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1 Topological Manifolds

Section 1.1 of textbook

Firstly let’s recall some basic concepts from topology:

1. Let X be a non-empty set. A topology is a subset O of its power set
P pXq, such that X P O, H P O, A Ď O then

Ť

A P O (here
Ť

A is defined
as

Ť

A “
Ť

UPA U), and if P,Q P O then P X Q P O. Elements of O are
called open sets, their complements are called closed sets. pX,Oq is
called a topological space.

2. Let pX,Oq be a topological space, B Ď O is called a basis of the topology,
if for any U P O, U “

Ť

V PB,V ĎU V . It is easy to see that a subset
B Ď P pXq is a basis of some topology, as long as

Ť

V PB V “ X, and for
any two elements C,D P B, any x P CXD, there is some E P B such that
x P E Ď C XD.

3. Let X be a non-empty set, d : X ˆ X Ñ Rě0 is called a metric if
dpa, bq “ 0 iff a “ b, dpa, bq “ dpb, aq, and dpa, cq ď dpa, bq ` dpb, cq. pX, dq

is called a metric space. It is easy to see that a metric on X would
induce a topology Od which is generated by basis

Bd “ tty P X : dpx, yq ă ru : r P Rą0, x P Xu

4. Let X be a subset of Rn. Unless specified otherwise, we always assume
the topology on X is the one obtained via the Euclidean metric

dppx1, . . . xnq, py1, . . . , ynqq “

g

f

f

e

n
ÿ

i“1

pxi ´ yiq2

5. Let pX,Oq be a topological space. A open cover is a subset of O whose
union is X. We say X is compact, if any open cover of X has a finite
subcover. From analysis classes we know that a subset of Rn with subspace
topology (a subset is open iff it is the intersection with an open set in Rn)
iff it is bounded and closed in Rn.

6. A map f between two topological spaces pX,Oq and pY,O1q is called con-
tinuous, if for any V P O1, f´1pV q P O. If f : X Ñ Y is a bijection and
both f and f 1 are continuous, we call f a homeomorphism.

Definition 1.1. A topological space M is called a topological manifold, if
it satisfies the following three conditions:

• It is Hausdorff: for any x, y P M , x ­“ y, there are open sets U and V
such that x P U , y P V and U X V “ H.

• It is Second Countable: the topology on M has a countable basis B.
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• It is Locally Euclidean: for any x P M , there is an open set U Ď M such
that x P U and U is homeomorphic to an open disc in Rn. We require the
number n to be a constant for all x P M , and it is called the dimension
of M .

Remark 1.2. Any topology induced by a metric is Hausdorff. Because if x ­“ y,
we can let U and V be balls centered at x and y respectively and radius dpx, yq{3.

Example 1.3. The following are examples of topological manifolds:

1. Rn, open subsets of Rn.

2. Sn “ tpx0, . . . , xnq : x20 ` ¨ ¨ ¨ ` x2n “ 1u, with subspace topology.

3. tpx0, . . . , xnq : x0 “
a

x21 ` ¨ ¨ ¨ ` x2nu, because it is homeomorphic to Rn

by px0, . . . xnq ÞÑ px1, . . . xnq.

Example 1.4. The followings are non-examples of topological manifolds:

1. When n ě 1, tpx0, . . . , xnq : x20 “ x21 ` . . . x2nu. This is Hausdorff and
second countable but not locally Euclidean at p0, . . . , 0q.

2. Line with a Double Point: Two copies of R glued together at p´8, 0qY

p0,8q. More precisely, consider quotient set M “ R ˆ t0, 1u{ „ where
pa, iq „ pb, jq iff a “ b ­“ 0 or a “ b “ 0, i “ j, and we say a subset of
M is open iff its preimage under the quotient map is open (i.e. take the
quotient topology) in R ˆ t0, 1u, where the topology is the product
topology between the Euclidean topology on R and the discrete topol-
ogy on t0, 1u. M is second countable, locally Euclidean but not Hausdorff
(there are no disjoint neighborhoods of the points p0, 0q and p0, 1q).

3. Long Line: We say a set is well ordered if it has a linear order ĺ such
that any non-empty subset has a minimal element. Let ω1 be the first
uncountable ordinal, i.e. an uncountable, well ordered set such that for
any x P ω1, ty P ω1 : y ĺ xu is countable. Give the set ω1 ˆ r0, 1q the
Lexicographical order, then the long ray is ω1 ˆ r0, 1q with the topology
being the order topology (the topology generated by the basis consists
of all the open intervals pa, bq “ tc P X : a ň c ň bu). The Long Line
is defined as two copies of the long ray glued together at the left end points.

The long line is locally Euclidean, because any countable, well ordered
set has an order preserving embedding to any open interval in R. It
is also Hausdorff which can be verified directly. However it is not sec-
ond countable: consider the uncountable set of disjoint open subsets
tppx, 1{3q, px, 2{3qq : x P ω1u. Let B be any basis of the topology, then
each of these disjoint open subset must contain one distinct element from
B, hence B is uncountable.
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Definition 1.5. A topological space is called paracompact if any open cover
has a locally finite refinement, i.e. if pX,Oq is the topological space, C Ď O,
Ť

C “ X, then there is some C 1 Ď O, such that:

• For every U P C 1, there is some V P C such that U Ď V .

•
Ť

C 1 “ X.

• For every x P X, there is some Ux P O, such that x P Ux and tV P C 1 :
V X Ux ­“ Hu is finite.

The main theorem of this section is the following:

Theorem 1.6. Any open cover of a topological manifold has a countable, locally
finite subcover. In other words, any topological manifold is paracompact.

Lemma 1.7. If X is Hausdorff, then any non-empty compact subset of X is
closed.

Proof. Suppose V Ď X is compact. For any b P XzV , any c P V , there are open
sets Uc, U

1
c inX such that c P Uc, b P U 1

c and UcXU 1
c “ H. Hence by compactness

there are finitely many points c1, . . . cn P V such that V Ď
Ťn

i“1 Uci . Let
Wb “

Şn
i“1 U

1
ci . It is a finite intersection of open sets, hence is open, and by

constructionWb Ď XzV . Now we have XzV “
Ť

bPXzV Wb hence must be open,
which implies that V is closed.

Lemma 1.8. If X is a second countable topological space, C is an open cover
of X, then C has a countable subcover.

Proof. Let B be a countable basis of the topology of X. For every U P B, if it
is contained in some element V P C, pick one such element and denote it as VU
(here we are using the axiom of countable choice). Then tVUu is a countable
subset of C which is also an open cover of X.

Lemma 1.9. If M is a topological manifold, then there is a countable open
cover C, such that all elements of C are homeomorphic to open discs in Rn, and
their closures are homeomorphic to closed discs.

Proof. For any p P M , let Up be an open set containing p which is homeomorphic
to an open disc, and let ip : Up Ñ D be this homeomorphism. Let Dp be an
open disc centered in ipppq which is contained in D, then Bp “ i´1

p pDpq is an
open subset of M which is homeomorphic to an open disc, and its closure in Up

is homeomorphic to a closed disc. Because closed discs are compact, by Lemma
1.7, the closure of Bp in Up are closed in M as well, hence it is the closure of Bp

in M . Apply Lemma 1.8 to the open cover tBp : p P Mu we get the required
countable cover of M .

Lemma 1.10. If M is a topological manifold, then M has a exhaustion by
compact sets, i.e. a sequence of compact subsets X0 Ď X1 Ď X2 . . . such that
Xi is contained in the interior of Xi`1 for all i P N.
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Proof. Let C “ tC0, C1, C2, . . . Cn, . . . u be the countable cover of M from
Lemma 1.9. We build the compact sets Xi inductively as follows:

1. Let X0 “ C0.

2. Suppose we already constructed compact set Xi. Find finitely many in-
tegers n1, . . . nk such that Xi Y Ci Ď Cn1 Y ¨ ¨ ¨ Y Cnk

, and let Xi`1 “
Ťk

j“1 Cnj
. Repeat this step then we get the exhaustion by compact sets

X0 Ď X1 . . . .

Proof of Theorem 1.6. Let C be a open cover of the topological manifold M ,
X0 Ď X1 Ď X2 Ď . . . a compact exhaustion in Lemma 1.10. Let Ui,1, . . . , Ui,ni

be finitely many elements in C that cover the compact subset Xi, then

tU0,1, . . . , U0,n0
, U1,1zX0, . . . , U1,n1

zX0, . . . , Uj,kzXj´1, . . . u

is a locally finite refinement of C.

Remark 1.11. As an exercise, we can further show that any topological man-
ifold is metrizable (the topology is induced by a metric).
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2 Smooth Structure, Smooth Functions and Smooth
Maps

Sections 1.2, 1.3 and 2.1 of textbook

Definition 2.1. Let M be a topological manifold. By a coordinate chart,
we mean a homeomorphism from an open subset of M to an open subset of Rn.
An smooth atlas is a set of coordinate charts tiα : Uα Ñ Vα Ď Rnu, such that

•
Ť

α Uα “ M .

• If Uα X Uβ ­“ H, then

iβ ˝ i´1
α : iαpUα X Uβq Ñ iβpUα X Uβq

is a smooth bijection whose inverse is also smooth (we call such maps
diffeomorphisms).

• A coordinate chart f is said to be compatible with a smooth atlas A, if
AY tfu is also a smooth atlas.

The followings follow immediately from the fact that compositions of diffeo-
morphisms are diffeomorphisms:

Remark 2.2. • Let A be a smooth atlas onM , B a set of coordinate charts
that are compatible with A, then AYB is a smooth atlas.

• Every smooth atlas A is contained in a unique maximal (in the sense of
containment) smooth atlasA˚ “ tg : g is a coordinate chart compatible with Au.
Such a maximal smooth atlas is called the smooth structure defined by
A. A topological manifold with a smooth structure is called a smooth
manifold or a differentiable manifold.

• Two smooth atlases A and B define the same smooth structure, iff every
chart in A is compatible with B, iff AYB is a smooth atlas.

Remark 2.3. We can replace “smooth” with other kinds of maps, e.g. C1, C2,
real analytic, or affine, and define concepts like “C1 manifolds”, “C2 manifolds”,
“real analytic manifolds” or “affine manifolds”.

Example 2.4. On topological manifold M “ R,

A1 “ ti :M Ñ R, x ÞÑ xu

and
A2 “ ti1 :M Ñ R, x ÞÑ x3u

are two smooth atlases which define different smooth structures.
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Example 2.5. • If U is an open subset of Rn, the default smooth structure
is the one defined by the atlas tid : U Ñ U Ď Rnu.

• Let M “ Sn “ tpx0, . . . , xnq P Rn`1 :
ř

i x
2
i “ 1u be the n dimensional

sphere. Let U0 “ Snzp1, 0, . . . , 0q, U1 “ Snzp´1, 0, . . . , 0q, i0 : U0 Ñ Rn be
the polar, or stereographic projection map:

i0px0, . . . , xnq “ p
x1

1 ´ x0
, . . . ,

xn
1 ´ x0

q

and i : 1 : U1 Ñ Rn be

i1px0, . . . , xnq “ p
x1

1 ` x0
, . . . ,

xn
1 ` x0

q

then the default smooth structure onM is the one defined by atlas ti0, i1u.

• Let RPn be the n-dimensional real projective space, let Uk, k “ 0, . . . , n
be Uk “ trx0, . . . , xns : xk ­“ 0u, ik : Uk Ñ Rn be ikprx0, . . . , xnsq “

px0{xk, . . . , xk´1{xk, xk`1{xk, . . . , xn{xkq. The default smooth structure
on RPn is the one defined by tiku. Similarly one can define the default
smooth structure on the complex projective space CPn.

Definition 2.6. 1. A real valued function f on a smooth manifold M is
called smooth, if for any coordinate chart i : U Ñ V in the smooth
structure of M , f ˝ i´1 is smooth on V . A function taking value in Rn is
called smooth if every component of it is smooth.

2. A map between two smooth manifolds f : M Ñ N is called smooth, if
for every p P M , any coordinate chart i : U Ñ V in the smooth structure
of M such that the domain contains p, any coordinate chart j : U 1 Ñ V 1

in the smooth structure of N such that the domain contains fppq, there
is some neighborhood Vp of ippq in V such that f ˝ i´1pVpq Ď U 1, and
j ˝ f ˝ i´1 is smooth on Vp.

3. A bijection between two smooth manifolds which is smooth, and has
smooth inverse, is called a diffeomorphism.

Remark 2.7. It is easy to see that to check a function is smooth or a map is
smooth, one need to only verify it for an atlas of the domain.

Definition 2.8. • If M is a smooth manifold and U Ď M an open subset,
U can be made into a smooth manifold by restricting the coordinate charts
of M to U , and U is called an open submanifold.

• Let M and N be two smooth manifolds, of dimensions m and n respec-
tively. Let A be a smooth atlas on M , B a smooth atlas on N , both
subsets of the respective smooth structure, then

AˆB “ tpp, qq ÞÑ pippq, jpqqq : i P A, j P Bu

is a smooth atlas on M ˆ N . We call M ˆ N with the induced smooth
structure the product manifold.
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Definition 2.9. A group G is called a Lie group, if it is also a smooth manifold
and the multiplication and inverse functions are both smooth.

Example 2.10. Consider the general linear group GLpn,Rq, which we see
as an open subset of Rnˆn. Linear algebra implies that it is a Lie group.

Another way of constructing smooth manifolds is by “patching” together
locally Euclidean pieces. Namely:

Theorem 2.11. If M is a set, tUαu a set of subsets of M ,
Ť

α Uα “ M . For
every Uα, there is a bijection iα from Uα to an open subset of Rd, denoted as
Vα. If

(1) If Ua X Ub ­“ H, then iapUa X Ubq is an open subset of Va.

(2) If Ua X Ub ­“ H, then ibi
´1
a : iapUa X Ubq Ñ ibpUa X Ubq is smooth.

(3) There is a countable subset of tUαu whose union is M .

(4) If p, q P M , either there is some Ua containing both p and q, or there are
Ua, Ub such that p P Ua, q P Ub and Ua X Ub “ H.

Then:

1. M is a topological manifold under the topology

O “ tU Ď M : iαpU X Uαq is open in Vα for all αu

2. tiαu is a smooth atlas on M , which makes it a smooth manifold.

Proof. It is clear that O is a topology. Condition (1) implies that all Uα are
open in this topology, hence tUαu is an open cover of M . Condition (2) implies
that ib˝i´1

a are all homeomorphisms, which together with Condition (1), implies
that for any open subset V Ď Vα, i

´1
α pV q is open in M , which implies that iα

are all homeomorphisms, i.e. the topology on M is locally Euclidean. This
together with Condition (4) implies that the topology on M is Hausdorff, and
together with the condition (3) implies that the topology is second countable.
This proved part 1. Now Part 2 follows immediately from Condition (2).
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3 Partition of Unity and smooth approximation
of functions

Sections 2.2 and 6.4 of textbook

From now on unless specified otherwise, whenever we talk about a coordi-
nate chart on a smooth manifold we require that it be in the smooth structure.

Definition 3.1. Let X be a topological space, f a real valued function. The
support of f , denoted as supppfq, is defined as tx P X : fpxq ­“ 0u.

Lemma 3.2. Let M be a smooth manifold, i : U Ñ V a coordinate chart. Let
f be a compactly supported smooth function on V , then g :M Ñ R defined as

gppq “

#

fpippqq p P U

0 p R U

is smooth on M .

Proof. Let i1 : U 1 Ñ V 1 be another coordinate chart in the smooth structure of
M , and q P V 1. If i1´1pqq P U , in a neighborhood of q we have g˝i1´1 “ f ˝i˝i1´1

hence is smooth. If not, by Lemma 1.7 there must be a neighborhood of i1´1pqq

in M which is disjoint from the support of g, hence in a neighborhood of q the
function g ˝ i1´1 “ 0.

Lemma 3.3. Let U be an open subset of Rn, V Ď U a bounded closed set. Then
there is a compactly supported smooth function g on Rn such that supppgq Ď U
and g is positive on V .

Proof. Pick ϵ ą 0 small enough such that the closure of the ϵ-neighborhood of
V is contained in U . Let

g1pxq “

#

ϵ´ 2distpx, V q distpx, V q ă ϵ{2

0 distpx, vq ě ϵ{2

Then we can let g “ g1 ˚ ϕ, where ϕ is a smooth bump function:

ϕpx1, . . . , xnq “

#

e´1{pϵ2{4´
ř

i x
2
i q

ř

i x
2
i ă ϵ2{4

0
ř

i x
2
i ě ϵ2{4

This is a stronger version of Lemma 1.9:

Lemma 3.4. Let M be a smooth manifold, C an open cover. There is a count-
able refinement of C, denoted as D, such that each element in D is homeomorphic
to an open disc, and its closure is homeomorphic to a closed disc and contained
in the domain of some coordinate chart of M .
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Proof. The proof is almost identical to Lemma 1.9. Only differences are that
the homeomorphism ip are required to be in the smooth structure of M , and
also the neighbors Bp have to be sufficiently small so they are subsets of some
element of C.

