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1 Syllabus

Institution Name: University of Wisconson-Madison

Credits: 3

Requisites: Graduate/professional standing.

Course Designation: Grad 50% - Counts toward 50% graduate coursework
requirement

Repeatable for Credit: No

Official course description: An introduction to ergodic theory and dynamics
covering fundamental theorems of ergodic theory, classical examples of one and
two dimensional dynamics as well as applications to study of group actions.

Instructor: Chenxi Wu

Email: cwu367@wisc.edu

Modes of Instruction: In person.

Lecture: 1-2:15 pm Tu Th VV B235

Exam Date: 5/4/25, 12:25-2:25pm

Office Hours: 10-11 am Wednesdays and Thursdays at VV 517 or by ap-
pointment.

Learning goal:

1. Analyze a range of mathematical proofs in discrete and continuous dy-
namical systems and recognize the underlying principles and techniques.

2. Write clear and well-reasoned mathematical arguments to describe the
long time behavior of measure preserving transformations.

3. State the Birkhoff, von Neumann, and maximal ergodic theorems and
reproduce their proofs.

4. Apply fundamental ergodic theorems from classical dynamics to low-dimensional
examples such as the circle rotation, interval exchange transformations,
and geodesic and horocycle flows on two dimensional manifolds.

5. Apply results in ergodic theory and dynamics to solve novel problems in
geometric group theory and geometric topology.
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Textbook: I will post detailed lecture notes. Some of the lectures might be
based on the textbook by Einsiedler and Ward and the textbook by Anatole
Katok.

How Credit Hours are met: This class meets for two, 75-minute class pe-
riods each week over the fall/spring semester and carries the expectation that
students will work on course learning activities (reading, writing, problem sets,
studying, etc) for about 3 hours out of the classroom for every class period. The
syllabus includes more information about meeting times and expectations for
student work.

Canvas Support: https://kb.wisc.edu/luwmad/page.php?id=66546

Grades: There will be homework assignments once every 2 weeks, to be
submitted on Canvas, accounting for 30% of the grades, a final presentation
of about 20 minutes on a topic related to dynamics that you are interested in,
accounting for 30% of the grades, and a final exam accounting for 40% of the
grade. A grade of 85 or above will get you an A and a grade of 70 or above will
get you a letter grade of B or above. Missing HW assignments will be replaced
by final grades, so don’t worry if you need to miss a few week’s lecture for per-
sonal reasons, just read the posted lecture notes afterwards and let me know if
you have any questions!

This is a tentative list of topics we may cover in this semester:

• Ergodic Theorems

• Unique ergodicity

• Symbolic Dynamics

• Mixing and entropy

• Dynamics of group actions

• Dynamics on hyperbolic surfaces

• Dynamics of interval maps

Institutional Level Academic Policies: https://teachlearn.wisc.edu/course-syllabi/
course-credit-information-required-for-syllabi/
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2 Analysis Review

2.1 Topology and Metric

1. Let X be a set. A topology is a subset O ⊆ P (X) such that:

(a) ∅ ∈ O, X ∈ O.

(b) A,B ∈ O =⇒ A ∩B ∈ O.

(c) S ⊆ O =⇒
⋃
S ∈ O.

2. When O = {∅, X} we call it the trivial topology. When O = P (X) we
call it the discrete topology.

3. Let B ⊆ P (X), the smallest topology containing B is called the topology
generated by B, and B is called a basis of this topology.

4. Let (X,O) be a topological space.

(a) The elements of O are called open sets, their complements called
closed sets. Let x ∈ X, an open set containing x is called an open
neighborhood of X, and a set containing an open neighborhood of
x as a subset is called a neighborhood.

(b) Let A ⊆ X, the closure of A is A =
⋂
{V closed : A ⊆ V }, and the

interior of A is A◦ =
⋃
{U open : U ⊆ A}. The boundary of A is

∂A = A\A◦.

(c) A is called dense if X = A. X is called separable iff it has a
countable dense subset.

(d) Let {xn}, n ∈ N be a sequence of elements in X. We say y ∈ X
is a limit point if for every neighborhood N of y, {n ∈ N : xn ∈
N} is infinite. We say that y is a limit of the sequence if for any
neighborhood N of y, there is some M > 0 such that n > M implies
xn ∈ N . When limit of a sequence exists we call it convergent.

(e) We call X Hausdorff if any two distinct points in X have disjoint
open neighborhoods. When X is Hausdorff, the limit of a sequence,
when exists, must be unique.

