])

Generalizing this to k forms, we have the following definition:
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Definition 12.8. The exterior derivative d : Q¥(M) — QFT1(M) is defined
as

(da) (X1, ooy Xpt1) = Z (=)' X(( Xy, X1, X1y, Xkg1)
i=1. k41

+ Z (_1)i+ja(|:Xi7Xj]aX17"'7Xi717X7§+17"'7Xj713Xj+17"'7Xk+1)
1<i<j<k+1

Remark 12.9. We can consider a smooth function f as a O-form. Then ac-
cording to Definition df (X) = X f, which is consistent with the notation
in Example

Remark 12.10. Under local coordinate charts, we have, from Definition [12.8
d(ai, i, dz™ A - A dz'™) = (0jai,. 4, )da? A dz™ Ao A da't
As a consequence, dod = 0.

The idea of k-forms and integration can be extended to manifold with bound-
ary (Deﬁnition. Stoke’s Theorem for manifold is a generalization of the fun-
damental theorem of calculus, and relates the integral of a form on the boundary
of a manifold with the integral of the form on the manifold itself.

Example 12.11. Consider the manifold with boundary M = [0,00) x R*~1,

a k-form can be written as w = a1dz® A dx3 A -+ A dz" + agdz! A dzd A
o Adz™ 4 - 4 apdxt A -+ A dz™ . Suppose w has compact support. Then
dw = drardxt Adx® A - Ada™ + Oragdx® A dx' A ... By fundamental theorem

of calculus and Fubuni’s theorem,

0 k>1
J Opapdrtds? ... da" = =
M S]R"*l al(o,tl,tg,...,tn_l)dtldtg...dtn_l k=1

So if we pick the orientation on dM as the one defined by coordinate chart
3

(0,22%,...,2") — (—2?,2°,...2"), then §, dw = §,,, w.

Definition 12.12. Let M be a smooth manifold with boundary of dimension
n with an orientation, A a smooth atlas consistent with the orientation of M.
For each element 7 of A that sends an open set U € M to an open set of
[0,00) x R*™1, it induces a map j from U n dM to R"~! defined as follows:
If i(p) = (0,22,...,2"), then j(p) = (—x2,2%,...,2"). The maps j form a
smooth atlas of M which gives it an orientation, and we call this the induced
orientation on the boundary oM.

Theorem 12.13 (Stoke’s Theorem). Let M be a smooth manifold with bound-
ary of dimension n and dM the set of boundary points with the induced orienta-
tion. Let w be a compactly supported smooth n — 1-form, then SM dw = S(?M w.

Proof. Cover M with domains of smooth coordinate charts that are compatible
with the orientation on M, use partition of unity to split w, then apply Example

211 above. O
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Example 12.14. Let M be the closed unit disc in R?, w = ydz. Then

27 27
J Mydx = J sin(t)d cos(t) = —f sin?(t)dt = —m

0 0

d(ydzx) = J dy A dx = —J drdy = —m
M M M
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13 De Rham Theory

Let M be a smooth manifold of dimension n, recall from the previous section,
we let QF(M) be the R-vector space of smooth k forms on M. Here Q°(M) =
C®(M). Let d* : QF(M) — QFt1(M) be the exterior derivative. Then by

Remark [12.10] d¥t! o dF = 0.

Definition 13.1. The k-th De Rham cohomology of a smooth manifold M is
defined as H*(M) = ker(d*)/im(d*~1). When k = 0, im(d*~1) is assumed to
be the zero map 0 — Q°(M).

Remark 13.2. It is easy to see that H°(M) =~ R™ where m is the number of
connected components of M, and H*(M) = 0 if k > dim(M).

Remark 13.3. If M, N are smooth manifolds, f : M — N induces maps
f* - HY(N) — H*(M) by f*([a]) = [f*(a)]-

Theorem 13.4 (Homotopy invariance). Let M, N be two smooth manifolds, f,
g two smooth maps from M to N. If there is a smooth map H : M x [0,1] > N
such that H(x,0) = f(x), H(z,1) = g(z) (i.e. f and g are smoothly homotopic,
see Remark [11.7)), then f* : H¥(N) — H*(M) and g* : H*(N) — H*(M) are
identical.

Proof. To show this we only need to show that there is a chain homotopy,
which are linear maps h : QF(N) — QF~1(M) such that as maps from QF(N)
to QF (M),

g*—f*=doh+hod
Any coordinate chart i : U — V < R™ induces a diffeomorphism from U x
[0,1] € M x [0,1] to V x [0,1] < R™ x [0, 1], sending (p,t) to (i(p),t). For any
w e QF(N), under this diffeomorphism we can write H*(w) locally as

@jy. G At A dTIY A A da? T 4+ bll,,_lkdxll A A dat®

Now let

O

Remark 13.5. By Remark[I1.7] any continuous map between two smooth man-
ifolds induces a map on H¥, which we define as the one induced by the smooth
map homotopic to it. Such a definition is well defined, and two continuous maps
that are homotopic would induce the same map on H.