Lemma 3.5. Let X be a topological space, C a locally finite cover of X, A Ď X
compact. Then there is an open set U Ď X, such that A Ď U and U intersects
with only finitely many elements of C.

Proof. For every x P X, let Ux be a neighborhood such that there are only
finitely many elements in C that have non-empty intersection with Ux. Com-
pactness implies that there are finitely many points x1, . . . , xn such that X “
Ťn

i“1 Uxi , and we can let U “
Ťn

i“1 Uxi
.

Lemma 3.6. Let X be a Hausdorff topological space, C a locally finite cover of
X such that the closure of all elements of C are compact. Then there is another
locally finite cover C1 and a surjection I : C Ñ C1, such that for any U P C,
U Ď IpUq, and IpUq is compact.

Proof. For any U P C, by Lemma 3.5, there are finitely many elements in C
that have non-empty intersection with U . Let IpUq be their union. It is easy
to show that IpUq X IpU 1q ­“ H iff there are V,W P C such that U X V ­“ H,
V XW ­“ H and W XU 1 ­“ H. It is easy to see that given any U there are only
finitely many such U 1. Let C1 “ tIpUq : U P Cu.

We will now prove the main theorem:

Theorem 3.7 (Partition of Unity). Let M be a smooth manifold, C an open
cover. Then:

1. There is a countable, locally finite refinement C1 of C, such that for every
D P C1, D is compact, and there is a non-negative, compactly supported
smooth function fD on M with supppfq Ď D, and 1 “

ř

D fD.

2. For every U P C, there is a non-negative smooth function fU on M whose
support is in U , such that 1 “

ř

U fU . Here the right hand side always
have finitely many non-zero terms.

Proof. Apply Theorem 1.6 to the cover D from Lemma 3.4, we get a countable
locally finite refinement denoted as C2. Apply Lemma 3.6, we get D1 “ tIpW q :
W P C2u. For every W P C2, there is a coordinate chart iW : UW Ñ VW such
that W Ď UW . Let JpW q “ IpW q X UW , C1 “ tJpW qu, then C1 is a countable
locally finite cover by elements whose closures are compact.

Now apply Lemma 3.3 to iW pW q Ď iW pJpW qq, and apply Lemma 3.2 to the
resulting smooth functions, we get smooth non negative functions gW which is
positive on W and has compact support contained in JpW q. Then we can let

fD “

ř

WPC2,JpW q“D fW
ř

V PC2 fV

11



To show part 2, for every D P C1, pick some UD P C such that D Ď UD, and let

fU “
ÿ

UD“U

fD

As an application, we have the following results:

Lemma 3.8 (Smooth Extension Lemma). LetM be a smooth manifold, A Ď M
a closed set. Let f be a real valued function on A, such that for every p P A,
there is some open set Up containing p, some real valued function fp which is
smooth on Up and fp|AXUp

“ f |AXUp
. Then there is a smooth function g on M

such that f |A “ g|A.

Proof. Consider the open cover of M :

C “ tUp : p P Au Y tMzAu

Apply part 2 of Theorem 3.7, let g “
ř

pPA fUp
fp.

Remark 3.9. It is easy to see that the condition of A being closed is necessary.

Remark 3.10. If f satisfies the assumptions of Lemma 3.8, we say f is smooth
on A.

Theorem 3.11 (Smooth Approximation for Functions, first version). Let M
be a smooth manifold, f a continuous, real valued function on M , and let ϵ be
any positive real valued function on M . Then there is a smooth function g on
M such that |f ´ g| ď ϵ.

Proof. Let D be the open cover from Lemma 3.4, apply Theorem 3.7 part 1 we
get a countable, locally finite refinement D1 and a set of compactly supported
smooth functions tfD : D P D1u. Now every D P D1 lies in some U P D. Let iU
be the corresponding smooth coordinate chart, and iD “ iU |D. Then pffDq˝i´1

D

is a continuous function with compact support hence uniformly continuous, and
the support is contained in open set iDpDq Ď Rn.

Because D is compact, by Lemma 3.5, the cardinality of the set tD1 P D1 :
DXD1 ­“ Hu is finite. LetND P Zą0 be this cardinality. Because any continuous
function with compact support is uniformly continuous, by convolution with a
smooth bump function (or alternatively, the Stone-Weierstrass theorem), we can
find a smooth function hD with compact support contained in iDpDq such that
|hD ´ pffDq ˝ i´1

D | ă ϵ
2ND

. Now let g “
ř

DPD1 gD, where gD “ hD ˝ iD on D
and is 0 elsewhere.

Theorem 3.12 (Whitney’s Smooth Approximation for Functions). Let M be
a smooth manifold, f a continuous, real valued function on M , which is smooth
on closed set A. Let ϵ be any positive continuous function on M . Then there is
a smooth function g on M such that |f ´ g| ď ϵ, and f “ g on A.
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Proof. Let h be the smooth extension of f |A in Lemma 3.8. UA be a neigh-
borhood of A on which |f ´ h| ă ϵ{2. Then tUA,MzAu is an open cover
of M . Apply Theorem 3.11, let g1 be a smooth function on MzA such that
|g1 ´ f | ă ϵ{2. Now apply Theorem 3.7 part 2 to the above-mentioned open
cover, and let g “ fUA

h` fMzAg1.

13



4 Rank Theorem, Immersion, submersion and
embedding

Chapters 4 and 5 of the textbook

The goal of this section is to study the local normal form of a smooth map
between smooth manifolds.

Definition 4.1. Let f : M Ñ N be a smooth map, p P M . Let i : U Ñ V be
a coordinate chart on M whose domain contains p, j : U 1 Ñ N a coordinate
chart on N whose domain contains fppq, then the rank of f at p is rank of the
derivative of j ˝ f ˝ i´1 at ippq.

Recall that if f is a smooth function from an open set in Rm to Rn, f “

pf1, . . . , fnq, then the derivative Df at a point in the domain is the nˆm matrix
where the pi, jq-entry is Bfi{Bxj .

Remark 4.2. By chain rule and linear algebra, one can see that the rank is
independent of the choice of the coordinate charts.

Remark 4.3. It is easy to see that the rank of a smooth function is lower
semicontinuous.

The main theorem for this section is:

Theorem 4.4 (Rank Theorem). Let f : M Ñ N be a smooth map, p P M
and the rank of f is r in a neighborhood of p. Let m “ dimpMq, n “ dimpNq.
Then there are coordinate charts i and j whose domain contains p and fppq

respectively, such that ippq and jpfppqq are the origins of Rm and Rn, and
j ˝ f ˝ i´1 is px1, . . . , xmq ÞÑ px1, . . . , xr, 0, . . . , 0q.

The proof is based on this fact from analysis:

Theorem 4.5 (Inverse Function Theorem). Let f : D Ď Rn Ñ Rn be a smooth
map defined on a neighborhood of 0, fp0q “ 0 and Df |0 is non singular, then
there are neighborhoods U and V both containing 0 such that f |U is a diffeo-
morphism from U to V .

There are many ways to prove inverse function theorem, e.g. by finding a
fixed point of a contraction map.

Proof of Theorem 4.4. Without loss of generality we can assume M and N be
open subsets of Rn and Rn containing the origin, f “ pf1, . . . , fnq sends the

origin to origin, and its derivative at origin is

„

Ir 0
0 0

ȷ

. Apply Theorem 4.5

to the map i :M Ñ Rm defined as

ipx1, . . . , xmq “ pf1, . . . , fr, xr`1, . . . , xmq

14



Then i is a local diffeomorphism around the origin hence a local coordinate
chart after restriction. Let

Hjpy1, . . . , yrq “ fjpi´1py1, . . . , yr, 0, . . . qq

By assumption the function f ˝ i´1 is rank r in a neighborhood of 0, and f ˝

i´1px1, xmq “ px1, . . . , xr, fr`1 ˝ i´1, . . . , fm ˝ i´1q, by linear algebra, if l, k ą r
then

Bpfl ˝ i´1q

Bxk
“ 0

Hence

f ˝ i´1px1, . . . , xmq “ pH1px1, . . . , xrq, . . . ,Hmpx1, . . . , xrqq

Now we can let

jpy1, . . . , ynq “ py1, . . . , yr, yr`1 ´Hr`1py1, . . . , yrq, . . . , yn ´Hnpy1, . . . , yrqq

and finish the proof.

Remark 4.6. When m ą n “ r, the first half of the proof above implies the
implicit function theorem below:

Theorem 4.7 (Implicit Function Theorem). Let L,M , N be smooth manifolds,
dimpMq “ dimpNq, f : LˆM Ñ N is smooth, and on some point pa, bq P LˆM ,
the rank of fpa, ¨q has rank dimpMq at b. Let c “ fpa, bq. Then, there is a
neighborhood U of a, a neighborhood V of b, a function g : U Ñ V that sends
a to b, such that on U ˆ V , fpx, yq “ c iff y “ gpxq.

Definition 4.8. A smooth map f :M Ñ N is called

• An immersion if Df always define an injective linear map.

• A submersion if Df always define a surjective linear map.

• An embedding if it is an immersion and a homeomorphism from M to
fpMq with subspace topology. When f is inclusion map we call M an
embedded submanifold of N .

• A local diffeomorphism if it is both an immersion and a submersion.

Remark 4.9. Open submanifolds are special cases of embedded submanifolds.

Example 4.10. • The map f : R2 Ñ R defined as px, yq ÞÑ x ´ y2 is a
submersion.

• The map f : R Ñ R2 defined as x ÞÑ px, x3q is an embedding.

• The unit sphere in Rn`1 is an embedded submanifold.

15



Example 4.11. Let M “ R2, A “ tpx, yq : y2 “ x2px ` 1qu is the image of an
immersion (e.g. R Ñ R2 defined as t ÞÑ pt2 ´ 1, t3 ´ tq) but not the image of an
embedding.

Example 4.12. The map t ÞÑ pt2 ´ 1, t3 ´ tq from p´1,8q to R2 is an injective
immersion but not an embedding.

Theorem 4.13. Let M be a smooth manifold, A Ď M . The followings are
equivalent:

1. A is an embedded submanifold of dimension r

2. For every p P A, there is a coordinate chart ip : Up Ñ Vp, such that
p P Up, ipppq “ 0 P Vp, and ippA X Upq is an open subset of the subspace
of RdimpMq spanned by the first r coordinate vectors.

3. For every p P A, there is an open neighborhood Up, a smooth submersion
h from Up to RdimpMq´r, such that AX Up “ h´1p0q.

Proof. 1 ùñ 2: Apply rank theorem to the embedding map. Shrink V if
needed.

2 ùñ 3: Use the same Up in 2, let h be the projection to the last dimpMq´r
coordinates.

3 ùñ 2: Apply rank theorem to h.

2 ùñ 1: Because M is a manifold, A with subspace topology is Hausdorff
and second countable. Condition 2 implies that A is locally Euclidean, and
one can further verify that ip|AXUp

composed with the projection to the first r
coordinates form a smooth atlas on A.

Remark 4.14. The condition that the rank is locally constant is needed, for
example, consider map f : R2 Ñ R2 defined as fpx, yq “ px, yx2q, and p “ p0, 0q.

Remark 4.15. The proof above implies that if A Ď M is an embedded subman-
ifold then the smooth structure on A that makes inclusion map an embedding
is unique.

Example 4.16. trx0 : x1 : x2s P CP2 : x22x0 ´ x31 ` x1x0 “ 0u is an embedded
submanifold of CP2.

Example 4.17. Classical matrix groups like SL, SO, O, U , SU , SP etc are
all embedded submanifolds of the corresponding general linear group.

Example 4.18.

"„

eit 0
0 eiπt

ȷ

: t P R
*

is the image of an injective immersion

but not an embedded submanifold, because π is irrational which implies that
the image is not locally connected.
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5 Manifold with boundary

Section 1.4 of textbook

Definition 5.1. • A topological manifold with boundary of dimension
n is a Hausdorff, second countable space where each point has a neigh-
borhood that is homeomorphic to either a disc or a half disc. Let M be a
topological manifold with boundary, p P M , if any neighborhood of p can
only be homeomorphic to a half disc but not a disc, we call it a bound-
ary point. The set of boundary points of a manifold with boundary M
is denoted as BM .

• A smooth manifold with corner is a topological manifold M with
boundary with a smooth structure, i.e. a smooth atlas such that the
codomains are open subsets of r0,8qr ˆ Rn´r. If one can make all r ď

1, we call M with this smooth structure is a smooth manifold with
boundary.

Example 5.2. The closed ball tpx1, . . . , xnq P Rn :
řn

i“1 x
2
i ď 1u can be made

into a smooth manifold with boundary via the default smooth structure on Rn.

Remark 5.3. • Let M be a smooth manifold of dimension m, N Ď M an
embedded submanifold of dimension m ´ 1, then one can “cut open” M
along N to get a smooth manifold with boundary.

• Let M be a smooth manifold with boundary, one can glue two copies
of M at the boundary to get a manifold without boundary, the original
boundary set became an embedded submanifold. This is called doubling.
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6 Vector Bundles

Chapters 10 of the textbook

In Section 4 we know that if f : M Ñ N is a smooth map between smooth
manifolds, p P M , i a chart defined on a neighborhood of p and j a chart defined
on a neighborhood of fppq, then the rank of Dpj ˝ f ˝ i´1q is independent of
the choice of i and j, yet the matrix it self does depend on the choice of these
coordinates. To have a well defined concept of “derivative” on manifolds one
need to introduce the concept of bundles.

Definition 6.1. LetM be a smooth manifold. A (smooth) rank d-real vector
bundle over M (called the base) is a smooth manifold E (called the total
space), a smooth map π : E Ñ M , such that there is an open cover C of M ,
and

1. For any U P C, there is a diffeomorphism (called a trivialization): jU :
π´1pUq Ñ U ˆ Rd, such that jU pqq “ pπpqq, ¨q. (In other words, if π1 :
UˆRd Ñ U is the projection to the first factor π1pp, vq “ p, then π1˝jU “

π|π´1pUq.)

2. For any two U,U 1 P C, if U X U 1 ­“ H, then there is some smooth map
tU 1,U : U XU 1 Ñ GLpd,Rq, called transition function, such that for any
p P U X U 1, v P Rd, jU 1 pj´1

U pp, vqq “ pp, tU 1,U ppqvq.

For any p P M , the preimage π´1ppq is called a fiber, denoted as Ep. One can
also define complex vector bundles analogously.

Remark 6.2. Ep has vector space structure inherited from the trivialization
maps.

Remark 6.3. If the transition function factors through some Lie group homo-
morphism G Ñ GLpdq then we call it a G-bundle. It is clear that a rank d
complex bundle is a rank 2d GLpd,Cq-real bundle, where the homomorphism
from GLpd,Cq to GLp2d,Rq is by identifying Cd with R2d.

Example 6.4. MˆRd with the projection map is a vector bundle, called trivial
bundle. The corresponding tU 1,U can be chosen to be constant function Id.

Example 6.5. Let M “ CPn which we identify with 1-dimensional complex
subspaces of Cn`1, let E “ tpp, qq P CPn

ˆ Cn`1 : q P pu, π : pp, qq ÞÑ p. pE, pq

is called the tautological line bundle, denoted as Op´1q.

Definition 6.6. Let pE, π : E Ñ Mq, pE1, π1 : E1 Ñ M 1q be two vector bundles,
a bundle homomorphism is a smooth map g : E Ñ E1, such that there is a
smooth map f :M Ñ M 1 such that:

• π1 ˝ g “ f ˝ π

18



• For every q P E, there is a trivialization j : π´1pUqq Ñ Uq ˆ Rd, j1 :
π1´1pUgpqqq Ñ Ugpqq ˆ Rd, such that πpqq P Uq Ď M , π1pgpqqq P Ugpqq Ď

M 1, and there is a matrix A P MdˆdpRq such that j ˝ g ˝ j´1pπpqq, vq “

pπ1pgpqqq, Avq (in other words, it is linear on the fiber).

If M “ M 1 and f “ idM we call it a bundle homomorphism over M . By
Theorem 4.4 one can show that if a bundle homomorphism is bijective then its
inverse is also a bundle homomorphism, and we call it a bundle isomorphism.
Similarly we can define bundle isomorphism over M .

Remark 6.7. By Theorem 2.11, to specify a real rank d vector bundle over a
smooth manifold M , one needs only the following data:

1. An open cover C of M .

2. For any U,U 1 P C, if U XU 1 ­“ H, there is a smooth map tU 1,U : U XU 1 Ñ

GLpd,Rq

such that

1. tU,U ” Id

2. If U X U 1 X U2 ­“ H, then on U X U 1 X U2, tU2,U ppq “ tU2,U 1 ppqtU 1,U ppq

(cocycle condition).