(f) A subset of O whose union equals X is called an open cover. We say
X is compact, if any open cover has a finite subcover. We say X is
locally compact, if any point inX has a compact neighborhood. We
say X is sequentially compact, if any sequence has a convergent
subsequence.

(g) If X is compact, a nested sequence of non empty closed subsets has
non empty intersection.

5. Let (X,O) be a topological space, A ⊆ X, we define the subspace topol-
ogy on A as {A ∩ U : U ∈ O}.
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6. Let (Xα, Oα), α ∈ Ω be a non-empty family of topological spaces, we
define the product topology on

∏
α∈ΩXα as the topology generated by

{{p ∈
∏
α

Xα : παi(p) ∈ Uαi} : α1, . . . , αk ∈ Ω, Uαi ∈ Oαi ,

πα are the projection to factor α}

7. Let (X,O) be a topological space, ∼ an equivalence relation on X, we
define the quotient topology on X/ ∼ as {A ⊆ X/ ∼: π−1(A) ∈ O}.
Here π : X → X/ ∼ is the quotient map.

8. Let (X,O), (Y,O′) be two topological spaces, f : X → Y is called con-
tinuous if for all V ∈ O′, f−1(V ) ∈ O. When Y = R, O′ the topology
generated by all open intervals, we call such a map a (real valued) con-
tinuous function. The set of continuous functions on X form a vector
space (you can show that via the observation that compositions of contin-
uous functions are continuous), denoted as C(X).

9. If X is compact, f : X → Y is continuous, then f(X) is compact. As a
consequence, any continuous function on compact set has maximum and
minimum.

10. Let X be a set, d a R≥0 function on X ×X such that

(a) d(x, y) = 0 iff x = y.

(b) d(x, y) = d(y, x).

(c) d(x, z) ≤ d(x, y) + d(y, z).

then we call d a metric and X a metric space. The topology on X is
then defined as the one generated by all the open balls B(x, r) = {y ∈
X : d(x, y) < r}.

11. Let (X, d) be a metric space, Γ < Isom(X) where Isom(X) is the group
of isometries on X, such that for every x ∈ X, there exists ϵ > 0 such that
{g ∈ Γ : d(x, g(x)) < ϵ} is finite. Define ∼ as a ∼ b iff there is g ∈ Γ, b =
g(a), then X/ ∼ can be made into a metric space with quotient metric
d′([x], [y]) = infg∈Γ d(x, g(y)). As an example, let X = R, d(x, y) = |x−y|,
Γ = {x 7→ x + n : n ∈ Z}, then this quotient metric makes R/Z into a
metric space.

12. A metric space is compact iff it is sequentially compact.

13. Let (X, d) be a metric space, we say (X, d) is complete, if any Cauchy
sequence converges. Completeness is NOT a topological property, for
example, on R, the metric d(x, y) = |x − y| and d′(x, y) = |ex − ey|
defines the same topology, the former is complete while the latter isn’t.
By “adding” limits of Cauchy sequences to a metric space we can embed
it into a larger complete metric space, called its completion.
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14. (Baire Category Theorem) Let X be a non empty complete metric space,
then any countable intersection of dense open sets is non empty.

• To prove it, use the fact that when X is complete, a nested sequence
of closed balls with radius → 0 has non empty intersection.

• As applications, Q ⊆ R can not be the intersection of countably many
open sets, a smooth function f on R such that for every x ∈ [0, 1],
f (nx)(x) = 0 for some integer nx, is a polynomial when restricted to
[0, 1].

15. WhenX is compact, we define the metric on C(X) as d(f, g) = maxx∈X |f(x)−
g(x)|. C(X) is a complete metric space under this metric.

16. (Stone-Weierstrass Theorem) Let X be a compact Hausdorff space. Let
L be a subspace of the vector space C(X) such that:

(a) 1 ∈ L.

(b) f, g ∈ L =⇒ fg ∈ L

(c) For any x, y ∈ X, there is some f ∈ L such that f(x) ̸= f(y).

Then L is dense in C(X).

• To prove it, first show that max(x, y) can be approximated by poly-
nomials, then, for any f ∈ C(X), a, b ∈ X, let ga,b ∈ L be a function
that is close to f at points a and b. Now pick finitely many bi such
that ga = min{ga,bi} satisfies ga < f + ϵ, pick finitely many aj such
that g = max{gaj} satisfies g > f − ϵ. The existence of bi, aj is due
to compactness of X.