Example 13.6. If U is an open submanifold of R™ that satisfies z € U =
tr € U for all ¢ € [0,1] (called star shaped), then the identity map and

the constant map sending every point to 0 are smoothly homotopic. Hence
R k=0

HMU) =
0 k>0
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We will illustrate the process for calculating De Rham cohomology via the
example below:

Example 13.7. Suppose smooth manifold M has an open cover C = {U,},
each U, is diffeomorphic to a star shaped region. For each pair (o, 8), Uy nUg
is either empty or diffeomorphic to a star shaped region, in which case we de-
note it as Uyg. Similarly for the intersections of three elements in C. Let
I; = {a} be the set of indices of the cover C, Iy = {(a,8) € I : Uy n U + &},
Iy = {(a,8,7) €I} : Uy nUg N U, + o},

Now pick any [w] € HY(M), where o € QY (M), dw = 0.

By Example for each U, we can find a smooth function f, € C*(U,)
Q%U,) such that df,|v, = w|u,,-

For each U,g = Uy nUg which is non-empty, f, — fg on Uyg is a constant,
because on U, /3,
d(fs—fa) =w—w=0

Now (v, B) — fs — fa)|vu., gives an element ay = R,
Define d} : Rt — R as (d}(a))(a, B) = a(B) — a(a), and dj : RI2 — RIs

s (dy(a) (e, B,7) = a(B,v) — ala, ) + a(a, B). By calculation, we see
that:

— The ay above must be in ker(d).

— If we pick a different w as the representative of a given De Rham
cohomology class, and pick different f,, the resulting a; can only
differ by an element of im(d}).

As a consequence, there is a linear map H!(M) — ker(dy)/im(d}).

By partition of unity (see Practice Problem 2 of Week 5) we can show this
is a bijection.

The above argument can be seen very explicitly in for example S! or S2.
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14

Review and Further Topics

Key Concepts and Results:

Definition of manifolds and smooth manifolds

Partition of Unity

Rank Theorem, Embedding, Immersion and Submersion.
Vector Bundles, Tangent Bundles, Cotangent Bundles

Flows, Foliations and Lie Derivatives, Geodesic Flow and Tubular Neigh-
borhood

Exterior Derivatives and Stokes Theorem, De Rham Theory

Sard’s Theorem and Whitney’s Embedding

Further Topics

Riemannian Geometry, Complex Geometry, Sympletic Geometry, Kahler
Geometry, etc.

PDE on manifolds, Geometric Analysis.

Lie Groups.

Characteristic Classes, K-theory, non abelian geometry
Connections on Principal Bundles, Gauge Theory.

Application of manifolds in physics, statistics, economics, etc.
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A Practice Problems

A.1 Week 1

1. Show that any topological manifold is metrizable (the topology can be in-
duced by a metric).

Answer: Let C = {U;} be a countable cover of this manifold M, such that
each U; is homeomorphic to an open disc, and U; is homeomorphic to a closed
disc. Glue M\U; into one point we get a sphere, hence we have homeomorphisms
from M /(M\U;) to the unit sphere S™. Denote 7; : M — S™ be the composition
between this homeomorphism with the quotient map. Let d,, be the Euclidean
metric on S™, then we can write down a metric on M as

d(p,q) = Z 27d;(mi(p), mi(q))

2. Let M = (R? x R?)/ ~, where (a,b) ~ (¢,d) iffa =c, b=dora=d,
b = ¢, gives R? x R? the product topology and M the quotient topology. Show
that M is a topological manifold.

Answer: Identify R? with C, then the map C? — C? defined as (z,2) —
(2 + 2/, 22") gives a homeomorphism from M to C2.
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A.2 Week 2

1. Let A, B be two disjoint non-empty compact sets in R™. Show that there is
a smooth function f on R™, such that 0 < f < 1, and f|a =0, f|z = 1. (Hint:
you can first get a continuous function then smoothen it via convolution.)

Answer: One can follow the hint, or use partition of unity on the cover
{R™ A, R™\B}.

2. Let M be the set of 2 dimensional sub spaces of the 4 dimensional real
vector space R*. Pick any 2-dimensional subspace H, identify it with R? via
a linear bijection ¢z : H — R?, and two vectors u and v in R*\ H which are
linearly independent, and u, v, H together span R*. Let

Uuvm ={W € M : there exist aw,bw € HW n (u+ H) = {u+ aw},

W (v+ H)={v+bw}}

Let
buw i i Unwg — R x R2 = R?

and be defined as
buo,H(W) = (o (aw), ou(bw))

such that
Wnu+H)={ut+aw},Wn v+ H)={v+bw}

Show that M has a smooth manifold structure such that {i, ., g} is a smooth
atlas. This smooth manifold M is called the Grassmannian Grq(R?)