If pE, πq is a vector bundle, it is evident that the tU 1,U in Definition 6.1 satisfy
the two conditions above. If we have functions tU 1,U that satisfy the conditions
above, consider disjoint unions of U ˆ Rd, glue them together using tU 1,U (the
two conditions above implies that this gluing is via an equivalence relation),
then apply Theorem 2.11 to a refinement of the cover C.

Remark 6.8. Two sets of transition functions tU 1,U , t
1
U 1,U gives vector bundles

that are isomorphic over M iff for every U P C, there is a smooth map sU :
U Ñ GLpd,Rq, such that t1U 1,U ppq “ sU 1 ppqtU 1,U psU ppqq´1, which is called the
“coboundary condition”.
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7 Tangent Bundles, Cotangent Bundles

Section 3 and 11 of textbook

Definition 7.1. Let M be a smooth manifold of dimension n, let A “ tiα :
Uα Ñ Vαu be a smooth atlas, C be the domains of coordinate charts in A, for
every U P C, there is a unique chart iU : U Ñ V Ď Rn

• If tV U ppq “ DpiV ˝ i´1
U q|iU ppq, the resulting bundle (via Remark 6.7) is

called the tangent bundle, denoted as T pMq or TM .

• If tV U ppq “ pDpiU ˝ i´1
V q|iV ppqqT , the resulting bundle is called the cotan-

gent bundle, denoted as T˚pMq or T˚M .

The fibers of TM and T˚M on p P M are called tangent space and cotangent
space, denoted as TppMq (or TpM) and T˚ppMq (or T˚

p M), their elements are
called tangent vectors and cotangent vectors respectively.

To understand these bundles geometrically we need coordinate-free ways to
describe their elements:

Theorem 7.2. Let M be a smooth manifold of dimension n, C8pMq is the
vector space of real valued smooth functions. For any p P M , let Np be the
subspace consisting of functions whose rank at p is 0. Then there is a bijection
from the disjoint union of C8pMq{Np for all p P M to T˚pMq, such that the
map from each C8pMq{Np to cotangent space T˚

p pMq is linear.

Proof. Recall from Remark 6.7, T˚pMq can be seen as a quotient of the disjoint
union of U ˆ Rn where U P C. Pick some U containing p, define the map as

pp, rf sq ÞÑ pp, pDpf ˝ i´1
U q|iU ppqqT q P U ˆ Rn

By chain rule and the definition of transition function of T˚pMq we know that
this definition is independent on the choice of U (hence the map is well defined),
and by linearlity of derivatives, it is linear from C8pMq{Np to T˚

p pMq. By
construction, rf s get sent to 0 iff f P Np which shows that this is injective on each
C8pMq. Let Pj : Rn Ñ R be Pjpt1, . . . , tnq “ tj , then for any pa1, . . . , anq P Rn,
consider f “

ř

j ajpPi ˝ iU q (and then extended to M by Partition of Unity
(Theorem 3.8)), we see that this map is a surjection.

Definition 7.3. Let M be a smooth manifold of dimension n, p P M . We say
γ : I Ñ M is a smooth path starting at p, if I Ď R is an open set containing 0,
γ is a smooth map and γp0q “ p. We say two such paths γ, γ1 have the same
velocity at 0, if under a coordinate chart iU : U Ñ V such that p P U , we have
DpiU ˝ γq “ DpiU ˝ γ1q. By chain law, whether or not two paths starting at p
have the same velocity at p doesn’t depend on the choice of the chart.

Theorem 7.4. Let M be a smooth manifold, there are bijections between:
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• The set of equivalence class of paths starting at p, where two paths are
equivalent iff they have the same velocity.

• pC8pMq{Npq˚ (linear maps from C8pMq{Np to R) as in Theorem 7.2

• TpM .

As a consequence, TM can be seen as either disjoint unions of the set of equiva-
lence classes of paths starting at some p P M , or disjoint unions of pC8pMq{Npq˚

Proof. Recall from Remark 6.7, T˚pMq can be seen as a quotient of the disjoint
union of U ˆ Rn where U P C. Pick some U containing p, define the two map
to TppMq as:

pp, rγsq ÞÑ pp,DpiU ˝ γq|0q P U ˆ Rn

and
pp, fq ÞÑ pp, pfprPj ˝ iU sqj“1,...,nqq P U ˆ Rn

Where functions pj are defined in the proof of Theorem 7.2. We can verify these
are well defined bijections as in 7.2.

Remark 7.5. When there is no ambiguity, let jU : π´1pUq Ñ UˆRd be a local
trivialization, p P U , we can write points in the fiber j´1

U pp, vq P π´1ppq as v.

Example 7.6. If M is an open submanifold of Rn, TM and T˚M are both
isomorphic over M to the trivial bundle.

Example 7.7. Let S2 be the unit sphere in R3, S2 “ tpx0, x1, x2q P R3. It has
two coordinate charts

i0 : tpx0, x1, x2q P S2 : x0 ­“ 1u Ñ R2

px0, x1, x2q ÞÑ px1{p1 ´ x0q, x2{p1 ´ x0qq

i1 : tpx0, x1, x2q P S2 : x0 ­“ ´1u Ñ R2

px0, x1, x2q ÞÑ px1{p1 ` x0q, x2{p1 ` x0qq

Hence

i0 ˝ i´1
1 py1, y2q “ i1 ˝ i´1

0 py1, y2q “ py1{py21 ` y22q, y2{py21 ` y22qq

The transition function of TS2 is

t10pi´1
0 py1, y2qq “

1

py21 ` y22q2

„

´y21 ` y22 ´2y1y2
´2y1y2 y21 ´ y22

ȷ

And the transition function of T˚S2 is

t10pi´1
0 py1, y2qq “

1

py21 ` y22q2

„

´y21 ` y22 ´2y1y2
´2y1y2 y21 ´ y22

ȷ
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Consider point p “ p0, 1, 0q “ i´1
0 p1, 0q P S, let fpx0, x1, x2q “ x0 ` x2, then

f ˝ i´1
0 py1, y2q “

y21 ` y22 ´ 1

y21 ` y22 ` 1
`

2y2
y21 ` y22 ` 1

So in Theorem 7.2, the cotangent vector rf s under the trivialization associated
to i0 becomes p1, 1q, while under the trivialization associated to i1 should be

„

´1 0
0 1

ȷ „

1
1

ȷ

“

„

´1
1

ȷ

which is the derivative of

f ˝ i´1
1 py1, y2q “

1 ´ y21 ´ y22
y21 ` y22 ` 1

`
2y2

y21 ` y22 ` 1

at p1, 0q.

Remark 7.8. Let p P M , i : U Ñ V Ď Rn a coordinate chart whose domain
contains p. Then trPk ˝isu form a basis of T˚

p M , which we denote as tdxku. The

dual basis in TM
p can be denoted as tB{Bxku or tBku. The path γk corresponding

to Bk in Theorem 7.4 can be picked as, for example, γkptq “ i´1pippq`tekq where
ek is the k-th standard basis in Rn.

Remark 7.9. We often write xk as xk under Einstein notation which means
summing over any index that appear as both a subscript and a superscript.
Then the k in dxk is a superscript while the k in B

Bxk is a subscript.

Remark 7.10. Theorem 7.2 and 7.4 imply that:

1. There is a canonical bilinear form on TpM ˆ T˚
p M defined as pl, rf sq “

lprf sq (if TpM is seen as the dual of C8{Np), or prγs, rf sq “ pf ˝ γq1p0q (if
TpM is seen as the set of equivalence classes of paths).

2. A smooth map g : M Ñ N induces a linear map g˚ : TpM Ñ TgppqN ,
and a linear map g˚ : T˚

gppq
N Ñ T˚

p M , such that for every x P TpM ,

a P T˚
gppq

N ,

px, g˚paqq “ pg˚pxq, aq

(this property is called “adjoint”).

These maps can be defined as

g˚prf sq “ rf ˝ gs

and (when see TM as equivalence classes of paths)

g˚prγsq “ rg ˝ γs
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3. We can write down g˚ and g˚ under coordinate chart as follows: let p P U ,
fppq P U 1, iU : U Ñ V Ď Rm and iU 1 : U 1 Ñ V 1 Ď Rn be smooth coor-
dinate charts on M and N respectively, then let ej be the j-th standard
basis vector in Rn, we have

g˚pejq “ g˚pdyjq “ rP j ˝ iU 1 ˝ gs “ DpPj ˝ i1U ˝ g ˝ i´1
U q|TiU ppq

“

„

BpiU 1 ˝ g ˝ i´1
U qj

Bx1
, . . . ,

BpiU 1 ˝ g ˝ i´1
U qj

Bxm

ȷT

“

m
ÿ

k“1

BpiU 1 ˝ g ˝ i´1
U qj

Bxk
dxk

Under Einstein’s notation, this can be written as

g˚dyj “
Byj

Bxk
dxk

where the map iU 1 ˝ g ˝ i´1
U is px1, . . . , xmq ÞÑ py1, . . . , ynq.

Now let ej be the j-th standard basis vector of Rm, let γj : R Ñ M be
such that γjp0q “ p, DpiU ˝ γjq|0 “ ej . Then we have

g˚pejq “ g˚pBjq “ g˚prγjsq “ rg ˝ γjs “ DpiU 1 ˝ g ˝ γjq|0

“ DpiU 1 ˝ g ˝ i´1
U q|iU ppqej “

Byk

Bxj
Bk

Where the map iU 1 ˝ g ˝ i´1
U is px1, . . . xmq ÞÑ py1, . . . , ynq.

From this we can see that g˚ can be made into a bundle homomorphism,
and g˚ is a bundle homomorphism if g is a diffeomorphism.

4. By definition we have pf ˝ gq˚ “ f˚ ˝ g˚, pf ˝ gq˚ “ g˚ ˝ f˚.

Example 7.11. Consider the smooth embedding map ι of the unit 2-sphere
into R3, pick p “ p0, 1, 0q, local coordinate chart of S2 around p being pt1, t2q “

px1{p1 ´ x0q, x2{p1 ´ x0qq, and local coordinate chart around p in R3 being the
identity. Then the map pt1, t2q ÞÑ px0, x1, x2q is

pt1, t2q ÞÑ

ˆ

pt1q2 ` pt2q2 ´ 1

pt1q2 ` pt2q2 ` 1
,

2t1

pt1q2 ` pt2q2 ` 1
,

2t2

pt1q2 ` pt2q2 ` 1

˙

So
ι˚pB1q “ B0

ι˚pB2q “ B2

Note that p1, 0, 0q and p0, 0, 1q form a basis of the space of tangent vectors
of S2 at p0, 1, 0q in Euclidean geometry.
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8 Sections, Vector fields and 1-forms

Chapters 8, 10, 11

Definition 8.1. Let pE, πq be a smooth vector bundle over M . A smooth
section is a smooth map s : M Ñ E such that π ˝ s “ idM . A smooth section
of the tangent bundle is called a vector field, a smooth section of the cotangent
bundle is called a 1-form.

Remark 8.2. Suppose E is a rank n smooth real vector bundle (complex
bundles are similar) over smooth manifold M , and let s be a map such that
π ˝ s “ idM . Then under local trivialization jU : π´1pUq “ U ˆ Rn, we have
spMq X π´1pUq “ spUq, and s is a smooth section iff jU pspUqq is the graph
of some smooth map from U to Rn. In particular, under a coordinate chart a
vector field is of the form aiBi, a 1 form is of the form aidx

i, where ai are smooth
real valued functions and the two formula above are in Einstein’s notation.

Remark 8.3. Let α, β be smooth sections of the vector bundle E over manifold
M , f a smooth function onM . We can define α`β as pα`βqppq “ αppq`βppq,
pfαqppq “ fppqαppq. Here the addition and scalar multiplication on the right
hand side is via the vector space structure on Ep which we can obtain via local
trivialization. This makes the set of smooth sections ΓpEq a C8pMq-module.

Example 8.4. Let M be a smooth manifold, f a real valued smooth function,
then p ÞÑ f `Np is a smooth section of T˚M (one can verify this by calculation
in a coordinate chart then apply Remark 8.2), which we denoted as df . Similarly,
if f : M ˆ R Ñ M is a smooth map where fpx, 0q “ x, then p Ñ rfpp, ¨qs is a
smooth section of TM .

Remark 8.5. A rank d vector bundle is isomorphic over M to a trivial bundle
iff it has d sections that are linearly independent at every point.

Example 8.6. By rotation number one can see that there are no vector field
on 2-sphere S2 which is everywhere non-zero. Hence TS2 is non-trivial. Use the
smooth atlas in Example 7.7, consider the path t ÞÑ p0, cosptq, sinptqq. Because
the transition function between the two trivializations takes value in an angle
reversing map, suppose X is a section on TS2 which is not zero on the path,
its turning angle along the path in two trivializations must sum up to be a
constant. Furthermore, because the path bound a disc, if we want X to have no
zero on the whole S2 then both turning angles must be 0. By doing calculation
on any specific vector field we see that this sum can not be 0, a contradiction.

Example 8.7. By considering the sections g ÞÑ rg ¨γptqs (see Example 8.4) one
can see that any Lie group has trivial tangent bundle. Hence TS3 “ T pSUp2qq

is trivial.

Definition 8.8. We say a smooth vector bundle E is orientable if it has
a family of trivialization such that the determinant of the value of transition
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function is always positive. We sayM is orientable iff TM is an orientable vector
bundle over M . In other words, iff it has a smooth atlas where the derivative
of transition functions i1 ˝ i´1 all have positive determinants.

Example 8.9. By Partition of Unity Theorem 3.7, any rank 1 orientable smooth
line bundle has a non-zero section hence is trivial. Another way to show this is
by coboundary condition, see Practice Problems 3 in the Appendix A5.

Remark 8.10. Let X be a smooth vector field, α be a 1-form, then p ÞÑ

pXppq, αppqq is a real valued smooth function on M .

Remark 8.11. If g : M Ñ N is a smooth map, α a smooth section of T˚N ,
then p ÞÑ g˚pαpgppqqq is a smooth section of T˚M , denoted as g˚pαq.
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9 Operations on Set of Bundles, Riemannian
metrics

Chapters 10, 12

Let X, Y and Z be three sets, f : X Ñ Z, g : Y Ñ Z two maps, the fiber
product is a subset of X ˆ Y defined by X ˆZ Y “ tpx, yq P X ˆ Y : fpxq “

gpyqu, with maps p1 : XˆZ Y Ñ X defined by px, yq ÞÑ x and p2 : XˆZ Y Ñ Y
defined by px, yq ÞÑ y. Then f ˝ p1 “ g ˝ p2. Furthermore, for any set W , any
maps a : W Ñ X and b : W Ñ Y such that f ˝ a “ g ˝ b, there is a unique
h : W Ñ X ˆZ Y such that a “ p1 ˝ h, b “ p2 ˝ h. Actually, h can be written
as w ÞÑ papwq, bpwqq.

Definition 9.1. Let f : M Ñ N be a smooth map, pE, πq a smooth vector
bundle on N . Then the pullback of E, denoted as f˚E, has total space the
fiber product between M and E: tpx, qq P M ˆ E : fpxq “ πpqqu, and the
projection is px, qq ÞÑ x.

Remark 9.2. It is easy to show that f˚E is a smooth vector bundle on M :
f˚E is an embedded submanifold of M ˆE (which we can verify via coordinate
charts), hence is a smooth manifold. If E has a local trivialization associated
with an open cover C of N , where the transition functions are ttV Uu, then f˚E
has a local trivialization associated with cover tf´1pUq : U P Cu, with transition
functions t1f´1pV qf´1pUq

“ tV U ˝ f .

Remark 9.3. If f :M Ñ N , g : N Ñ L are smooth, E a smooth vector bundle
on L, then by Definition 9.1, pg ˝ fq˚E “ f˚pg˚Eq.

Example 9.4. • If f is an injection, E a bundle over N , π : E Ñ N , then
f˚E “ π´1pMq. If E “ TN we denote this f˚pEq as TMN .

• If f is constant function sending every point to c P N , then f˚pEq is trivial
bundle N ˆ Ec.

Recall that if V andW are vector spaces over a field k (for our course, k “ R
or C), then

• The dual of V is the vector space consisting of linear transformations
from V to k, with addition and scalar multiplication defined as pafqpxq “

apfpxqq, pf ` f 1qpxq “ fpxq ` f 1pxq. This space is denoted as V ˚.

– There is a canonical bilinear pairing V ˚ ˆ V Ñ k defined as pf, xq “

fpxq.

– If ψ : V Ñ V 1 is a linear map, there is an induced linear map ψ˚ :
V 1˚ Ñ V ˚, defined as ψ˚pfq “ f ˝ ψ.