• If X is a compact metric space, X is separable, and by Stone-
Weierstrass, C(X) is separable as well.

17. Let X be a separable metric space, F ⊆ C(X) is called uniformly
bounded if there is some M , such that for all f ∈ F , x ∈ X, |f(x)| <
M . It is called uniformly equicontinuous if for any ϵ > 0, there is
δ > 0, such that for any f ∈ F , any x, y ∈ X such that d(x, y) < δ,
|f(x)− f(y)| < ϵ.

(Arzela-Ascoli Theorem) Let X be a separable metric space, {fn} ∈ C(X)
a sequence which is uniformly bounded and uniformly equicontinuous.
Then there is a subsequence of {fn} converges uniformly on any compact
subset K ⊆ X.

• Proof: diagonal trick.

• An application is Montel’s Theorem in complex analysis: if F is a
family of holomorphic functions on open set Ω ⊆ C and is uniformly
bounded, then any sequence in F has a subsequence convergent uni-
formly on any compact subset of Ω.
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2.2 Topological Vector Spaces

1. A vector space V is called a topological vector space if it has a topology,
where addition and scalar multiplication are both continuous.

2. Let V be a vector space, a norm ∥ · ∥ : V → R≥0 is a function such that

(a) ∥x∥ = 0 iff x = 0.

(b) ∥cx∥ = |c|∥x∥.
(c) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A normed vector space has a metric d(x, y) = ∥x − y∥, and it is called a
Banach Space if this metric is complete.

3. (a) When X is compact, (C(X), f 7→ maxx∈X |f(x)|) is a Banach space.

(b) Let l∞ be the vector space of bounded sequences, ∥(ai)∥∞ = supi |ai|,
then (l∞, ∥∥∞) is a Banach space.

(c) Let 1 ≤ p <∞, lp be the set of sequences (ai) such that
∑
i |ai|p <∞,

∥(ai)∥p = (
∑
i ∥ai∥p)

1/p
, then (lp, ∥ · ∥p) is a Banach space.

4. A linear map between two Banach spaces f : V →W is continuous iff it
is bounded, i.e. there is some L such that ∥f(x)∥ ≤ L∥x∥ for all x ∈ V .

(a) (Open Mapping Theorem) T : V → W is a linear bounded map
between Banach spaces and also surjective, then T sends open sets to
open sets. (Proof: if not true then {W\{T (v) : ∥v∥ ≤ n}} are nested
dense open sets whose intersection is empty, contradicting with Baire
Category Theorem).

(b) (Closed Graph Theorem) T : V → W is a linear map between Ba-
nach spaces, then T is continuous iff the graph of T in V ×W (under
product topology) is closed. (A consequence of Open Mapping The-
orem).

5. Let V be a Banach space, the vector space of bounded linear functions on
V is called the dual space, denoted as V ∗.

(a) The strong topology on V ∗ is the topology defined using the operator
norm ∥f∥ = sup∥x∥≤1 |f(x)|.

(b) The weak topology on V is the smallest (under containment) topol-
ogy where v 7→ f(v) for all f ∈ V ∗ are continuous.

(c) The weak-∗ topology on V ∗ is the smallest topology where f 7→ f(v)
for all v ∈ V are continuous.

(d) If V is separable, the closed unit ball (under operator norm) under the
weak-∗ topology is metrizable (follows from definition), sequentially
compact (by Arzela-Ascoli), and compact (by the previous two or by
Tychonoff’s theorem).
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6. H a real (complex) vector space, an inner product (·, ·) : V × V → R
(C) is a function satisfying:

(a) (a, b) = (b, a), where · is the complex conjugation.

(b) a 7→ (a, b) is linear for all b ∈ H.

(c) (a, a) ≥ 0, (a, a) = 0 iff a = 0.

A norm on H can then be defined as ∥x∥ =
√
(x, x). If H is complete

under this norm we call it a real (or complex) Hilbert space. l2 is a Hilbert
space.

7. If H is a Hilbert space, L ⊆ H a subspace, for every z ∈ H, z can be
uniquely written as z = z1 + z2, where z1 ∈ L, z2 ∈ L⊥ = {x ∈ H :
(x, l) = 0 for all l ∈ L}. z1 is called the orthogonal projection of z
onto L. To prove this, let z1 be the element in L closest to z.