Answer: By linear algebra these maps are bijections, and satisfy all four
conditions in Theorem m For Condition (2), these functions are rational
hence smooth; for condition (3), let u, v be two of the four standard basis vectors
and H be spanned by the remaining two basis vectors, then these finitely many
Uy, u covers M. For condition (4), given any two 2-dimensional subspaces L,
L', let H be a 2-dimensional subspace which intersects with both L and L’ only
at the origin, and let {u,v} be a basis of H*.
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A.3 Week 3

1. Let M be the 3-dimensional unit sphere in R*. Write down an open cover
C of M by domains of coordinate charts. Write down a compactly supported,
non negative smooth function fy for each U € C, such that the support of fi
is contained in U, and the sum of fy equals 1.

Answer: {M\{(1,0,0,0)}, M\{(—1,0,0,0)}}. The two fy are go/(g9o0 + g1)
and ¢1/(go + g1), such that

eM@=1/2) g < 1/2
T1,Ta,x3,Xq4) =
gol@r, w2, @3, 24) = 3 o v >1/2

91(3317562,3?3’554) = 90(—961,552,3?37964)

2. Let A be a non-empty subset of a smooth manifold M. Show that if every
smooth function on A can be extended to a smooth function on M, then A is
closed.

Answer: Let d be the dimension of M. Suppose A is not closed, then there is
some p € M such that p ¢ A and p € A. Pick a coordinate chart i : U — V < R¢
such that p € U and i(p) = 0, let fy be a smooth function on M such that
fulp) = 1 and supp(fu) € U, let g : V — R be defined as g(z1,...,zq4) =

0 p¢U

fulp)g(i(p)) peU
is smooth on M\{p}, then h|4 is a smooth function on A which can not be

extended to M.

1/(z + -+ + 23), and consider function h(p) = { which
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A.4 Week 4

Find all possible real numbers a and b such that {(z,y) € R? : y? = z(2?+ax+b)}
is an embedded submanifold of R2.

Answer: If a®> —4b 4 0 and b # 0, the function F(z,y) = y* — x(2? + azx + b)
has constant rank in a neighborhood of the preimage of 0, hence the set is an
embedded submanifold. Now we consider the other cases:

1. If b= 0:

(a)
(b)
()

If a < 0, the set has a single isolated point and hence can not be a
topological manifold.

If @ > 0, the set can not be a topological manifold because it is
connected and with (0,0) removed it has 3 connected components.

If a = 0, the set is A = {(z,y) : ¥* = #3}. Suppose it is an embedded
submanifold. Because it has empty interior and is also connected,
it must have dimension 1. Hence, then there is a coordinate chart ¢
defined on a neighborhood of (0,0) and taking value in some open
set V < R. Without loss of generality assume that ¢(0,0) = 0. The
composition of the projections to x and y directions and ¢! are now
two smooth functions on V', which we denote as z(s) and y(s). Hence
z(0) = y(0) = 0, and embeddedness implies that either z'(0) # 0 or
y'(0) # 0. Now consider the equation y(s)?> = x(s)?, take second
order derivatives on both sides we get 3/(0) = 0, take third order
derivatives on both sides we get 2/(0) = 0, a contradiction.

2. If b + 0:

(a)
(b)

If a > 0, use the same argument as in 1(a).

If a < 0, use the same argument as in 1(b).
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A.5 Week 5

1. Let (E,m) be a smooth real vector bundle over smooth manifold B, C an
open cover of B such that we can define local trivialization and transition maps
for bundle (E,w). Suppose C’ is a refinement of C, show that one can define
local trivialization and transition functions for (E, ) using C’ as well.

Answer: For every U € C’, pick an open set I(U) € C, such that U < I(U).
Now let ju = jrw)l=—1 ), tvrv = trwyrw)lv~u. 1t is easy to verify that these
satisfies all the requirements for local trivialization and transition functions.

2. Let M be a smooth manifold, C be an open cover. For any U,V € C
that have non empty intersection, define a smooth real-valued function fy;; on
U n V. Assume further that for fyy = 0, and for any U, V,W € C with non-
empty intersection, fyyy = fwv + fvuy. Show that for any U € C there is a real
valued smooth function py defined on U such that on UnV % &, fyu = gv—gu-

Answer: Let {¢yy : U € C} be a set of partion of unity functions. By multi-
plying with ¥y and the linearlity of this question, we can assume without loss
of generality that the support of all fy ¢ lie in some compact subset of a single
Up € C. Now we define gy as: gy =0if U =Uyor UnUy; if UnUy + &,
gu = fuu, on U n Uy, and gy = 0 elsewhere.

3. A real vector bundle is called orientable if one can pick a trivialization
such that the value of the transition function all have positive determinant.
Prove that rank 1 smooth real vector bundle over any smooth manifold must
be isomorphic to a trivial bundle.