– pψ ˝ ψ1q˚ “ ψ1˚ ˝ ψ˚, pidV q˚ “ idV ˚ .

– If ψ is an isomorphism so is ψ˚.
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• The direct sum (or direct product) V ‘W is the vector space consisting
of elements in the Cartesian product V ˆW , such that addition and scalar
multiplication are defined as

pv, wq ` pv1, w1q “ pv ` v1, w ` w1q, rpv, wq “ prv, rwq

– There are canonical isomorphisms between V ‘W and W ‘ V , and
between pV ‘ V 1q ‘ V 2 and V ‘ pV 1 ‘ V 2q.

– If f : V Ñ V 1, g : W Ñ W 1 are linear maps, then there is a linear
map f‘g : V ‘W Ñ V 1 ‘W 1 defined as pf‘gqpv, wq “ pfpvq, gpwqq.

– idV ‘ idW “ idV ‘W , pf ˝ f 1q ‘ pg ˝ g1q “ pf ‘ gq ˝ pf 1 ‘ g1q.

– If both f and g are isomorphisms then so is f ‘ g.

• The Tensor Product V bW (or V bk W ) is defined as

V bW “ spankpV ˆW q{spankptapv, wq ´ pav, wq, apv, wq ´ pv, awq,

pv ` v1, wq ´ pv, wq ´ pv1, wq, pv, w ` w1q ´ pv, wq ´ pv, w1q : a P k,

v, v1 P V,w,w1 P W uq

The element represented by pv, wq in V bW is denoted as v b w.

– There is a bilinear map i : V ˆ W Ñ V b W defined as pv, wq ÞÑ

v b w. For any bilinear map q : V ˆ W Ñ L, there is a linear map
q1 : V bW Ñ L such that q “ q1 ˝ i.

– If taiu is a basis of V , tbju a basis of W , then a basis of V b W is
tai b bju.

– There are canonical isomorphisms between V bW and W b V , and
between pV b V 1q b V 2 and V b pV 1 b V 2q.

– If f : V Ñ V 1, g : W Ñ W 1 are linear maps, then there is a linear
map fbg : V bW Ñ V 1 bW 1 defined as pfbgqpvbwq “ fpvqbgpwq.

– idV b idW “ idV bW , pf ˝ f 1q b pg ˝ g1q “ pf b gq ˝ pf 1 b g1q.

– If both f and g are isomorphisms then so is f b g.

• If f : V Ñ W is a linear map, kerpfq “ tv P V : fpvq “ 0u.

– If f : V Ñ W , f 1 : V 1 Ñ W 1, g1 : V Ñ V 1, g2 : W Ñ W 1 satisfies
g2 ˝ f “ f 1 ˝ g1, then g1|kerpfq sends kerpfq to kerpf 1q.

– If g1 and g2 are both isomorphisms, g1|kerpfq : kerpfq Ñ kerpf 1q is
also an isomorphism.

Remark 9.5. V b pW ` W 1q – V b W ` V b W 1, V ‘ 0 – 0 ‘ V – V ,
V b k – k b V – V .

Example 9.6. The space of linear transformations from V to W , denoted as
HomkpV,W q, is isomorphic to V ˚ bW .
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Definition 9.7. • Let E be a smooth real vector bundle of rank d over
manifold M , the dual bundle E˚ “ \xPM pExq˚, π1 sends elements of
pExq˚ to x, with smooth structure derived from local trivializations defined
as follows: let jU : π´1pUq Ñ U ˆ Rd be a local trivialization of E, then
we define

j1
U : π1´1pUq “ \xPU pExq˚ Ñ U ˆ pRdq˚ – U ˆ Rd

q ÞÑ pπ1pqq, pv ÞÑ qpj´1
U pπ1pqq, vqqqq

• Let pE, πq, pE1, π1q be two smooth real vector bundles of rank d and d1

over manifold M , the direct sum bundle E ‘E1 “ \xPM pEx ‘E1
xq, π2

sends elements of Ex ‘E1
x to x, with smooth structure derived from local

trivializations defined as follows: let jU : π´1pUq Ñ U ˆ Rd be a local
trivialization of E, j1

U : π1´1pUq Ñ U ˆ Rd1

be a local trivialization of E1,

p2 : U ˆ Rd Ñ Rd and p1
2 : U ˆ Rd1

Ñ Rd1

are both projections to the
second component, then we can define

j2
U : π2´1pUq “

ğ

xPU

pEx ‘ E1
xq Ñ U ˆ pRd ‘ Rd1

q – U ˆ Rd`d1

q ÞÑ pπ2pqq, pp2pjU pqqq, p1
2pj1

U pqqqqq

• Let pE, πq, pE1, π1q be two smooth real vector bundles of rank d and d1

over manifoldM , the tensor product bundle E‘E1 “
Ů

xPM pExbE1
xq,

π2 sends elements of Ex b E1
x to x, with smooth structure derived from

local trivializations defined as follows: let jU : π´1pUq Ñ U ˆ Rd be a
local trivialization of E, j1

U : π1´1pUq Ñ U ˆ Rd1

be a local trivialization

of E1, p2 : U ˆ Rd Ñ Rd and p1
2 : U ˆ Rd1

Ñ Rd1

are both projections to
the second component, then we can define

j2
U : π2´1pUq “

ğ

xPU

pEx b E1
xq Ñ U ˆ pRd b Rd1

q – U ˆ Rdd1

q b q1 ÞÑ pπ2pq b q1q, p2pjU pqqq b p1
2pj1

U pqqqq

• Let pE, πq, pE1, π1q be two smooth real vector bundles of rank d and d1

over manifold M , let f : E Ñ E1 be a vector bundle homomorphism
over M such that the rank of f at every point x P M is constant r,
(rankpf |Ex : Ex Ñ E1

xq “ r for all x P M), then the smooth embedded
submanifold tv P E : fpeq “ 0u is a smooth vector bundle, called the
kernel of f , denote as kerpfq.

Remark 9.8. The above concepts can be defined for complex vector bundles
as well.

Remark 9.9. If E and E1 both have trivilizations associated to the same open
cover C, so are E˚, E ‘ E1 and E b E1. This is NOT true for kernel bundles
which can be seen in the example below. If the transition functions of E and
E1 are ttV Uu and tt1V Uu, the corresponding transition functions for E˚, E ‘E1

and E b E1 are t´1
V U , tV U ‘ t1V U and tV U b t1V U respectively.
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Example 9.10. Consider the map f : R3 Ñ R defined as fpx1, x2, x3q “

x21 ` x22 ` x23, the unit 2-sphere S2 is the embedded submanifold f´1p1q. Let i
be the inclusion map from S2 to R3, then f induces a bundle homomorphism
from i˚pTR3q to pf˝iq˚pTR1q (which are both trivial) whose kernel is isomorphic
to TS2 (which us not trivial by Example 8.6. Furthermore, TS2 ‘ pS2 ˆ Rq –

S⊭ ˆ R3.

Remark 9.11. If E, E1 are bundles over M , g : E Ñ E1 a homomorphism
of constant rank, f : N Ñ M a smooth map, then f˚pE˚q “ pf˚pEqq˚,
f˚pE‘E1q “ f˚pEq‘f˚pE1q, f˚pEbE1q “ f˚pEqbf˚pE1q. Let f˚pgq be the ho-
momorphism from f˚pEq to f˚pE1q induced by g, then kerpf˚pgqq “ f˚pkerpgqq.

Recall that a quadratic form on a vector space V is a symmetric bilinear
form, hence can be written as an element in q P V ˚ b V ˚ such that under map
s : ab b ÞÑ bb a we have spqq “ q. Hence:

Definition 9.12. Let E be a smooth real vector bundle over manifold M ,
s : E˚ bE˚ Ñ E˚ bE˚ be defined as spub vq “ vbu. Then, a smooth section
of kerpid´ sq is called a quadratic form on S. It is called positive definite iff
its value at all x P M is positive definite. A positive definite quadratic form on
TM is called a Riemannian metric.

Remark 9.13. Riemannian metric gives one a way to measure the length of
tangent vectors as well as angles between tangent vectors, which allow us to do
geometry as we had done in Euclidean space.

Theorem 9.14. Any smooth vector bundle has a positive definite quadratic
form. In particular, any smooth manifold has a Riemannian metric.

Proof. Let jU : π´1pUq Ñ U ˆRn be a set of local trivializations of E, e1, . . . en
the standard basis of Rn. For any p P U , tj´1

U pp, eiqu is a basis of Ep, let tαiu

be the dual basis in E˚
p , then qU “

ř

i α
i b αi is a smooth positive quadratic

form on E|U . Let C be an open cover such that for every U P C there is a local
trivialization of E denoted as jU , tψUu a set of partition of unity functions, then
we can set q “

ř

UPC ψUqU .

Remark 9.15. If f : E Ñ E1 is an injective bundle homomorphism, we call
E a subbundle of E1. A positive definite quadratic form gives a constant
rank bundle map p : E1 Ñ E via orthogonal projection, kerppq is called the
orthogonal complement bundle or the quotient bundle or the cokernel
bundle, denoted as EK or E1{E or cokerpfq.

Remark 9.16. The orthogonal complements defined by different quadratic
forms are isomorphic.

Example 9.17. If M is an embedded submanifold of M 1, there is a bundle
homomorphism i˚ : TM Ñ TM pM 1q, the orthogonal complement of TM in
TM pM 1q is called the normal bundle.

Definition 9.18. Let M be a smooth manifold.
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• A pp, qq tensor bundle is the bundle TMbp b T˚Mbq when p ą 0 or
q ą 0, and the trivial bundle M ˆ R when p “ q “ 0.

• A smooth section of the pp, qq tensor bundle is called a pp, qq tensor field.

• When p ą 0, q ą 0, there is a bundle homomorphism from the pp, qq tensor
bundle to pp´ 1, q ´ 1q tensor bundle, defined by

pa1 b¨ ¨ ¨bapqbpb1 b¨ ¨ ¨bbqq ÞÑ pap, b
qqpa1 b¨ ¨ ¨bap´1qbpb1 b¨ ¨ ¨bbq´1q

Where pap, b
qq is the bilinear pairing between tangent and cotangent spaces.

Remark 9.19. Under local coordinate chart we have:

• A pp, qq tensor field can be written as (under Einstein’s notation) a
i1...ip
j1...jq

Bi1b

¨ ¨ ¨ b Bip b dxj1 b ¨ ¨ ¨ b dxjq .

• The contraction map sends a tensor field with coefficient functions a
i1...ip
j1...jq

to one with coefficients a
i1...ip´1k
j1...jq´1k

(summing over all k, according to Ein-

stein’s notation).

• Riemannian metric is a p0, 2q tensor field.

• A p1, 1q tensor field is a bundle homomorphism from TM to TM . Its
contraction is the trace function.
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10 Flows, Lie derivatives, Foliations

Chapters 8, 9 and 19 of textbook

Picard’s theorem of the existence and uniqueness of solutions of ODE implies
that:

Theorem 10.1. Let M be a smooth manifold, X a vector field on M . There
is an open neighborhood U “

Ť

xPMtxu ˆ Ix of M ˆ t0u in M ˆR, where Ix are
open intervals containing x, and a map Ψ : U Ñ M such that:

• Ψpx, 0q “ x

• For any px, rq P U , the value of X at Ψpx, rq is represented by the path
t ÞÑ Ψpx, r ` tq. We can write this as d

dtΨpx, tq|t“r “ XpΨpx, rqq.

• U is “maximum” in the following sense: if there is an interval J containing
0, a smooth map γ : J Ñ M such that d

dtγptq|t“s “ Xpγpsqq, then J Ď

Iγp0q and γptq “ Ψpγp0q, tq.

This Ψ is called the flow corresponding to vector field X.

The proof is by the following Picard’s Theorem for the existence of solutions
of ODEs:

Theorem 10.2 (Picard’s Theorem). Let U be an open set in Rn, V Ď U
a compact subset, f : U ˆ R Ñ Rn smooth, then there exists some ϵ ą 0
such that there is a map Y : V ˆ p´ϵ, ϵq Ñ U , such that Y pp, 0q “ p, and
d
dtY pp, tq “ fpY pp, tq, tq.

Picard’s Theorem can be proved by contraction principal or Euler’s Method.
To show Theorem 10.1 from Picard’s Theorem, cover the manifold with smooth
coordinate charts, such that the domain of each chart contains an open subset
which is sent to the interior of a closed disc under coordinate chart, and these
open subsets form an open cover of M . Now apply Picard’s Theorem to the
codomain of these coordinate charts, “glue” the resulting solutions together by
uniqueness of solutions of ODEs.

Remark 10.3. IfX is compactly supported, the flow Ψ is defined onXˆR. The
argument outlined above shows that there is some ϵ ą 0 such thatMˆp´ϵ, ϵq Ď

U . Making use of the fact that Ψpx, t ` t1q “ ΨpΨpx, tq, t1q, we can extend the
domain of Ψ to X ˆ R.

Example 10.4. M “ R, if X “ B{Bx, then Ψpx, tq “ x ` t. If X “ x2Bx, then

Ψpx, tq “

#

0 x “ 0

´1{pt´ 1{xq x ­“ 0
.

Example 10.5. M “ TS1, where S1 is the unit circle tpcos θ, sin θq P R2u. Let
i be a coordinate chart on S1 defined as pcos θ, sin θq ÞÑ θ, then it induces a coor-
dinate chart on M which we denote as I, and Ipvq “ pθ, cq iff v P Tpcos θ,sin θqS

1,
v “ cBθ.
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• The vector field X on M defined as XpI´1pθ, cqq “ I´1
˚ pcBθq has flow

ΦpI´1pθ, cq, tq “ cBθ|pcospθ`ctq,sinpθ`ctqq. Physically this is traveling around
the unit circle with constant speed.

• The vector field Y defined asXpI´1pθ, cqq “ I´1
˚ pcBθ´cospθqBcq represents

the dynamics of the simple pendulum.

Remark 10.6. The vector field X in Example 10.5 can also be written down
under other coordinate charts. Suppose j is another local coordinate chart on
S1, sending a point p in some U Ď S1 to s P R. Let J be a coordinate chart on
TU pS1q defined as Jpvq “ ps, dq iff v P Tj´1psqS

1, v “ dBs. Then by Definition
7.1,

XpJ´1ps, dqq “ XpI´1ppi ˝ j´1qs, pi ˝ j´1q1|sdqq

“ I´1
˚ ppi ˝ j´1q1|sdBθq “ J´1

˚ ppi ˝ j´1q1|sdp
Bs

Bθ
Bs `

Bd

Bθ
Bdqq

“ J´1
˚ ppi ˝ j´1q1|sdppj ˝ i´1q1|ipj´1psqqBs ` pi ˝ j´1q1|spj ˝ i´1q2|ipj´1psqqdBdqq

“ dBs ´
pi ˝ j´1q2|s

pi ˝ j´1q1|s
d2Bd

Now consider a Riemannian metric on S1 defined by g “ dθbdθ, then under
coordinate chart J it becomes g “ pi ˝ j´1q12dsb ds. Let gss “ pi ˝ j´1q12, then

pi ˝ j´1q2|s

pi ˝ j´1q1|s
d2 “

1

2

Bspgssq

gss
d2

This idea can be extended to higher dimension to get the geodesic flow: let
M be a smooth manifold, j a local coordinate chart sending points in U Ď M
to ps1, . . . , sdq P V Ď Rd, then a coordinate chart of TM can be defined as
J : TUM Ñ V ˆRd, Jpvq “ ps1, . . . sd, p1, . . . pdq if v P Ti´1ps1,...,sdqM , v “ piBsi .

Let g be a Riemannian metric defined as g “ gijds
idsj , rgijs “ rgijs´1. Now we

can define vector field on TM :

XpJ´1ps1, . . . , sd, p1, . . . , pdq “ J´1
˚ ppi

B

Bsi
´ gijp

Bgjk
Bsl

pkpl ´
1

2

Bgkl
Bsj

pkplq
B

Bpi
q

This definition is independent of the choice of j (which will be left as a practice
problem), hence the vector field is well defined.

A key concept that one can define using flows is the Lie derivative:

Definition 10.7. Let X be a smooth vector field, Φ the flow defined by X.
By the theory of ODE we know that for small t, Φt : ¨ ÞÑ Φp¨, tq is locally a
diffeomorphism. We can now define the Lie derivative which is a map from
the set of smooth pp, qq tensor fields to smooth pp, qq tensor fields, as follows:

1. If p “ q “ 0, i.e. the tensor field is a smooth function f , LXpfq is defined
as

pLXpfqqpxq “
d

dt
fpΦtpxqq|t“0
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2. If Xi are vector fields, αj are 1-forms, then

pLXpX1 b ¨ ¨ ¨ bXp b α1 b ¨ ¨ ¨ b αqqqpxq

“
d

dt

˜

â

i

pΦtq
´1
˚ XipΦtpxqq b

â

j

pΦtq
˚αjpΦtpxqq

¸

|t“0

Here pΦtq
´1
˚ can also be written as pΨ´tq˚.