8. (Riesz Representation Theorem for Hilbert Space) If H is a Hilbert space,
H∗ the dual space with operator norm, there is a bijective isometry i :
H → H∗ such that i(x) = (y 7→ (y, x)).

9. (Hahn-Banach Theorem) V a real vector space, p : V → R a function such
that p(rx) = rp(x) for r ≥ 0, p(x + y) ≤ p(x) + p(y) (called sublinear),
V ′ a subspace, f ′ a linear function on V ′ such that f ′ ≤ p, then f ′ can be
extended to a linear function f on V such that f ≤ p. Proof is via Zorn’s
Lemma.

2.3 Measure Theory

1. Let X be a set. A σ-algebra Σ is a subset of P (A) such that

(a) X ∈ Σ

(b) A ∈ Σ then X\A ∈ Σ.

(c) Countable union of elements of Σ is in Σ.

The pair (X,Σ) is called a measurable space. The smallest σ-algebra
containing a subset S ⊆ P (X) is called the σ-algebra generated by S.

2. If X is a topological space, the smallest σ-algebra generated by the set of
all open sets is called the Borel σ-algebra, its elements are called Borel
sets.

3. Let (X,Σ) and (Y,Σ′) be two measuable spaces, we call a map f : X → Y
to be measurable if for any A ∈ Σ′, f−1(A) ∈ Σ. When Y = R or C we
set Σ′ as the Borel σ-algebra by default.

4. A measure on a measurable space (X,µ) is a function µ : Σ → R ∪ {∞}
such that

(a) For all A ∈ Σ, µ(A) ≥ 0.
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(b) µ(∅) = 0.

(c) If S ⊆ Σ is a countable subset whose elements are pairwise disjoint,
then µ(

⋃
S) =

∑
A∈S µ(A).

It is called a probability measure if µ(X) = 1, called finite if µ(X) <
∞, called σ-finite ifX is the union of countably subsets of finite measures.

5. δx(A) =

{
1 x ∈ A

0 x ̸∈ A
is a measure, called the Dirac measure.

6. Let (X,Σ, µ) be a measurable space, f : X → Y a map. The pushfor-
ward measure f∗(µ) is defined on Σ′ = {B ∈ P (Y ) : f−1(B) ∈ Σ} as
(f∗(µ))(B) = µ(f−1(B)).

7. By “almost every” or “generically” we mean something is true other
than a zero measure set.

8. A measurable space with measure (X,Σ, µ) is called complete if for any
µ(A) = 0, any B ⊆ A, we have B ∈ Σ. Any (X,Σ, µ) can be made
complete by adding zero measure sets to Σ, and this process is called the
completion. We often identify a measure with its completion implicitly.

9. On Rn, define a Borel measure as µ(A) being the infimum of the sum of
volumes of countably many boxes covering A. Its completion is called the
Lebesgue measure.

10. Let (X,Σ) be a measurable space, µ a measure on it, f a non negative
measurable function, define the integral of f on X as∫

X

fdµ =

∫ ∞

0

µ(f−1((h,∞)))dh

where the integral on the right hand side can be defined in the sense
of Cauchy or Riemann. A real valued measurable function g is called
integrable if

∫
X
|g|dµ < ∞, and its integral is defined as

∫
X
gdµ =∫

X
max(g, 0)dµ−

∫
X
(−min(g, 0))dµ.

11. This integration satisfies dominance convergence, monotone convergence,
and Fubini’s Theorem. For example, Dominance Convergence Theorem
can be written as follows:

if {fn} are measurable on a measurable space (X,Σ) with a measure µ, g
is integrable, |fn| ≤ g almost everywhere, fn converges to f when n→ ∞
almost everywhere, then f is integrable, and limn→∞

∫
X
fndµ =

∫
X
fdµ.

12. Let (X,Σ) be a measurable space and µ a measure, the space Lpµ(X) is
defined as the set of functions f on X such that |f |p is integrable, quotient
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by the relation of “equal almost everywhere”. When 1 < p < ∞, Lpµ(X)
is a Banach space with norm

∥f∥p =
(∫

X

|f |pdµ
)1/p

L2
µ(X) is a Hilbert space with inner product

(f, g) =

∫
X

fgdµ

Here completeness follows from dominance convergence above.

13. (Lebesgue Decomposition, Radon-Nikodyn Derivative) Let λ, µ be two
measure on (X,Σ), such that µ(X) < ∞, λ(X) < ∞, then λ can be
uniquely written as the sum of two measures λ = λa + λs, called the
Lebesgue decomposition, such that λa = hµ for some h ∈ L1

µ(X)
(called the Radon-Nikodyn Derivative), and there are A and B in Σ
such that A ∪B = X, µ(A) = λs(B) = 0.