Answer: By assumption, the transition functions are tyy = [eéU] for some
real valued function fyy, and problem 2 is saying that {¢ty¢} and {t{; = [1]}
satisfy the coboundary condition hence represent isomorphic vector bundles. In
other words, by a change of trivialization we can make all transition functions
taking constant value in the 1 x 1 identity matrix. This implies that the vector
bundle in question is trivial.
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A.6 Week 6

1. Show that SU(2) = {A € M,5(C) : AAT = I, det(A) = 1} is a subgroup
of GL(2,C) and an embedded submanifold, hence is a Lie group. Show further
that it is diffeomorphic to S3.

Answer: SU(2) is a level set of function F : GL(2,C) — R®, where

F([ ch Z ]) = (a@ + bb, c¢ + dd, Re(ac + bd), Imag(ac + bd), arg(ad — bc))

The bijection from SU(2) to S® can be defined as follows: any A € SU(2)
can be sent to A (1) € C2. We identify C? with R* then the image of this
map is the unit 3 sphere.

2. Let M, N be two smooth manifolds, (F,n) a smooth vector bundle on
M, (E’,7') a smooth vector bundle on N. Suppose g : M — N is a smooth
embedding, and there is a smooth vector bundle homomorphism h : E — E’
which is 7/ o h = g o m. Show that:

e If  is an injection then it is a smooth embedding.

e Find an A that has different ranks at different points on E.

Answer:

e By looking at local coordinate charts induced by trivialization we see
that h is smooth, hence because it is an injection, it must also be an
immersion. So we only need to show that open sets are sent to open sets
of the image under subspace topology. Let m, n be the dimensions of
M and N respectively, r, ' be thr ranks of E, E’ respectively. Suppose
A < FE is open, ¢ € A, p = w(q). By rank theorem, we can find open
sets U and U’ in M and N that contains p and g(p) respectively, such
that U € A, g(U) = U’ n g(M), and U"\g(U) is open. Shrink U and U’
if necessary, we can further assume that there is a local trivialization of
EonU: jy: 7 YU) - UnR", and a local trivialization of E’ on U’:
jur U - U’ x R", and that there is some open set B < R”, be B,
such that jy(q) = (p,b), and j&l(U x B) € A. Let ps be thr projection
from U’ x R" to the second component RT/, then, because of the continuity
of jy OhOjal, if U and U’ are sufficiently small, there is a ' —r dimensional
subspace L such that for all z € U, p2(ju/ (h(E))) @ L = R™. Then the
set

{ju(g(z),v) :xeUwv=>b+lbe pQ(jU/(h(jgl({x}xB)))),l e Lyur Y (U"\g(U))

is open in F’, contains h(q), and its intersection with h(FE) is contained in
A, which finishes the proof.

93



e Let M =N=R, E=F, h(z,v) = (x,2v).

3. Show that the tangent bundle of circle S* is trivial.

Answer: Let S' be the unit circle in R2. The projections zg : (a,b) — a
and z7 : (a,b) — b are smooth functions on R? hence must be smooth on S!.
We can define a bundle isomorphism from T'S' to the trivial bundle S' x R
as follows: for each (a,b) € S < R?, the function bz — az; is smooth on St.
For any tangent vector of S' which is in the tangent space of (a,b) € S, we
represent it as a smooth path v, then it will be sent to ((a,b), ((bzo —ax1)o7y)’).
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A. 7T Week 7

1. Let M be a smooth manifold, U an open subset, pe U, f: U — R a smooth
function. Show that there is a compactly supported smooth function on M
which is identical to f on an open subset V < U such that pe V.

Answer: By partition of unity we can find a compactly supported function g
whose value is between 0 and 1 and takes 1 in a neighborhood of p, such that the
support of g is contained in U. Now one can take this new smooth function as fg.

2. Consider the smooth map from R? to R? defined as f : (z1,22) —
(w1, 22,sin(z1) + €*2). Let p = (0,0), find fi(T,(R?)).

Answer: It is spanned by 0; + 03 and 0 + 03.

3. Let M be a smooth manifold, p € M, v a smooth path starting from p,
f asmooth function on M. Recall that the pairing T),M x T M — R can be
written as ([v],[f]) — (f ©7)'|o. Now see f as a smooth map from M to R,
pick the coordinate chart on R as identity then we have standard basis {01} of
TR, Show that fi([v]) = C0; where C is the pairing between [v] € T),M
and [f] e Ty M.

Answer: By definition, f.([v]) = [f o] = (f o) [t=001 = ([7], [f]) 1
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A.8 Week 8
1. Show that any smooth 1-form on R is of the form df.

Answer: If the 1-form is g(x)dz, let f = { g(t)dt.
2. Write down a smooth 1-form on R? which is not of the form df.

Answer: df = fydx + fydy, and fyy = fy from multivariable calculus, hence
for example dx + xdy can not be of the form df.