Intuitively, Lie derivative described how fast a tensor field changes with the
family of diffeomorphisms Φt.

Example 10.8. M “ R, X “ xBx, fpxq “ x3, then Φtpxq “ etx, pLXpfqqpxq “

3x3.

Remark 10.9. f P C8pMq, then LXf can also be denoted as Xf .

Theorem 10.10. X, Y are smooth vector fields, f a smooth function, a, b
tensors.

1. LXpfaq “ LXpfqa` fLXpaq

2. LXpab bq “ LXpaq b b` ab LXpbq

3. LX commutes with contraction of tensors.

4. LLXY f “ LXLY f ´ LY LXf

Proof. The proof of 1 and 2 are similar to the proof of product rule for deriva-
tives. The proof of 3 is similar to the proof of linearlity of derivatives. For 4,
without loss of generality assume M “ Rn, X “ XiBi, Y “ Y iBi, LXY “ ZiBi.
Let F be the Rn-valued function pX1, . . . , Xnq, G be the Rn-valued function
pY 1, . . . , Y nq, H be the Rn-valued function pZ1, . . . , Znq.

Now let Φ and Ψ be the flows defined by X and Y , Φtp¨q “ Φp¨, tq, Ψtp¨q “

Ψp¨, tq, then
Φtpcq “ c` tF pcq `Opt2q

Ψtpcq “ c` tGpcq `Opt2q

Now by definition,

pΦ´tq˚Y pΦtpcqq “
d

ds
Φ´tΨsΦtpcq

“
d

ds
pppc` tF pcq `Opt2qq ` sGpc` tF pcq `Opt2qq `Ops2qq

´tF ppc` tF pcq `Opt2qq ` sGpc` tF pcq `Opt2qq `Ops2qq `Opt2qq|s“0

“ Gpc` tF pcq `Opt2qq ´ t
d

ds
F ppc` tF pcq `Opt2qq ` sGpc` tF pcq `Opt2qqq|s“0
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So

H “
d

dt
ppΦ´tq˚Y pΦtpcqqq|t“0 “

d

dt
Gpc` tF pcqq|t“0 ´

d

ds
F pc` sGpcqq|s“0

Hence the i-th entry of H is

Zi “ XjBjY
i ´ Y jBjX

i

So
LXY “ XjpBjY

iqBi ´ Y ipBiX
jqBj

and 4 follows.

Remark 10.11. Because a vector field X can be recovered from Xf for all
smooth function f , the theorem 10.10 above provided a way to calculate Lie
derivatives of any tensor field explicitly.

Remark 10.12. LXY can also be denoted as rX,Y s and called the Lie Bracket.
It is easy to see from Theorem 10.10 part 4 that

rX,Y s “ ´rY,Xs

and there is the Jacobi identity

rX, rY,Zss ` rY, rZ,Xss ` rZ, rX,Y ss “ 0

Furthermore, from Theorem 10.10 part 4 and Green’s theorem, we have the
following:

Theorem 10.13. rX,Y s “ 0 iff the flows defined by X and Y commutes.

Combine Theorem 10.13 and inverse function theorem, we have:

Theorem 10.14. If X1, . . . , Xk are vector fields such that rXi, Xjs “ 0, and are
linearly independent everywhere, then for every p P M there is a local coordinate
chart around p such that the flow of Xi under the chart is ppx1, . . . , xnq, tq ÞÑ

px1, . . . , xk ` t, . . . , xnq.

Proof. Without loss of generality assume that M is a open submanifold of Rn.
Consider the smooth function Φ : U Ď MˆRk Ñ M , such thatMˆp0, . . . , 0q Ď

U , Φpx, t1, . . . , tkq “ Φ1
t1 . . .Φ

k
tk

pxq, where Φk is the flow defined by Xk and

Φk
t pxq “ Φkpx, tq. Pick n ´ k indices i1, . . . in´k such that the i1, . . . , in´k-th

standand basis together with pXj
1q, . . . , pXj

kq P Rk are linearly independent, and
apply inverse function theorem to the map

pt1, . . . , tk, s1, . . . , sn´kq ÞÑ Φppx1, . . . , xi1 ` s1, . . . , x
ik ` sk, . . . q, t1, . . . , tkq

We see by construction that the inverse of the map above is a local coordinate
chart satisfying our requirement.
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Remark 10.15. By uniqueness of the solution of ODEs, the local coordinate
charts defined in Theorem 10.14 has the property that if i : U Ñ V and i1 :
U 1 Ñ V 1 be two coordinate charts, p P U X U 1, there is a neighborhood W of p
such that on ipW q, if

i1 ˝ i´1px1, . . . , xnq “ py1, . . . , ynq

Then pyk`1, . . . , ynq is a smooth function of pxk`1, . . . , xnq. If coordinate charts
with this property form an atlas, we call this atlas a foliation of dimension
k.

Example 10.16. Flows are foliations of dimension 1.

Remark 10.17. If A is a foliation of dimension k on smooth manifold M ,
for every i : U Ñ V in A, we can decompose U with immersed submanifolds
i´1ptpx1, . . . , xk, ck`1, . . . , cnq : x1, . . . , xk P R, px1, . . . , xk, ck`1, . . . , cnq P V uq.
The definition of foliation means that if two such immersed submanifolds in-
tersects, their union is also an immersed submanifold. Patch the intersecting
immersed submanifolds together we can get a collection of path connected im-
mersed submanifolds whose union is M , these submanifolds are called leaves
of foliation A.

One can weaken the aassumption of Theorem 10.14 while still getting a
foliation:

Theorem 10.18 (Frobenious Theorem). Let D Ď TM be a rank k subbun-
dle (we call this a distribution, note that this is unrelated to the concept of
distribution in analysis). Then the followings are equivalent:

1. For any two smooth sections X and Y of D, rX,Y s is a smooth section of
D.

2. There is a foliation onM of dimension k, such that at every p P M , let Np

be the leaf passing through p, ip : Np Ñ M be the embedding map, then
pipq˚pTpNpq “ Dp. This is called the foliation defined by distribution
D.

Proof. 2 implies 1 is obvious. To show 1 implies 2, we need to build the foliation
from distribution D.

We will show, by induction on k, that around every point p P M , there are
smooth sections X1, . . . , Xk of D, such that rXi, Xjs “ 0 and X1, . . . , Xk are
linearly independent on this neighborhood, then we can apply Theorem 10.14
to them to get the coordinate charts that can be used to define this foliation.
The case when k “ 1 is trivial because rX,Xs “ 0 for any vector field X.

If k ą 1, we first pick some section X1, . . . , Xk of D, which are linearly inde-
pendent on a neighborhood of p. Apply Theorem 10.14 to tX1u, we get a local
coordinate chart under which the flow defined by X1 is Φ1

t px1, . . . , xnq “ px1 `
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t, x2, . . . , xnq, i.e. X1 “ B1. Then for j “ 2, . . . , k, Xj “ Xi
jBi. Without loss of

generality we can assume that X1
j “ 0 for all j, then rX1, Xjs “

ř

ką1 a
kXk.

By solving an ODE (with x1 being the variable), we can find non-zero smooth
functions c2, . . . , ck such that rX1, cjXjs “ 0. Write down r¨, ¨s using local co-
ordinates we see that B

Bx1 cjX
i
j “ 0 for all j, i ą 1, in other words, the formula

of cjXj under the local coordinate chart does not contain x1. Now apply the
inductive hypothesis on c2X2, . . . , ckXk.

Example 10.19. If f : M Ñ N is a smooth submersion, E “ tv P TM :
f˚pvq “ 0u, then E is a distribution that satisfies Frobenious theorem and hence
defines a foliation. The leaves of this foliation are the connected components of
the level sets. This is because from Theorem 10.1, we know that if f˚pXppqq “

X 1pfppqq, Φt, Φ
1
t are the flows defined by X and X 1, then Φ1

tpfppqq “ fpΦtppqq.
Hence, from Definition 10.7, we know that if f˚pY ppqq “ Y 1pfppqq, then

f˚prX,Y sppqq “ rX 1, Y 1spfppqq

Example 10.20. If G is a Lie group, let g be the space of vector fields on G
which is invariant under left multiplication, then g is isomorphic to TeG as a
vector space and also closed under r¨, ¨s. pg, r¨, ¨sq is called the Lie Algebra of
Lie group G.

As an example, suppose G “ GLp2,Rq,

Xpgq “
d

dt
g

„

1 t
0 1

ȷ

|t“0

Y pgq “
d

dt
g

„

1 0
t 1

ȷ

|t“0

Then under local coordinate charts

i´1 : px1, x2, x3, x4q ÞÑ

„

1 ` x1 x2

x3 1 ` x4

ȷ

, we have
X “ p1 ` x1qB2 ` x3B4

Y “ x2B1 ` p1 ` x4qB3

So

rX,Y s “ p1 ` x1qB1 ` x3B3 ´ x2B2 ´ p1 ` x4qB4 “
d

dt
g

„

1 ` t 0
0 1 ´ t

ȷ

|t“0
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11 Sard’s theorem and Whitney’s embedding

Chapter 6 of textbook

Let f : M Ñ N be a smooth map. We say y P N is a regular value, if ei-
ther f´1pyq is empty, or for every x P f´1pyq, the map f is locally a submersion
around x. Other points of N are called critical values.

We say a subset A Ď M is a null set, if for any coordinate chart i : U Ñ V ,
ipA X Uq has Lebesgue measure 0. It is easy to see that to check a set is a
null set one only need to check the coordinate charts of any compatible smooth
atlas.

Theorem 11.1 (Sard’s Theorem). Let f :M Ñ N be a smooth map, then the
set of critical values is a null set in N .

The intuition is that if y P N is a critical value, the preimage of a tiny
neighborhood of y must be much larger in M . Hence the measure of the set of
critical values can not be too large.

Example 11.2. If dimpMq ă dimpNq, every point in fpMq is a critical value.
Hence Sard’s theorem implies that fpMq is a null set of N , in particular fpMq ­“

N . As a consequence, even though there are continuous space filling curves,
there can not be any smooth curve that fills higher dimensional spaces.

Theorem 11.3. If M is an embedded submanifold of RN , dimpMq “ n, then
M is diffeomorphic to an embedded submanifold of R2n`1.

Proof. IfN ď 2n`1 this is trivial. So assumeN ą 2n`1, then the unit sphere S
in RN is a smooth manifold of dimensionN´1. Consider f :MˆMztpx, xq : x P

Mu Ñ S defined as px, yq ÞÑ px´yq{distRN px, yq, where distRN is the Euclidean
distance, then by Example 11.2 the image of f is a null set in S. Consider
g : TMztimage of zero sectionu Ñ S as gpvq “ Npi˚pvqq, where i : M Ñ RN

is the embedding and NpaiBxiq “ 1
řN

i“1pa1q2
pa1, . . . , aN q P S, then by Example

11.2 the image of g is also a null set in S. Hence there is some v P S which is
not in the image of either f or g. Composing with orthogonal projection on vK

we get an embedding of M into RN´1.

Theorem 11.4 (Whitney’s Weak Embedding Theorem). Any smooth manifold
of dimension n has an embedding into R2n`1.

Proof. If the manifold M can be covered by the domains of finitely many coor-
dinate charts ik : Uk Ñ Vk, let tfku be the partition of unity function for the
finite open cover tUku, then M can be embedded into some RN as

x ÞÑ pf1pxqi1pxq, f1pxq, f2pxqi2pxq, f2pxq, . . . q
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Here fkpxqikpxq : M Ñ Rn is defined as the zero vector if x R Uk. Now apply
Theorem 11.3, we see that M can be embedded into R2n`1.

In general, apply Lemma 1.8, find a countable cover of the manifold N by
domains of coordinate charts, denote these domains as U1, U2, . . . . Let fi be
the partition of unity function for the open cover tUku, let F “

ř

n nfn, then
F ě 1 and F´1pIq for any finite interval I can be covered by finitely many Uk.
For all positive integers i, let Ii “ pi ´ 1, i ` 1q, then tIiu is an open cover of
p0,8q hence has a set of partition of unity functions gi. Because F

´1pIiq can be
covered by finitely many coordinate charts, let ϕi be an embedding of F´1pIiq
into R2n`1. Now there is an embedding of M into R4n`3 defined as

x ÞÑ p
ÿ

i odd,F pxqPIi

gipF pxqqϕipxq,
ÿ

i even,F pxqPIi

gipF pxqqϕipxq, F pxqq

Here summation is the zero vector if the index set is empty. Now apply Theorem
11.3 again one gets the conclusion.

With “Whitney trick” one can strengthen the embedding theorem to em-
bedding into R2n.

Combining Theorem 11.4 and Theorem 3.12, we get:

Theorem 11.5 (Whitney’s Smooth Approximation for Maps). Let M , N be
smooth manifolds, f a continuous map fromM to N , which is smooth on closed
set A. Then there is a smooth map g :M Ñ N such that there is a continuous
map H : M ˆ r0, 1s Ñ N , Hpx, 0q “ fpxq, Hpx, 1q “ gpxq, Hpx, tq “ fpxq if
x P A. (This is called f is homotopic to g relative to A).

Proof. Let i : N Ñ RK be an embedding which exist due to Theorem 11.4.
Consider the rank K bundle over N i˚pTRKq. For any x P N , the fiber of this
bundle is TxRK “ taiBiu. We identify this with RK by aiBi ÞÑ pa1, . . . , aKq, and
give it a positive definite quadratic form via the Euclidean dot product. TN
is a rank dimpNq-subbundle by the map i˚, let N be the orthogonal comple-
ment of TN in i˚pTRKq. Now consider a smooth map F : N Ñ RK , sending
aiBi P Tpx

1, . . . , xKqRK to px1 ` a1, . . . , xK ` aKq. It is easy to see that F is
full rank on the image of the zero section, hence when restricted to an open
neighborhood V0 of this zero section, F is a diffeomophism from V0 to a neigh-
borhood U of N .

Now apply Theorem 3.12 to f , we get a smooth map g1 :M Ñ U such that
g1 “ f on A, and the interval in RK linking f to g1 is completely contained in
U . Let g “ π ˝ F´1 ˝ g1, and Hpx, tq “ π ˝ F´1 ˝ pp1 ´ tqfpxq ` tgpxqq. Here π
is the projection map for the bundle N .

Remark 11.6. The neighborhood U is called the tubular neighborhood of
the embedding from N to RK . Tubular neighborhoods can be constructed for
any embedding between smooth manifolds, by replacing the map F with the
geodesic flow (see Remark 10.6).
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Remark 11.7. If H : M ˆ r0, 1s Ñ N is smooth (here M ˆ r0, 1s is seen
as a manifold with boundary (Definition 5.1), f : M Ñ N and g : M Ñ N
satisfy fpxq “ Hpx, 0q, gpxq “ Hpx, 1q, then we say f and g are smoothly
homotopic. Theorem 11.5 implies that, between two smooth manifolds,

• Any continuous map is homotopic to a smooth map.

• Any two smooth maps that are homotopic must be smoothly homotopic.

• Any two smooth maps that are homotopic to the same continuous map
must be smoothly homotopic.

Proof of Theorem 11.1. Because countable union of null sets are null sets, and
manifolds are second countable, we can without loss of generality assume both
M and N be open submanifolds of Rm and Rn respectively.

Now induction on m: if m “ 0 this is obvious. Now assume m ą 0. Let Ck

be the set of points in M where Dkf “ 0, C be the set of points in M where
rankpfq ă n.

• fpCzC1q is a null set: do coordinate change one can assume without loss of
generality that fpx1, . . . , xmq “ px1, . . . q. Now apply inductive hypothesis
and Fubini.

• fpCkzCk`1q is null: by rank theorem CkzCk`1 is contained in some sub-
manifold of lower dimension. Now use inductive hypothesis.

• When k is sufficiently large, fpCkq is null: decomposeM into tiny squares,
and see that under the map f a square of diameter r will be sent into a
square of diameter oprkq.
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12 Exterior Derivatives, Integration and Stokes
theorem

Chapters 14-16 in textbook

Reasons we care about exterior products and differential forms:

• We want to do definite integrals on manifolds.

• We want to study when a 1-form can be written as df .

Let V be a n dimensional vector space over R or C. σ P Sk a permutation
(bijection from t1, . . . , ku to t1, . . . , ku). Recall that the parity of σ is sgnpσq “
ś

iăj
σpiq´σpjq

|σpiq´σpjq|
. σ induces a self map on V bk defined as

a1 b ¨ ¨ ¨ b ak ÞÑ aσp1q b . . . aσpkq

• The k-th exterior product of V is the subspace of V bk such that σpxq “

sgnpσqx for all σ P Sk, denoted as
Źk

V

• dimp
Źk

V q “
`

n
k

˘

• There is a surjection from V bk to
Źk

V , defined as

A : x ÞÑ
1

k!

ÿ

σPSk

sgnpσqσpxq

We denote Apa1 b a2 ¨ ¨ ¨ b akq as a1 ^ a2 ¨ ¨ ¨ ^ ak.

• A linear map f from V toW induces a linear map
Źk

f :
Źk

V Ñ
Źk

W :
a1 ^ a2 ¨ ¨ ¨ ^ ak ÞÑ fpa1q ^ fpa2q ^ ¨ ¨ ¨ ^ fpakq. If f is isomorphism so is

^kf . It is easy to see that A ˝
Âk

f “
Źk

f ˝A, where
Âk

f is the map

from
Âk

V to
Âk

W induced by f .

• If f is a self map on V ,
Źn

f “ detpfq.

Similar to tensors of vector bundles, if E is a vector bundle one can also
define

Źk
E as a vector bundle. We can do so via the idea of kernel bundles as

in Definition 9.7, or by specifying the transition functions as in Remark 9.9 and
Remark 6.7. Note that if k ą rankpEq this would be a rank 0 vector bundle.

Definition 12.1. A smooth section α of
Źk

T˚M is called a smooth k-form,
denoted as α P ΩkpMq.

Remark 12.2. If f : M Ñ N is a smooth map, the pull backs of smooth 1-
forms induces pullbacks of smooth k-forms. Let α P ΩkpNq, then pf˚pαqqpxq “

p
Źk

f˚qpαpfpxqqq.
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Definition 12.3. Let M be a smooth manifold and E a vector bundle over
M . We say E is orientable if it has a set of trivializations where the transition
function have positive determinant. A maximal set of such local trivializations is
called an orientation (compare this with the definition of smooth structure in
Remark [?]). We sayM is orientable iff TM is orientable, and an orientation
on M is an orientation on TM .

Theorem 12.4. The followings are equivalent:

1. TM is orientable.

2. T˚M is orientable.

3. There is an atlas of M such that Dpi1 ˝ i´1q always have positive determi-
nant.

Proof. 1 and 2 are equivalent because TM and T˚M are isomorphic due to the
existence of Riemannian metric (Theorem 9.14). If 3 is true, use the trivializa-
tion of TM in Definition 7.1, then 1 follows. If 1 is true, pick an orientation
O for TM , and a smooth atlas with path connected domains. For each chart
in the atlas, if the corresponding trivialization is not in O, replace it with its
composition with px1, x2, . . . q ÞÑ p´x2, x2, . . . q.

Definition 12.5. Let M be a smooth manifold with an orientation and di-
mension n, let C be a countable open cover by domains of an atlas which is
compatible with this orientation, such that the closure of each element of C is
homeomorphic to a closed disc (their existence is due to Lemma 3.4). Let tfUu

be a partition of unity corresponding to C, then fU all have compact support.
Now let α be a smooth m form, we define the integral of α on M as follows:

For each U P C, each chart i : U Ñ V in the aforementioned atlas, let
pi´1q˚pfUαq “ gUdx

1 ^ ¨ ¨ ¨ ^ dxn, then

ż

M

α “
ÿ

UPC

ż

R⋉
gUdx

1dx2 . . . dxn

Here the integral is the usual Riemann or Lebesgue integral.

Remark 12.6. Because the transition function of ^nT˚U between trivializa-
tions defined in Definition 7.1 is tV U ppq “ ^npDpiU ˝ i´1

V q|iV ppqqT “ detpDpiU ˝

i´1
V q|iV ppqq, and standard argument from analysis, we know that if α is com-
pactly supported, or if a is non negative function times dx1 ^ ¨ ¨ ¨ ^ dxn

(hence all the integrals involved are non negative),
ş

M
α defined above is inde-

pent of the choice of coordinate charts and tfUu.

Example 12.7. Let M be a smooth manifold with a Riemannian metric g,
with an atlas A correspond to a given orientation O, we can define the volume
form as

ωg|U “ i˚ppdetprgpBi, Bjqs1ďi,j,ďnqq1{2dx1 ^ ¨ ¨ ¨ ^ dxnq
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for every i : U Ñ V Ď Rn in A.
ş

M
ω is called the volume of M .

In the case of unit sphere S2 in R3, let i be the embedding map, then
g “ i˚pdx1 b dx1 ` dx2 b dx2 ` dx3 b dx3q is a Riemannian metric on S2,
and the volume corresponding to this metric is 4π. To show that, consider
coordinate chart

i : tpx, y, zq : x2 ` y2 ` z2 “ 1, z ­“ 1u Ñ tpu, vq P R2u

As the complement of the domain of i is just a single point hence has volume
can be calculated via this coordinate chart.

i´1pu, vq “ p
2u

u2 ` v2 ` 1
,

2v

u2 ` v2 ` 1
, 1 ´

2

u2 ` v2 ` 1
q

Bu “ p
2pv2 ´ u2 ` 1q

u2 ` v2 ` 1
Bx `

´4uv

u2 ` v2 ` 1
By `

4u

u2 ` v2 ` 1
qBz

Bv “
´4uv

u2 ` v2 ` 1
Bx `

2pu2 ´ v2 ` 1q

u2 ` v2 ` 1
By `

4v

u2 ` v2 ` 1
Bz

So
gpBu, Bvq “ gpBv, Buq “ 0

gpBu, Buq “ gpBv, Bvq “
4

pu2 ` v2 ` 1q2

So
ż

S2

ωg “

ż

R2

4dudv

pu2 ` v2 ` 1q2
“ 4π

Now we consider the question when is a 1-form of the form df : let α be
a 1-form, X, Y two vector fields. We denote the pairing between X and α, or
the contraction of Xbα, as αpXq. Then, suppose α “ df , we have αpXq “ Xf ,
hence

XpαpY qq ´ Y pαpXqq ´ αprX,Y sq “ 0

The left hand side is clearly bilinear and anti symmetric with respect to X and
Y . Furthermore, if X or Y equals 0 at a point then the left hand side equals 0
at that point: for example, if Xpxq “ 0, then at x, we have

Y pαpXqq “ LY pαpXqq “ pLY αqpXq ` αprY,Xsq “ αprY,Xsq

Hence at point x,

XpαpY qq ´ Y pαpXqq “ 0 ´ αprY,Xsq ´ αprX,Y sq “ 0

As a consequence, the value of the left hand side at x P M is an antisymmet-
ric bilinear form on TxM , i.e. an element in

Ź2
T˚M . Now we have a linear

map d : Ω1pMq Ñ Ω2pMq, defined as

pdαqpX,Y q “ XαpY q ´ Y αpXq ´ αprX,Y sq

Generalizing this to k forms, we have the following definition:
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Definition 12.8. The exterior derivative d : ΩkpMq Ñ Ωk`1pMq is defined
as

pdαqpX1, . . . , Xk`1q “
ÿ

i“1,...,k`1

p´1qi´1XipαpX1, . . . , Xi´1, Xi`1, . . . , Xk`1q

`
ÿ

1ďiăjďk`1

p´1qi`jαprXi, Xjs, X1, . . . , Xi´1, Xi`1, . . . , Xj´1, Xj`1, . . . , Xk`1q

Remark 12.9. We can consider a smooth function f as a 0-form. Then ac-
cording to Definition 12.8, dfpXq “ Xf , which is consistent with the notation
in Example 8.4.

Remark 12.10. Under local coordinate charts, we have, from Definition 12.8,

dpai1...ikdx
i1 ^ ¨ ¨ ¨ ^ dxikq “ pBjai1...ikqdxj ^ dxi1 ^ ¨ ¨ ¨ ^ dxik

As a consequence, d ˝ d “ 0.

The idea of k-forms and integration can be extended to manifold with bound-
ary (Definition 5.1). Stoke’s Theorem for manifold is a generalization of the fun-
damental theorem of calculus, and relates the integral of a form on the boundary
of a manifold with the integral of the form on the manifold itself.

Example 12.11. Consider the manifold with boundary M “ r0,8q ˆ Rn´1,
a k-form can be written as ω “ a1dx

2 ^ dx3 ^ ¨ ¨ ¨ ^ dxn ` a2dx
1 ^ dx3 ^

¨ ¨ ¨ ^ dxn ` ¨ ¨ ¨ ` andx
1 ^ ¨ ¨ ¨ ^ dxn´1. Suppose ω has compact support. Then

dω “ B1a1dx
1 ^ dx2 ^ ¨ ¨ ¨ ^ dxn ` B2a2dx

2 ^ dx1 ^ . . . By fundamental theorem
of calculus and Fubuni’s theorem,

ż

M

Bkakdx
1dx2 . . . dxn “

#

0 k ą 1
ş

Rn´1 a1p0, t1, t2, . . . , tn´1qdt1dt2 . . . dtn´1 k “ 1

So if we pick the orientation on BM as the one defined by coordinate chart
p0, x2, . . . , xnq ÞÑ p´x2, x3, . . . xnq, then

ş

M
dω “

ş

BM
ω.

Definition 12.12. Let M be a smooth manifold with boundary of dimension
n with an orientation, A a smooth atlas consistent with the orientation of M .
For each element i of A that sends an open set U Ď M to an open set of
r0,8q ˆ Rn´1, it induces a map j from U X BM to Rn´1 defined as follows:
If ippq “ p0, x2, . . . , xnq, then jppq “ p´x2, x3, . . . , xnq. The maps j form a
smooth atlas of BM which gives it an orientation, and we call this the induced
orientation on the boundary BM .

Theorem 12.13 (Stoke’s Theorem). LetM be a smooth manifold with bound-
ary of dimension n and BM the set of boundary points with the induced orienta-
tion. Let ω be a compactly supported smooth n´ 1-form, then

ş

M
dω “

ş

BM
ω.

Proof. Cover M with domains of smooth coordinate charts that are compatible
with the orientation onM , use partition of unity to split ω, then apply Example
12.11 above.
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Example 12.14. Let M be the closed unit disc in R2, ω “ ydx. Then

ż

B

Mydx “

ż 2π

0

sinptqd cosptq “ ´

ż 2π

0

sin2ptqdt “ ´π

ż

M

dpydxq “

ż

M

dy ^ dx “ ´

ż

M

dxdy “ ´π
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13 De Rham Theory

Let M be a smooth manifold of dimension n, recall from the previous section,
we let ΩkpMq be the R-vector space of smooth k forms on M . Here Ω0pMq “

C8pMq. Let dk : ΩkpMq Ñ Ωk`1pMq be the exterior derivative. Then by
Remark 12.10, dk`1 ˝ dk “ 0.

Definition 13.1. The k-th De Rham cohomology of a smooth manifold M is
defined as HkpMq “ kerpdkq{impdk´1q. When k “ 0, impdk´1q is assumed to
be the zero map 0 Ñ Ω0pMq.

Remark 13.2. It is easy to see that H0pMq – Rm where m is the number of
connected components of M , and HkpMq “ 0 if k ą dimpMq.

Remark 13.3. If M , N are smooth manifolds, f : M Ñ N induces maps
f˚ : HkpNq Ñ HkpMq by f˚prαsq “ rf˚pαqs.

Theorem 13.4 (Homotopy invariance). LetM , N be two smooth manifolds, f ,
g two smooth maps fromM to N . If there is a smooth map H :M ˆ r0, 1s Ñ N
such that Hpx, 0q “ fpxq, Hpx, 1q “ gpxq (i.e. f and g are smoothly homotopic,
see Remark 11.7), then f˚ : HkpNq Ñ HkpMq and g˚ : HkpNq Ñ HkpMq are
identical.

Proof. To show this we only need to show that there is a chain homotopy,
which are linear maps h : ΩkpNq Ñ Ωk´1pMq such that as maps from ΩkpNq

to ΩkpMq,
g˚ ´ f˚ “ d ˝ h` h ˝ d

Any coordinate chart i : U Ñ V Ď Rm induces a diffeomorphism from U ˆ

r0, 1s Ď M ˆ r0, 1s to V ˆ r0, 1s Ď Rm ˆ r0, 1s, sending pp, tq to pippq, tq. For any
ω P ΩkpNq, under this diffeomorphism we can write H˚pωq locally as

aj1...jk´1
dt^ dxj1 ^ ¨ ¨ ¨ ^ dxjk´1 ` bl1...lkdx

l1 ^ ¨ ¨ ¨ ^ dxlk

Now let

hpωq “ p

ż 1

0

aj1...jk´1
dtqdxj1 ^ ¨ ¨ ¨ ^ dxjk´1

Remark 13.5. By Remark 11.7, any continuous map between two smooth man-
ifolds induces a map on Hk, which we define as the one induced by the smooth
map homotopic to it. Such a definition is well defined, and two continuous maps
that are homotopic would induce the same map on Hk.

Example 13.6. If U is an open submanifold of Rn that satisfies x P U ùñ

tx P U for all t P r0, 1s (called star shaped), then the identity map and
the constant map sending every point to 0 are smoothly homotopic. Hence

HkpUq “

#

R k “ 0

0 k ą 0
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We will illustrate the process for calculating De Rham cohomology via the
example below:

Example 13.7. Suppose smooth manifold M has an open cover C “ tUαu,
each Uα is diffeomorphic to a star shaped region. For each pair pα, βq, Uα XUβ

is either empty or diffeomorphic to a star shaped region, in which case we de-
note it as Uαβ . Similarly for the intersections of three elements in C. Let
I1 “ tαu be the set of indices of the cover C, I2 “ tpα, βq P I21 : Uα XUβ ­“ Hu,
I3 “ tpα, β, γq P I31 : Uα X Uβ X Uγ ­“ Hu,

Now pick any rωs P H1pMq, where α P Ω1pMq, dω “ 0.

• By Example 13.6, for each Uα we can find a smooth function fα P C8pUαq “

Ω0pUαq such that dfα|Uα
“ ω|Uα

.

• For each Uαβ “ Uα XUβ which is non-empty, fα ´fβ on Uαβ is a constant,
because on Uαβ,

dpfβ ´ fαq “ ω ´ ω “ 0

Now pα, βq ÞÑ fβ ´ fαq|Uαβ
gives an element af “ RI2 .

• Define d1
1 : RI1 Ñ RI2 as pd1

1paqqpα, βq “ apβq ´ apαq, and d1
2 : RI2 Ñ RI3

as pd1
2paqqpα, β, γq “ apβ, γq ´ apα, γq ` apα, βq. By calculation, we see

that:

– The af above must be in kerpd1
2q.

– If we pick a different w as the representative of a given De Rham
cohomology class, and pick different fα, the resulting af can only
differ by an element of impd1

1q.

As a consequence, there is a linear map H1pMq Ñ kerpd1
2q{impd1

1q.

• By partition of unity (see Practice Problem 2 of Week 5) we can show this
is a bijection.

The above argument can be seen very explicitly in for example S1 or S2.
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14 Review and Further Topics

Key Concepts and Results:

• Definition of manifolds and smooth manifolds

• Partition of Unity

• Rank Theorem, Embedding, Immersion and Submersion.

• Vector Bundles, Tangent Bundles, Cotangent Bundles

• Flows, Foliations and Lie Derivatives, Geodesic Flow and Tubular Neigh-
borhood

• Exterior Derivatives and Stokes Theorem, De Rham Theory

• Sard’s Theorem and Whitney’s Embedding

Further Topics

• Riemannian Geometry, Complex Geometry, Sympletic Geometry, Kahler
Geometry, etc.

• PDE on manifolds, Geometric Analysis.

• Lie Groups.

• Characteristic Classes, K-theory, non abelian geometry

• Connections on Principal Bundles, Gauge Theory.

• Application of manifolds in physics, statistics, economics, etc.
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A Practice Problems

A.1 Week 1

1. Show that any topological manifold is metrizable (the topology can be in-
duced by a metric).

Answer: Let C “ tUiu be a countable cover of this manifold M , such that
each Ui is homeomorphic to an open disc, and Ui is homeomorphic to a closed
disc. GlueMzUi into one point we get a sphere, hence we have homeomorphisms
fromM{pMzUiq to the unit sphere Sn. Denote πi :M Ñ Sn be the composition
between this homeomorphism with the quotient map. Let dn be the Euclidean
metric on Sn, then we can write down a metric on M as

dpp, qq “
ÿ

i

2´idipπippq, πipqqq

2. Let M “ pR2 ˆ R2q{ „, where pa, bq „ pc, dq iff a “ c, b “ d or a “ d,
b “ c, gives R2 ˆ R2 the product topology and M the quotient topology. Show
that M is a topological manifold.

Answer: Identify R2 with C, then the map C2 Ñ C2 defined as pz, z1q ÞÑ

pz ` z1, zz1q gives a homeomorphism from M to C2.
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A.2 Week 2

1. Let A, B be two disjoint non-empty compact sets in Rn. Show that there is
a smooth function f on Rn, such that 0 ď f ď 1, and f |A “ 0, f |B “ 1. (Hint:
you can first get a continuous function then smoothen it via convolution.)