3. Write down a smooth 1-form on S? which is non-zero everywhere.

Answer: Let S = {(zo,x1,22,23) : 2 + 2% + 23 + 23 = 1}. Let z; :
S$3 — R be smooth functions defined as (z¢,x1, T2, 23) > x;. Then the 1 form
r1drg — xodr1 + x3dr9 — T2dx3 is NON-ZETO everywhere.

4. Let f and g be smooth functions on manifold M, show that d(fg) =
fdg + gdf.

Answer: For any p € M, consider function fg— f(p)g — g(p)f, one can show
by calculation that its rank at p is 0. Hence d(fg)|, = f(p)dg|p + 9(p)df|p.
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A.9 Week 9

1. Show that if M is a compact manifold, there are finitely many smooth vector
fields (smooth sections of TM) X;,...Xn such that any smooth vector field
can be written as Zfil a; X; where a; are smooth real valued functions on M.

Answer: Let C be a finite open cover of M by domains of coordinate charts,
for every U € C, let iy be the coordinate chart and fy be the partition of unity
function. This finite set of smooth vector fields can be chosen as {Xy;;}, where

Xui(p) =0if p¢ U and Xpi(p) = fu(p)(ip)«(0:).

2. If f: M — N is a smooth map between smooth manifolds, E, E’ two
vector bundles on N. Show that f*(E ® E’) is isomorphic to f*(E) ® f*(E").

Answer: The vector bundle isomorphism can be defined as (z,v ® v') —
(z,v) ® (z,v"). Alternatively, one can check that both sides have the same triv-
ialization and transition functions.

3. Let M be a smooth manifold, E, E’ two vector bundleson M, f : E — E’
a surjective bundle homomorphism over E. Show that E is isomorphic to

E' @ ker(f).

Answer: Pick a positive definite quadratic form on E, we can show that
E = ker(f) @ ker(f)*. flkex(p)+ is an isomorphism from ker(f)* to E'.

4. Write down a Riemannian metric on CP?.

Answer: The standard metric is the Fubini-Study metric. We can also write
down one via partition of unity as follows: let U; = {[z0 : 21 : 2z2] : z; % 0},
coordinate charts p; : U; — C2 = {z1 + y1vV/—1,22 + y2/—1}, then we can let
g= pr(F(x% + 22 +y? +yd)dr, @ dry + dae @ dry + dyy ® dy1 + dys @ dys)

i

6—1/(100—152) t <10

Here F(t) = .
0 t>=10
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A.10 Week 10

1. Write down a smooth manufold M, a smooth map F : M x R — M, such
that F'(x,0) = z, and F' is not the flow of any vector field.

Answer: For example, M = R, F(x,t) = z + t>. Basically as long as
F(F(z,a),b) + F(x,a +b) then F can not be a flow.

2. Let M, N be smooth manifolds, f : M — N a smooth map, X a
vector field on M with flow ®, Y a vector field on N with flow ¥. If for
any p € M, f.(X(p)) = Y(f(p)), then for any (p,t) in the domain of @,

f(@(p,1)) = ¥(f(p),1).

Answer: Consider the path v(t) = f(®(p,t)), then by definition of fi,
i1 = (X (@p,1) = Y(f(2(p,1) = Y(v (#)). and 4(0) = f(p), so the

equation follows from uniqueness of solutions of ODEs.

3. Let M be a smooth manifold with Riemannian metric g. ¢ defined a
symmetric bilinear form on T, M for any x € M, denoted as g(-,-).

1. Show that there is a vector bundle isomorphism C : T* M — T M defined
as g(C(a),v) = (v,a) forany a € T*M, v e T, M, and (v, a) is the standard
bilinear pairing T, M x T#M — R.

2. Leti: U -V < R" = {(z},...,2™)} be any smooth coordinate chart
on M, then it induces a coordinate chart on T#M defined as I : T M —
V x R",
pidxl € T?il(sl,...,s”)M — (517 R sn7p17 e 7pn)

Let H be a smooth function on T* M, show that there is a vector field X
on T*M such that

X(sl,...,s",pl,...,pn)= Zasz P

under coordinate chart I, and where h = Ho 171,

Remark: When H(a) = 3g(C(a),C(a)), the vector flow X defines the co-
geodesic flow, and Cy(X) is the vector field that defines the geodesic flow.

Answer:

1. Under a local coordinate chart, if g = g;;dz* ® da?, let [g¥/] be the inverse
of the positive definite symmetric matrix [g;;], then C(dz?) = g% 0;.

2. Under a change of variable i’ oi=1 : (s!,...,s") = (t!,...,t"), the point
(st,..., 8", p1,...,pn) will be sent to (t%,...,t" q1,...,qn), where

0sd
qi = Dj ﬁ
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By chain law, we have

OHol' 0h ds’  Oh 0p,

Oqi 089 0g; ' Op; Oqi
LY
0 = G 09 g O

OHol'  0h ds’  0Oh dp;
oti  0si ot Odp; ot

J

a%‘ = ai s

_ Yy U5 5d
0q; On; 0q; os

Apply ¢; = p; ‘gij and g—f]z = 0 one gets that X is invariant under this
coordinate change.
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A.11 Week 11

1. Write down a smooth manifold and a smooth foliation on it, such that the
leaves of this foliation can not be written as connected components of preimages
of points under a submersion.