Answer: One can follow the hint, or use partition of unity on the cover
tRnzA,RnzBu.

2. Let M be the set of 2 dimensional sub spaces of the 4 dimensional real
vector space R4. Pick any 2-dimensional subspace H, identify it with R2 via
a linear bijection ϕH : H Ñ R2, and two vectors u and v in R4zH which are
linearly independent, and u, v,H together span R4. Let

Uu,v,H “ tW P M : there exist aW , bW P H,W X pu`Hq “ tu` aW u,

W X pv `Hq “ tv ` bW uu

Let
iu,v,H : Uu,v,H Ñ R2 ˆ R2 – R4

and be defined as
iu,v,HpW q “ pϕHpaW q, ϕHpbW qq

such that

W X pu`Hq “ tu` aW u,W X pv `Hq “ tv ` bW u

Show that M has a smooth manifold structure such that tiu,v,Hu is a smooth
atlas. This smooth manifold M is called the Grassmannian Gr2pR4q

Answer: By linear algebra these maps are bijections, and satisfy all four
conditions in Theorem 2.11. For Condition (2), these functions are rational
hence smooth; for condition (3), let u, v be two of the four standard basis vectors
and H be spanned by the remaining two basis vectors, then these finitely many
Uu,v,H covers M . For condition (4), given any two 2-dimensional subspaces L,
L1, let H be a 2-dimensional subspace which intersects with both L and L1 only
at the origin, and let tu, vu be a basis of HK.
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A.3 Week 3

1. Let M be the 3-dimensional unit sphere in R4. Write down an open cover
C of M by domains of coordinate charts. Write down a compactly supported,
non negative smooth function fU for each U P C, such that the support of fU
is contained in U , and the sum of fU equals 1.

Answer: tMztp1, 0, 0, 0qu,Mztp´1, 0, 0, 0quu. The two fU are g0{pg0 ` g1q

and g1{pg0 ` g1q, such that

g0px1, x2, x3, x4q “

#

e1{px1´1{2q x ă 1{2

0 x ě 1{2

g1px1, x2, x3, x4q “ g0p´x1, x2, x3, x4q

2. Let A be a non-empty subset of a smooth manifoldM . Show that if every
smooth function on A can be extended to a smooth function on M , then A is
closed.

Answer: Let d be the dimension ofM . Suppose A is not closed, then there is
some p P M such that p R A and p P A. Pick a coordinate chart i : U Ñ V Ď Rd

such that p P U and ippq “ 0, let fU be a smooth function on M such that
fU ppq “ 1 and supppfU q Ď U , let g : V Ñ R be defined as gpx1, . . . , xdq “

1{px21 ` ¨ ¨ ¨ ` x2dq, and consider function hppq “

#

0 p R U

fU ppqgpippqq p P U
which

is smooth on Mztpu, then h|A is a smooth function on A which can not be
extended to M .
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A.4 Week 4

Find all possible real numbers a and b such that tpx, yq P R2 : y2 “ xpx2`ax`bqu

is an embedded submanifold of R2.

Answer: If a2 ´ 4b ­“ 0 and b ­“ 0, the function F px, yq “ y2 ´xpx2 ` ax` bq
has constant rank in a neighborhood of the preimage of 0, hence the set is an
embedded submanifold. Now we consider the other cases:

1. If b “ 0:

(a) If a ă 0, the set has a single isolated point and hence can not be a
topological manifold.

(b) If a ą 0, the set can not be a topological manifold because it is
connected and with p0, 0q removed it has 3 connected components.

(c) If a “ 0, the set is A “ tpx, yq : y2 “ x3u. Suppose it is an embedded
submanifold. Because it has empty interior and is also connected,
it must have dimension 1. Hence, then there is a coordinate chart t
defined on a neighborhood of p0, 0q and taking value in some open
set V Ď R. Without loss of generality assume that tp0, 0q “ 0. The
composition of the projections to x and y directions and t´1 are now
two smooth functions on V , which we denote as xpsq and ypsq. Hence
xp0q “ yp0q “ 0, and embeddedness implies that either x1p0q ­“ 0 or
y1p0q ­“ 0. Now consider the equation ypsq2 “ xpsq3, take second
order derivatives on both sides we get y1p0q “ 0, take third order
derivatives on both sides we get x1p0q “ 0, a contradiction.

2. If b ­“ 0:

(a) If a ą 0, use the same argument as in 1(a).

(b) If a ă 0, use the same argument as in 1(b).
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A.5 Week 5

1. Let pE, πq be a smooth real vector bundle over smooth manifold B, C an
open cover of B such that we can define local trivialization and transition maps
for bundle pE, πq. Suppose C1 is a refinement of C, show that one can define
local trivialization and transition functions for pE, πq using C1 as well.

Answer: For every U P C1, pick an open set IpUq P C, such that U Ď IpUq.
Now let jU “ jIpUq|π´1pUq, tU 1U “ tIpU 1qIpUq|U 1XU . It is easy to verify that these
satisfies all the requirements for local trivialization and transition functions.

2. Let M be a smooth manifold, C be an open cover. For any U, V P C
that have non empty intersection, define a smooth real-valued function fV U on
U X V . Assume further that for fUU ” 0, and for any U, V,W P C with non-
empty intersection, fWU “ fWV ` fV U . Show that for any U P C there is a real
valued smooth function ρU defined on U such that on UXV ­“ H, fV U “ gV ´gU .

Answer: Let tψU : U P Cu be a set of partion of unity functions. By multi-
plying with ψU and the linearlity of this question, we can assume without loss
of generality that the support of all fV U lie in some compact subset of a single
U0 P C. Now we define gU as: gU ” 0 if U “ U0 or U X U0H; if U X U0 ­“ H,
gU “ fUU0

on U X U0, and gU “ 0 elsewhere.

3. A real vector bundle is called orientable if one can pick a trivialization
such that the value of the transition function all have positive determinant.
Prove that rank 1 smooth real vector bundle over any smooth manifold must
be isomorphic to a trivial bundle.

Answer: By assumption, the transition functions are tV U “ refV U s for some
real valued function fV U , and problem 2 is saying that ttV Uu and tt1V U ” r1su

satisfy the coboundary condition hence represent isomorphic vector bundles. In
other words, by a change of trivialization we can make all transition functions
taking constant value in the 1 ˆ 1 identity matrix. This implies that the vector
bundle in question is trivial.
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A.6 Week 6

1. Show that SUp2q “ tA P M2ˆ2pCq : AAT “ I2,detpAq “ 1u is a subgroup
of GLp2,Cq and an embedded submanifold, hence is a Lie group. Show further
that it is diffeomorphic to S3.

Answer: SUp2q is a level set of function F : GLp2,Cq Ñ R5, where

F p

„

a b
c d

ȷ

q “ paā` bb̄, cc̄` dd̄, Repac̄` bd̄q, Imagpac̄` bd̄q, argpad´ bcqq

The bijection from SUp2q to S3 can be defined as follows: any A P SUp2q

can be sent to A

„

1
0

ȷ

P C2. We identify C2 with R4 then the image of this

map is the unit 3 sphere.

2. Let M , N be two smooth manifolds, pE, πq a smooth vector bundle on
M , pE1, π1q a smooth vector bundle on N . Suppose g : M Ñ N is a smooth
embedding, and there is a smooth vector bundle homomorphism h : E Ñ E1

which is π1 ˝ h “ g ˝ π. Show that:

• If h is an injection then it is a smooth embedding.

• Find an h that has different ranks at different points on E.

Answer:

• By looking at local coordinate charts induced by trivialization we see
that h is smooth, hence because it is an injection, it must also be an
immersion. So we only need to show that open sets are sent to open sets
of the image under subspace topology. Let m, n be the dimensions of
M and N respectively, r, r1 be thr ranks of E, E1 respectively. Suppose
A Ď E is open, q P A, p “ πpqq. By rank theorem, we can find open
sets U and U 1 in M and N that contains p and gppq respectively, such
that U Ď A, gpUq “ U 1 X gpMq, and U 1zgpUq is open. Shrink U and U 1

if necessary, we can further assume that there is a local trivialization of
E on U : jU : π´1pUq Ñ U X Rr, and a local trivialization of E1 on U 1:
jU 1 : π1´1pU 1q Ñ U 1 ˆRr1

, and that there is some open set B Ď Rr, b P B,
such that jU pqq “ pp, bq, and j´1

U pU ˆ Bq Ď A. Let p2 be thr projection

from U 1 ˆRr1

to the second component Rr1

, then, because of the continuity
of jU 1 ˝h˝j´1

U , if U and U 1 are sufficiently small, there is a r1´r dimensional

subspace L such that for all x P U , p2pjU 1 phpExqqq ‘ L “ Rr1

. Then the
set

tjU 1 pgpxq, vq : x P U, v “ b`l, b P p2pjU 1 phpj´1
U ptxuˆBqqqq, l P LuYπ1´1pU 1zgpUqq

is open in E1, contains hpqq, and its intersection with hpEq is contained in
A, which finishes the proof.
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• Let M “ N “ R, E “ E1, hpx, vq “ px, xvq.

3. Show that the tangent bundle of circle S1 is trivial.

Answer: Let S1 be the unit circle in R2. The projections x0 : pa, bq ÞÑ a
and x1 : pa, bq ÞÑ b are smooth functions on R2 hence must be smooth on S1.
We can define a bundle isomorphism from TS1 to the trivial bundle S1 ˆ R
as follows: for each pa, bq P S1 Ď R2, the function bx0 ´ ax1 is smooth on S1.
For any tangent vector of S1 which is in the tangent space of pa, bq P S1, we
represent it as a smooth path γ, then it will be sent to ppa, bq, ppbx0 ´ax1q˝γq1q.
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A.7 Week 7

1. Let M be a smooth manifold, U an open subset, p P U , f : U Ñ R a smooth
function. Show that there is a compactly supported smooth function on M
which is identical to f on an open subset V Ď U such that p P V .

Answer: By partition of unity we can find a compactly supported function g
whose value is between 0 and 1 and takes 1 in a neighborhood of p, such that the
support of g is contained in U . Now one can take this new smooth function as fg.

2. Consider the smooth map from R2 to R3 defined as f : px1, x2q ÞÑ

px1, x2, sinpx1q ` ex2q. Let p “ p0, 0q, find f˚pTppR2qq.

Answer: It is spanned by B1 ` B3 and B2 ` B3.

3. Let M be a smooth manifold, p P M , γ a smooth path starting from p,
f a smooth function on M . Recall that the pairing TpM ˆ T˚

p M Ñ R can be
written as prγs, rf sq ÞÑ pf ˝ γq1|0. Now see f as a smooth map from M to R,
pick the coordinate chart on R as identity then we have standard basis tB1u of
TfppqR. Show that f˚prγsq “ CB1 where C is the pairing between rγs P TpM
and rf s P T˚

p M .

Answer: By definition, f˚prγsq “ rf ˝ γs “ pf ˝ γq1|t“0B1 “ prγs, rf sqB1
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A.8 Week 8

1. Show that any smooth 1-form on R is of the form df .

Answer: If the 1-form is gpxqdx, let f “
şx

0
gptqdt.

2. Write down a smooth 1-form on R2 which is not of the form df .

Answer: df “ fxdx`fydy, and fxy “ fyx from multivariable calculus, hence
for example dx` xdy can not be of the form df .

3. Write down a smooth 1-form on S3 which is non-zero everywhere.

Answer: Let S3 “ tpx0, x1, x2, x3q : x20 ` x21 ` x22 ` x23 “ 1u. Let xi :
S3 Ñ R be smooth functions defined as px0, x1, x2, x3q ÞÑ xi. Then the 1 form
x1dx0 ´ x0dx1 ` x3dx2 ´ x2dx3 is non-zero everywhere.

4. Let f and g be smooth functions on manifold M , show that dpfgq “

fdg ` gdf .

Answer: For any p P M , consider function fg´ fppqg´ gppqf , one can show
by calculation that its rank at p is 0. Hence dpfgq|p “ fppqdg|p ` gppqdf |p.
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A.9 Week 9

1. Show that ifM is a compact manifold, there are finitely many smooth vector
fields (smooth sections of TM) X1, . . . XN such that any smooth vector field

can be written as
řN

i“1 aiXi where ai are smooth real valued functions on M .

Answer: Let C be a finite open cover of M by domains of coordinate charts,
for every U P C, let iU be the coordinate chart and fU be the partition of unity
function. This finite set of smooth vector fields can be chosen as tXU,iu, where
XU,ippq “ 0 if p R U and XU,ippq “ fU ppqpi´1

U q˚pBiq.

2. If f : M Ñ N is a smooth map between smooth manifolds, E, E1 two
vector bundles on N . Show that f˚pE b E1q is isomorphic to f˚pEq b f˚pE1q.

Answer: The vector bundle isomorphism can be defined as px, v b v1q ÞÑ

px, vq b px, v1q. Alternatively, one can check that both sides have the same triv-
ialization and transition functions.

3. LetM be a smooth manifold, E, E1 two vector bundles onM , f : E Ñ E1

a surjective bundle homomorphism over E. Show that E is isomorphic to
E1 ‘ kerpfq.

Answer: Pick a positive definite quadratic form on E, we can show that
E “ kerpfq ‘ kerpfqK. f |kerpfqK is an isomorphism from kerpfqK to E1.

4. Write down a Riemannian metric on CP2.

Answer: The standard metric is the Fubini-Study metric. We can also write
down one via partition of unity as follows: let Ui “ trz0 : z1 : z2s : zi ­“ 0u,
coordinate charts pi : Ui Ñ C2 “ tx1 ` y1

?
´1, x2 ` y2

?
´1u, then we can let

g “
ÿ

i

p˚
i pF px21 ` x22 ` y21 ` y22qdx1 b dx1 ` dx2 b dx2 ` dy1 b dy1 ` dy2 b dy2q

Here F ptq “

#

e´1{p100´t2q t ă 10

0 t ě 10
.
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A.10 Week 10

1. Write down a smooth manufold M , a smooth map F : M ˆ R Ñ M , such
that F px, 0q “ x, and F is not the flow of any vector field.

Answer: For example, M “ R, F px, tq “ x ` t2. Basically as long as
F pF px, aq, bq ­“ F px, a` bq then F can not be a flow.

2. Let M , N be smooth manifolds, f : M Ñ N a smooth map, X a
vector field on M with flow Φ, Y a vector field on N with flow Ψ. If for
any p P M , f˚pXppqq “ Y pfppqq, then for any pp, tq in the domain of Φ,
fpΦpp, tqq “ Ψpfppq, tq.

Answer: Consider the path γptq “ fpΦpp, tqq, then by definition of f˚,
d
dtγ “ f˚pXpΦpp, tqqq “ Y pfpΦpp, tqqq “ Y pγptqq, and γp0q “ fppq, so the
equation follows from uniqueness of solutions of ODEs.

3. Let M be a smooth manifold with Riemannian metric g. g defined a
symmetric bilinear form on TxM for any x P M , denoted as gp¨, ¨q.

1. Show that there is a vector bundle isomorphism C : T˚M Ñ TM defined
as gpCpaq, vq “ pv, aq for any a P T˚

xM , v P TxM , and pv, aq is the standard
bilinear pairing TxM ˆ T˚

xM Ñ R.

2. Let i : U Ñ V Ď Rn “ tpx1, . . . , xnqu be any smooth coordinate chart
on M , then it induces a coordinate chart on T˚M defined as I : T˚

UM Ñ

V ˆ Rn,
pidx

i P T˚
i´1ps1,...,snq

M ÞÑ ps1, . . . , sn, p1, . . . , pnq

Let H be a smooth function on T˚M , show that there is a vector field X
on T˚M such that

Xps1, . . . , sn, p1, . . . , pnq “
ÿ

i

Bh

Bpi
Bsi ´

ÿ

i

Bh

Bsi
Bpi

under coordinate chart I, and where h “ H ˝ I´1.

Remark: When Hpaq “ 1
2gpCpaq, Cpaqq, the vector flow X defines the co-

geodesic flow, and C˚pXq is the vector field that defines the geodesic flow.

Answer:

1. Under a local coordinate chart, if g “ gijdx
i b dxj , let rgijs be the inverse

of the positive definite symmetric matrix rgijs, then Cpdxiq “ gijBj .