Answer: Let M be an open submanfold of R? defined as M = {(z,y) : 1 <
2?2 + 32 < 9}. Now consider a foliation defined by charts of the form i(ab) *
{(rcos(9),rsin(d)) : 1 <r <3,a<0<b} > (a,b) x R where 0 < b—a < 2m,

such that i~!(u,v) = ((2 + M) cos(u), (2 + 222n(€0) ) gin(u)).

s

2. Let f and g be two smooth functions, X = 07 + fos and Y = gds + 03
be two vector fields in R®. Let D be a rank 2 subbundle of TR3, such that
D,, = spanr(X(p),Y (p)). Find the condition on f and g that makes D a dis-
tribution associated with a dimension 2 foliation on R3. When f and g satisfy
this condition, can you write down all smooth functions u on R? such that
O1u + fOou = goou + d3u = 07

Answer: By Frobenious theorem, D is integrable iff [X,Y] = aX + bY for
some functions a and b, by computation this is equivalent to

019 + fo2g9 = goaof + 0O3f

The function u must be constant on the leaves of this foliation. To find such
leaves, we can solve initial value problems:

/U(07 y’ O) = y’ afl?/u(x’ y’ O) = f(‘r7 v('r? y’ 0)7 0)7 az/l}(x’ y7 Z) = g(x5 ,U(‘/L" y7 Z)’ Z)

and then leaves of the foliation are of the form L, = {(z,v(z,y,2),2) 1z, 2 €
R}, and u satisfies u(x, v(x,y, 2), z) = ¢(y) where ¢ is any real valued function.
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A.12 Week 12

1. Write down a smooth function from R to R that has uncountably many
critical values.

Answer: Let C' be a Cantor set, ¥ be a non negative bump function whose
support is contained in (0, 1). Now define a function g on R as follows: for every
finite open interval (a,b) which is a connected component of the compliment of
C, let gl(ap) be eV~ ((x — a)/(b — a)), and g = 0 everywhere else. One
can check that g is a smooth function and z — Sg g(t)dt satisfies the requirement.

2. Let M be a smooth manifold, FF a smooth real vector bundle over M.
Show that there is an embedding i : M — RY for some N, such that F is
isomorphic to a subbundle of i*(TRY).

Answer: Apply Whitney’s embedding theorem to F, we get an embedding
j:E —- RN, Now let 2 : M — E be the zero section, then joz: M — RY
is an embedding and E is isomorphic to Tj(.(ar))j(£) which is a subbundle of
Tj(Z(M))RN. Pull back by j o z we finished the proof.
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A.13 Week 13

Let S? be the unit sphere in 3-dimensional Euclidean space R = {(z,v, 2) :
x,y,2 € R}. Let i be the inclusion map, a = zdy A dz a 2-form on R3.

1. Write down i*(«) using local coordinate charts on S2.

2. Calculate {g,

Answer:
1. Under coordinate chart i(z,y, 2) = (%, %), if welet u = %, v = £,
then
B 2u
w4241
B 2v
YT
2
S
: u? +0v2 +1
2 4 2w — v +1
_ u ( uv du— (u® —v* + )dv)
u? +v2+ 1 (u? 4+ 02 +1)2 (u? +v2 +1)2
4u 4qu
d d
A((u2+v2+1)2 v (u? + 02 +1)2 v)
16u?du A dv

(U 42+ 1)4
One can do similar calculation on other coordinate charts.

2. Because the coordinate chart described above cover S? except for one

point,
J2 J 16u2dudv 4
= =T
S R2 U2 + ’U2 + 1) 3

Here the orientation of S? is assumed to be compatible with the coordinate
chart 1.
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B Homework

B.1 HW1

Let S = {(zo,z1,72) € R® : 2+ 2% +23 = 1} be the unit sphere in 3-dimensional
Euclidean space. Let M = {(p,q) : d(p,q) = 1}, where d is the Euclidean

distance.

(1) Show that M is an embedded submanifold of S x S of dimension 3.

(2) Write down a smooth atlas on M with finitely many coordinate charts.