2. Under a change of variable i1 ˝ i´1 : ps1, . . . , snq ÞÑ pt1, . . . , tnq, the point
ps1, . . . , sn, p1, . . . , pnq will be sent to pt1, . . . , tn, q1, . . . , qnq, where

qi “ pj
Bsj

Bti
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By chain law, we have

BH ˝ I 1

Bqi
“

Bh

Bsj
Bsj

Bqi
`

Bh

Bpj

Bpj
Bqi

Bti “
Bsj

Bti
Bsj `

Bpj
Bti

Bpj

BH ˝ I 1

Bti
“

Bh

Bsj
Bsj

Bti
`

Bh

Bpj

Bpj
Bti

Bqi “
Bpj
Bqi

Bpj
`

Bsj

Bqi
Bsj

Apply qi “ pj
Bsj

Bti and Bsj

Bqi
“ 0 one gets that X is invariant under this

coordinate change.
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A.11 Week 11

1. Write down a smooth manifold and a smooth foliation on it, such that the
leaves of this foliation can not be written as connected components of preimages
of points under a submersion.

Answer: Let M be an open submanfold of R2 defined as M “ tpx, yq : 1 ă

x2 ` y2 ă 9u. Now consider a foliation defined by charts of the form ipa,bq :
tpr cospθq, r sinpθqq : 1 ă r ă 3, a ă θ ă bu Ñ pa, bq ˆ R where 0 ă b ´ a ă 2π,

such that i´1pu, vq “ pp2 `
2 arctanpeuvq

π q cospuq, p2 `
2 arctanpeuvq

π q sinpuqq.

2. Let f and g be two smooth functions, X “ B1 ` fB2 and Y “ gB2 ` B3

be two vector fields in R3. Let D be a rank 2 subbundle of TR3, such that
Dp “ spanRpXppq, Y ppqq. Find the condition on f and g that makes D a dis-
tribution associated with a dimension 2 foliation on R3. When f and g satisfy
this condition, can you write down all smooth functions u on R3 such that
B1u` fB2u “ gB2u` B3u “ 0?

Answer: By Frobenious theorem, D is integrable iff rX,Y s “ aX ` bY for
some functions a and b, by computation this is equivalent to

B1g ` fB2g “ gB2f ` B3f

The function u must be constant on the leaves of this foliation. To find such
leaves, we can solve initial value problems:

vp0, y, 0q “ y, Bxvpx, y, 0q “ fpx, vpx, y, 0q, 0q, Bzvpx, y, zq “ gpx, vpx, y, zq, zq

and then leaves of the foliation are of the form Ly “ tpx, vpx, y, zq, zq : x, z P

Ru, and u satisfies upx, vpx, y, zq, zq “ ϕpyq where ϕ is any real valued function.
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A.12 Week 12

1. Write down a smooth function from R to R that has uncountably many
critical values.

Answer: Let C be a Cantor set, ψ be a non negative bump function whose
support is contained in p0, 1q. Now define a function g on R as follows: for every
finite open interval pa, bq which is a connected component of the compliment of
C, let g|pa,bq be e´1{pb´aqψppx ´ aq{pb ´ aqq, and g “ 0 everywhere else. One

can check that g is a smooth function and x ÞÑ
şx

0
gptqdt satisfies the requirement.

2. Let M be a smooth manifold, E a smooth real vector bundle over M .
Show that there is an embedding i : M Ñ RN for some N , such that E is
isomorphic to a subbundle of i˚pTRN q.

Answer: Apply Whitney’s embedding theorem to E, we get an embedding
j : E Ñ RN . Now let z : M Ñ E be the zero section, then j ˝ z : M Ñ RN

is an embedding and E is isomorphic to TjpzpMqqjpEq which is a subbundle of

TjpzpMqqRN . Pull back by j ˝ z we finished the proof.
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A.13 Week 13

Let S2 be the unit sphere in 3-dimensional Euclidean space R3 “ tpx, y, zq :
x, y, z P Ru. Let i be the inclusion map, α “ xdy ^ dz a 2-form on R3.

1. Write down i˚pαq using local coordinate charts on S2.

2. Calculate
ş

S2 α.

Answer:

1. Under coordinate chart ipx, y, zq “ p x
1´z ,

y
1´z q, if we let u “ x

1´z , v “
y

1´z ,
then

x “
2u

u2 ` v2 ` 1

y “
2v

u2 ` v2 ` 1

z “ 1 ´
2

u2 ` v2 ` 1

α “
2u

u2 ` v2 ` 1
p

4uv

pu2 ` v2 ` 1q2
du´

2pu2 ´ v2 ` 1q

pu2 ` v2 ` 1q2
dvq

^p
4u

pu2 ` v2 ` 1q2
du`

4v

pu2 ` v2 ` 1q2
dvq

“
16u2du^ dv

pu2 ` v2 ` 1q4

One can do similar calculation on other coordinate charts.

2. Because the coordinate chart described above cover S2 except for one
point,

ż 2

S

α “

ż

R2

16u2dudv

pu2 ` v2 ` 1q4
“

4

3
π

Here the orientation of S2 is assumed to be compatible with the coordinate
chart i.
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B Homework

B.1 HW 1

Let S “ tpx0, x1, x2q P R3 : x20`x21`x22 “ 1u be the unit sphere in 3-dimensional
Euclidean space. Let M “ tpp, qq : dpp, qq “ 1u, where d is the Euclidean
distance.

(1) Show that M is an embedded submanifold of S ˆ S of dimension 3.

(2) Write down a smooth atlas on M with finitely many coordinate charts.

Answer:

1. The function d is of constant rank 1 on S ˆ Sztpp, qq : p “ q or p “ ´qu

which is an open set that contains M .

2. We can cover M with four coordinate charts i0, i1, i2, i3, defined on U0,
U1, U2, U3, as follows:

• – U0 “ tppx0, x1, x2q, py0, y1, y2qq P M : x0 ­“ ˘1, py0 ´ x0{2, y1 ´

x1{2, y2 ´ x2{2q is not in the direction ofp1, 0, 0q ˆ px0, x1, x2qu

– U1 “ tppx0, x1, x2q, py0, y1, y2qq P M : x0 ­“ ˘1, py0 ´ x0{2, y1 ´

x1{2, y2 ´x2{2q is not in the direction ofp´1, 0, 0q ˆ px0, x1, x2qu

– U2 “ tppx0, x1, x2q, py0, y1, y2qq P M : x1 ­“ ˘1, py0 ´ x0{2, y1 ´

x1{2, y2 ´ x2{2q is not in the direction ofp0, 1, 0q ˆ px0, x1, x2qu

– U3 “ tppx0, x1, x2q, py0, y1, y2qq P M : x1 ­“ ˘1, py0 ´ x0{2, y1 ´

x1{2, y2 ´x2{2q is not in the direction ofp0,´1, 0q ˆ px0, x1, x2qu

• – i0ppx0, x1, x2q, py0, y1, y2qq “ px1{p1 ´ x0q, x2{p1 ´ x0q, θq, where
θ P p0, 2πq is the angle between py0 ´ x0{2, y1 ´ x1{2, y2 ´ x2{2q

and p1, 0, 0q ˆ px0, x1, x2q.

– i1ppx0, x1, x2q, py0, y1, y2qq “ px1{p1 ´ x0q, x2{p1 ´ x0q, θq, where
θ P p0, 2πq is the angle between py0 ´ x0{2, y1 ´ x1{2, y2 ´ x2{2q

and p´1, 0, 0q ˆ px0, x1, x2q.

– i2ppx0, x1, x2q, py0, y1, y2qq “ px0{p1 ´ x1q, x2{p1 ´ x1q, θq, where
θ P p0, 2πq is the angle between py0 ´ x0{2, y1 ´ x1{2, y2 ´ x2{2q

and p0, 1, 0q ˆ px0, x1, x2q.

– i3ppx0, x1, x2q, py0, y1, y2qq “ px0{p1 ´ x1q, x2{p1 ´ x1q, θq, where
θ P p0, 2πq is the angle between py0 ´ x0{2, y1 ´ x1{2, y2 ´ x2{2q

and p0,´1, 0q ˆ px0, x1, x2q.
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B.2 HW 2

Let S “ S2 be the unit sphere in R3. Let TS be its tangent bundle, π :
TS Ñ S be the projection map. Let T˚pTSq be the contingent bundle of TS,
π1 : T˚pTSq Ñ TS its projection map.

(1) Show that T˚pTSq is a vector bundle over S under the projection map
π ˝ π1. Write down a set of local trivializations of this vector bundle and
the corresponding transition functions.

(2) The smooth map π ˝π1 induces a vector bundle homomorphism pπ ˝π1q˚ :
T pT˚pTSqq Ñ TS. Let N “ tv P T pT˚pTSqq : pπ ˝ π1q˚pvq “ 0pu where
0p is the zero vector in some TpS. Is N a smooth vector bundle over S?

Answer: We shall prove the following:

Theorem B.1. Let E be a vector bundle over smooth manifoldM , π : E Ñ M
the projection map, then:

1. T˚E is isomorphic to a vector bundle E ‘ E˚ ‘ T˚M over M .

2. The set N “ tv P TE : π˚pvq “ 0u is isomorphic to a vector bundle E‘E
over M .

Proof. 1. Pick a Riemannian metric g on E. For any x P X, the fiber
of T˚E at x equals T˚

Ex
E. Now pick q P Ex, v P T˚

q E, because g in-
duces a positive definite bilinear form on TqE hence T˚qE, we can write
T˚
q E “ π˚pTxMq ‘ pπ˚pT˚

xMqqK, and π˚pT˚
xMq is isomorphic to T˚

xM

by π˚, and pπ˚pT˚
xMqqK – E˚ by a ÞÑ pv ÞÑ ap d

dt pq ` tvq|t“0qq. Hence
v P T˚

q E Ď T˚
Ex

pEq can be identified with a triple pq, v1 P T˚
xM,v2 P E˚q.

Because g is smooth the bijection T˚E Ñ E‘T˚E‘E˚ is smooth, hence
by rank theorem this is a diffeomorphism.

2. For any x P M , the fiber of N over x consists of elements of TExE which
get sent to 0 P TxM by π˚. If v P TqE is such an element in Nx, then
v P TqEx – Ex because Ex has a canonical vector space structure, so
v can be identified with pq, v1q where v1 P Ex is obtained from v by the
isomorphism. Similar to above we can get a bundle isomorphism from N
to E ‘ E.

Now both (1) and (2) follows.
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B.3 HW 3

1. Let M be a compact smooth manifold. Show that for any natural number
d, there is a number NpM,dq, such that any smooth vector bundle over
M of rank d is a subbundle of the trivial bundle over M of rank NpM,dq.

2. Let S be the unit 2-sphere in 3 dimensional Euclidean space.

(1) Write down a Riemannian metric g on S.

(2) Let N be the set of tangent vectors in TS whose length under g
equals 1. Show that N is an embedded submanifold of TS.

(3) Let π : N Ñ S be the projection map. Can π˚pgq be a Riemannian
metric on N? Here the pull back of a p0, 2q tensor is defined as
π˚pab bq “ π˚paq b π˚pbq.

(4) Can you find a non-zero vector field X on N such that LXpπ˚pgqq “

0?

Answer:

1. Suppose dimpMq “ m, then any rank d vector bundle E is a smooth
manifold of dimension m ` d. By Whitney’s embedding there is some
smooth embedding i : E Ñ R2m`2d`1. Let s0 : M Ñ E be the 0 section
of E, sending x P M to 0 P Ex, then i ˝ s0 is a smooth embedding of M
into R2m`2d`1. TMR2m`2d`1 “ pi˝s0q˚TR2m`2d`1 is a rank 2m`2d`1-
vector bundle over E, and E is a subbundle of that via injective bundle
homomorphism: v P Ex ÞÑ d

dt pvtq|t P 0 P Tpi˝s0qpxqR2m`2d`1, hence we
can set NpM,dq “ 2m` 2d` 1.

2. (1) We can let i : S Ñ R3 be the embedding and set g “ i˚pdx b dx `

dy b dy ` dz b dzq.

(2) This is because the map v ÞÑ gpv, vq is of constant rank 1 outside the
image of the 0 section.

(3) No, the pullback is a symmetric bilinear form but not positive defi-
nite.

(4) Pick and fix an orientation on S, let flow Φt be the rotation of the
unit tangent vector by t counterclockwise, then Φt preserves π˚pgq,
hence we can let X “ d

dtΦt|t“0.
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C Notes on Projective Spaces

Definition C.1. Let X be a topological space, p : X Ñ Y a surjection. The
quotient topology on Y is one such that a subset U of Y is open iff p´1pUq

is open in X.

Definition C.2. Let Sn “ tpx0, . . . , xnq P Rn`1 :
řn

i“0 x
2
i “ 1u, with subspace

topology. Define an equivalence relation „, such that px0, . . . , xnq „ py0, . . . , ynq

iff either xk “ yk for all k, or xk “ ´yk for all k. Then Sn{ „ with the
quotient topology is called the n-dimenstional real projective space, denoted
as RPn. When n “ 1 and 2 it is also called the real projective line and the
real projective plane respectively. A point in RPn can be represented by a
representative of this equivalence class in Sn, with the notation of rx0, . . . , xns

or rx0 : x1 : ¨ ¨ ¨ : xns, called the homogenuous coordinates (which is not a
coordinate chart).

Definition C.3. Let S2n`1 “ tpz0, . . . , znq P Cn`1 :
řn

i“0 zizi “ 1u. Here we
identify C with R2 by looking at the real part and imaginary part of a complex
number. Define an equivalence relation „, such that pz0, . . . , znq „ pz1

0, . . . , z
1
nq

iff there is some λ P C such that z1
k “ λzk for all k. Then S2n`1{ „ with

the quotient topology is called the n-dimenstional complex projective space,
denoted as CPn. When n “ 1 and 2 it is also called the complex projective
line and the complex projective plane respectively. We can write down
elements of CPn via the homogenuous coordinates similarly.

The Euclidean metrics on Rn`1 and Cn`1 induce metrics on RPn and CPn

as follows: let p, q be two points on RPn (or CPn), p1, q1 their representatives
on Sn`1 (or S2n`1), then dpp, qq “ infr„q dEuclidpp, rq where dEuclid is the Eu-
clidean distance. It is easy to see, e.g. by calculation, that the topology induced
by these metrics are the same as the quotient topology, which implies that both
RPn and CPn are Hausdorff. The subset where the ratios of the homogenuous
coordinates are all rational (or all in Qr

?
´1s) is a dense countable subset, hence

both are second countable.

Let M “ RPn (or CPn), there are n ` 1 open subsets Uk “ trx0 : ¨ ¨ ¨ :
xns : xk ­“ 0u which form an open cover. Each of these open subsets are
homeomorphic to Rn (or Cn, which we identify with R2n) by the map

rx0 : ¨ ¨ ¨ : xns ÞÑ px0{xk, . . . , xk´1{xk, xk`1{xk, . . . , xn{xkq

This show that both RPn and CPn are locally Euclidean hence both are
topological manifolds. The n`1 homeomorphisms form a smooth atlas on RPn

(CPn), which make them smooth manifolds as well.
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D Suggested Final Presentation Topics

Below are some suggested presentation topics. You can find references to these
topics via Google or Wikipedia. For more complicated topics it would be suf-
ficient to just present a simplest example! You can also pick some other topic
not on this list, preferably related to your own research interests!

1. Every smooth manifold has a triangulation

2. Whitney trick in Whitney’s embedding theorem

3. Connections and curvature

4. Gauss map and Second fundamental form for embedded manifolds

5. Relationship between Lie groups and Lie algebras

6. Closed subgroups of Lie groups are sub manifolds

7. Exceptional Lie groups

8. Complex manifolds

9. Symplectic manifolds

10. Kahler manifolds

11. Toric manifolds

12. Riemann surfaces

13. Mapping class groups and braid groups

14. Poincare duality

15. Chern classes, Euler classes

16. John Milnor’s exotic sphere

17. Stable and unstable foliations of a hyperbolic flow or diffeomorphism

18. Cech cohomology and its relationship with deRham cohomology (Cech to
derived functor spectral sequence)

19. Classifying spaces of vector bundles

20. Topological K-theory

21. Hamiltonian and Lagrangian in physics

22. Noether’s theorem in physics

23. EM field as U(1) gauge theory

24. Manifold learning

25. Quantum Extremal Surface

67


	Topological Manifolds
	Smooth Structure, Smooth Functions and Smooth Maps
	Partition of Unity and smooth approximation of functions
	Rank Theorem, Immersion, submersion and embedding
	Manifold with boundary
	Vector Bundles
	Tangent Bundles, Cotangent Bundles
	Sections, Vector fields and 1-forms
	Operations on Set of Bundles, Riemannian metrics
	Flows, Lie derivatives, Foliations
	Sard's theorem and Whitney's embedding
	Exterior Derivatives, Integration and Stokes theorem
	De Rham Theory
	Review and Further Topics
	Practice Problems
	Week 1
	Week 2
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7
	Week 8
	Week 9
	Week 10
	Week 11
	Week 12
	Week 13

	Homework
	HW 1
	HW 2
	HW 3

	Notes on Projective Spaces
	Suggested Final Presentation Topics