Answer:

1. The function d is of constant rank 1 on S x S\{(p,q) : p = qor p = —q}
which is an open set that contains M.

2. We can cover M with four coordinate charts ig, i1, i2, i3, defined on Uy,
U1, Us, Us, as follows:

Uo = {((z0, 71, 72), (Yo, Y1,92)) € M : 20 + £1,(yo — 70/2,y1 —
21/2,y2 — 22/2) is not in the direction of(1,0,0) x (g, z1,22)}

Ur = {((zo, z1,22), (Yo, y1,y2)) € M : 2o + 1, (yo — x0/2,y1 —
21/2,y2 — x2/2) is not in the direction of(—1,0,0) x (zg, 1, 22)}
Uz = {((zo, 1, 22), (o, y1,y2)) € M : x1 + 1, (yo — 20/2,y1 —
21/2,y2 — x2/2) is not in the direction of(0, 1,0) x (g, z1,22)}

Us = {((z0,x1,22), (o, y1,42)) € M : w1 + 1, (yo — 20/2,y1 —
21/2,y2 — x2/2) is not in the direction of(0, —1,0) % (zg, 1, x2)}

io((zo0, 1, 22), (Yo, y1,92)) = (21/(1 — x0),22/(1 — 20),0), where
6 € (0,27) is the angle between (yo — x0/2,y1 — ©1/2,y2 — 22/2)
and (1,0,0) x (xg,z1,x2).

i1((z0, 21, 2), (Yo, Y1, ¥2)) = (21/(1 — 20), 22/(1 — 20), 0), Where
0 € (0,2m) is the angle between (yo — z0/2,y1 — 21/2,y2 — 2/2)
and (—1,0,0) x (zg, 1, x2).

i2((zo, r1,72), (Yo, ¥1,%2)) = (wo/(1 — x1),22/(1 — 21),0), where
0 € (0,2m) is the angle between (yo — 20/2,y1 — 1/2,y2 — 72/2)
and (0,1,0) x (zg,z1,%2).

i3((zo0, T1,22), (Yo, ¥1,92)) = (wo/(1 — x1),22/(1 — x1),0), where
0 € (0,27) is the angle between (yo — x0/2,y1 — 21/2,y2 — 2/2)
and (0,—1,0) x (wq, z1,z2).
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B.2 HW 2

Let S = S? be the unit sphere in R3. Let T'S be its tangent bundle, 7 :
TS — S be the projection map. Let T*(T'S) be the contingent bundle of T'S,
7' T*(TS) — TS its projection map.

(1) Show that T*(T'S) is a vector bundle over S under the projection map
mom'. Write down a set of local trivializations of this vector bundle and
the corresponding transition functions.

(2) The smooth map 7on’ induces a vector bundle homomorphism (7 on’)*
T(T*(TS)) - TS. Let N = {v e T(T*(TS)) : (mon')x(v) = 0,} where
0, is the zero vector in some 7},S. Is N a smooth vector bundle over S7

Answer: We shall prove the following:

Theorem B.1. Let E be a vector bundle over smooth manifold M, 7 : E — M
the projection map, then:

1. T*FE is isomorphic to a vector bundle £ @® E* ® T*M over M.

2. Theset N = {v € TE : m,(v) = 0} is isomorphic to a vector bundle E® F
over M.

Proof. 1. Pick a Riemannian metric ¢ on E. For any x € X, the fiber
of T*E at x equals T E. Now pick ¢ € E;, v € TS FE, because g in-
duces a positive deﬁnlte bilinear form on 7, E hence T*qE we can write
T}E = 7*(T,M) @ (7* (T} M))*, and © (Tw*M) is isomorphic to T.* M
by m*, and (7*(TfM))* = E* by a — (v — a(4(q + tv)|¢—o)). Hence
ve Ty E < Tf (E) can be identified with a triple (¢,v1 € T, M, vg € E¥).

Because ¢ is smooth the bijection T*F — F@T*E® E* is smooth, hence
by rank theorem this is a diffeomorphism.

2. For any = € M, the fiber of N over x consists of elements of T, E which
get sent to 0 € T, M by my. If v € T,E is such an element in IV,, then
v € TyE, = E, because E, has a canonical vector space structure, so
v can be identified with (q,v") where v’ € E, is obtained from v by the
isomorphism. Similar to above we can get a bundle isomorphism from N

to F® FE.
O

Now both (1) and (2) follows.
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B.3 HW 3

1. Let M be a compact smooth manifold. Show that for any natural number
d, there is a number N(M,d), such that any smooth vector bundle over
M of rank d is a subbundle of the trivial bundle over M of rank N (M, d).

2. Let S be the unit 2-sphere in 3 dimensional Euclidean space.

(1) Write down a Riemannian metric g on S.

(2) Let N be the set of tangent vectors in T'S whose length under g
equals 1. Show that N is an embedded submanifold of T'S.

(3) Let m: N — S be the projection map. Can 7*(g) be a Riemannian
metric on N? Here the pull back of a (0,2) tensor is defined as
*(a®0b) = 7*(a) ® 7*(b).

(4) Can you find a non-zero vector field X on N such that Lx (7*(g)) =
07

Answer:

1. Suppose dim(M) = m, then any rank d vector bundle E is a smooth
manifold of dimension m + d. By Whitney’s embedding there is some
smooth embedding i : E — R?™*24+1 Tet sy : M — E be the 0 section
of F, sending x € M to 0 € E,, then i o s is a smooth embedding of M
into R2m+2d+1 7 R2m+2d+1 — (0 50)*TR2™+24+1 i5 3 rank 2m +2d + 1-
vector bundle over F, and F is a subbundle of that via injective bundle
homomorphism: v € E, — L (vt)]; € 0 € Tjosy)()R*™ 241, hence we
can set N(M,d) =2m + 2d + 1.

2. (1) We can let i : S — R3 be the embedding and set g = i*(dz ® dx +
dy ® dy + dz ® dz).

(2) This is because the map v — g(v,v) is of constant rank 1 outside the
image of the 0 section.

(3) No, the pullback is a symmetric bilinear form but not positive defi-
nite.

(4) Pick and fix an orientation on S, let flow ®; be the rotation of the
unit tangent vector by ¢ counterclockwise, then ®; preserves 7*(g),
hence we can let X = %@th:o.
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C Notes on Projective Spaces

Definition C.1. Let X be a topological space, p : X — Y a surjection. The
quotient topology on Y is one such that a subset U of Y is open iff p~1(U)
is open in X.

Definition C.2. Let §" = {(zo,...,x,) € R*"™! : 3" 27 = 1}, with subspace
topology. Define an equivalence relation ~, such that (zg,...,z,) ~ (Yo, .-, Yn)
iff either xp = yi for all k, or xp, = —yi for all k. Then S"/ ~ with the
quotient topology is called the n-dimenstional real projective space, denoted
as RP". When n = 1 and 2 it is also called the real projective line and the
real projective plane respectively. A point in RP™ can be represented by a
representative of this equivalence class in S™, with the notation of [z, ..., x,]
or [xg : @y : -+ : xy], called the homogenuous coordinates (which is not a
coordinate chart).

Definition C.3. Let S*"™! = {(20,...,2,) € C"™' : 3" 27 = 1}. Here we
identify C with R? by looking at the real part and imaginary part of a complex
number. Define an equivalence relation ~, such that (zq,...,2,) ~ (20,...,2})
iff there is some A € C such that zj, = Azg for all k. Then S*"*!/ ~ with
the quotient topology is called the n-dimenstional complex projective space,
denoted as CP". When n = 1 and 2 it is also called the complex projective
line and the complex projective plane respectively. We can write down

elements of CP" via the homogenuous coordinates similarly.

The Euclidean metrics on R**! and C"*! induce metrics on RP" and CP"
as follows: let p,q be two points on RP" (or CP"), p’, ¢’ their representatives
on S"*! (or S*"*1), then d(p,q) = inf,~q dguciia(p,7) where dgyciia is the Eu-
clidean distance. It is easy to see, e.g. by calculation, that the topology induced
by these metrics are the same as the quotient topology, which implies that both
RP™ and CP" are Hausdorff. The subset where the ratios of the homogenuous
coordinates are all rational (or all in Q[v/—1]) is a dense countable subset, hence
both are second countable.

Let M = RP" (or CP"), there are n + 1 open subsets Uy = {[z¢ : -+ :
Zn] : xp £ 0} which form an open cover. Each of these open subsets are
homeomorphic to R (or C", which we identify with R?") by the map

[Zo: - xn]— (To/Thy -y Tle1/ Tk, Thot1 [Tl - -+, T fTR)

This show that both RP" and CP" are locally Euclidean hence both are
topological manifolds. The n + 1 homeomorphisms form a smooth atlas on RP"
(CP"), which make them smooth manifolds as well.
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D

Suggested Final Presentation Topics

Below are some suggested presentation topics. You can find references to these
topics via Google or Wikipedia. For more complicated topics it would be suf-
ficient to just present a simplest example! You can also pick some other topic
not on this list, preferably related to your own research interests!

1.

e e T e S S s G S
W N Ut R W N = O

19.
20.
21.
22.
23.
24.
25.

© % N e W

Every smooth manifold has a triangulation

Whitney trick in Whitney’s embedding theorem

Connections and curvature

Gauss map and Second fundamental form for embedded manifolds
Relationship between Lie groups and Lie algebras

Closed subgroups of Lie groups are sub manifolds

Exceptional Lie groups

Complex manifolds

Symplectic manifolds

Kahler manifolds

. Toric manifolds

. Riemann surfaces

. Mapping class groups and braid groups

. Poincare duality

. Chern classes, Euler classes

. John Milnor’s exotic sphere

. Stable and unstable foliations of a hyperbolic flow or diffeomorphism

. Cech cohomology and its relationship with deRham cohomology (Cech to

derived functor spectral sequence)
Classifying spaces of vector bundles
Topological K-theory

Hamiltonian and Lagrangian in physics
Noether’s theorem in physics

EM field as U(1) gauge theory
Manifold learning

Quantum Extremal Surface
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