(a) λa is called absolutely continuous with respect to µ, denoted as
λa << µ.

(b) λs is called mutually singular to µ, denoted as λs ⊥ µ.

(c) For a proof, consider linear functional on L2
λ+µ(X) defined as f 7→∫

X
fdλ, then by Riesz representation of Hilbert space we have g ∈

L2
λ+µ(X), such that 0 ≤ g ≤ 1, and

∫
X
fdλ =

∫
X
fgdλ +

∫
X
fgdµ.

Now λs = λ|{x:g(x)=1}, λa = λ|{x:g(x)<1}, h =

{∑∞
n=1 g

n g < 1

0 g = 1

which is in L1
µ by uniform convergence.

(d) The theorem can be adapted to the case where λ and µ are only
σ-finite.

14. As an example of a pair of mutually singular measures, consider the injec-
tion from [0, 1] to [0, 1] defined by taking the base 2 expansion (disallowing
infinitely many consecutive 1s), replace 1 with 2 and use it as the base 3
expansion. Then the pushforward Lebesgue measure is mutually singular
with the Lebesgue measure, and is also non atomic, i.e. does not con-
tain atoms, which are subsets with positive measure whose any measuable
subset has either the same measure or measure 0.

15. If a σ-finite Borel measure µ satisfies

(a) µ(K) <∞ when K is compact

(b) If E is Borel then µ(E) = infU open ,E⊆U µ(U) (outer regular).

(c) If U is open then µ(U) = supK compact ,K⊆U µ(K) (inner regular).
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then its completion is called a Radon measure.

16. The key property of Radon measure is the following Riesz Representa-
tion Theorem:

If X is locally compact and Hausdorff, Cc(X) the space of real valued
continuous functions with compact support, L : Cc(X) → R a linear
map that sends non negative functions to non negative numbers (called a
positive linear functional), then there is a unique Radon measure µ on
X such that

∫
X
fdµ = L(f) for any f ∈ Cc(X).

For the proof, define µ via the regularity, and show that it is well defined.

17. An application of the Riesz Representation Theorem above is the
following Choquet’s Theorem:

Let V be a topological vector space, such that for any x ∈ V there is
some l ∈ V ∗ such that l(x) ̸= 0. Let K be a metrizable compact subset.
By extremal point we mean x ∈ K such that there isn’t t ∈ (0, 1),
y, z ∈ K, such that x = ty+(1− t)y. Then for any q ∈ K, there is a Borel
probability measure µ on the set of extremal points E(K) of K such that
for any affine continuous function f on V , f(q) =

∫
E(K)

fdµ. (We can

also write this as q =
∫
E(K)

xdµ(x).)

The proof goes as follows:

(a) Find a countable sequence of affine continuous functions {an}, such
that |an|K | ≤ 1, and for any x, y ∈ K, x ̸= y, there is some n such
that an(x) ̸= an(y). Let a =

∑
n 2

−na2n. Then a is strictly convex
on K.

(b) For any g ∈ C(K), define the envelope g as

g(x) = inf
l affine continuous, l|K≥g|K

l(x)

Apply Hahn-Banach to V = C(K), V ′ = {l+ta : l affine continuous, t ∈
R}, p(g) = g(q), f ′(l + ta) = l(q) + ta(q), we get f ∈ (C(K))∗.

(c) Now apply Riesz Representation Theorem above to f we get the
desired µ′ as a Borel measure on K. By calculating

∫
K
adµ′, we see

that its support is a subset of E(K). Restrict it to E(K) we get the
desired µ.

18. (a) Fourier series for (complex valued) periodic functions on R:
f ∈ L2(R/Z), then

f(x) =
∑
n∈Z

f̂(n)e2πnx
√
−1

(b) Fourier transform for (complex valued) L2 functions on R:

f(x) =

∫
R
f̂(y)e2πxy

√
−1dy
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3 Ergodic Theory for Maps

• Dynamical system: The study of asymptotic behavior for iterated self
maps, flows or infinite group actions.

• Ergodic Theory: Dynamics via measure theory.

For this section we consider the dynamics of a self map T : X → X. We
define Tn+1(x) = T (Tn(x)), and the sequence {x, T (x), T 2(x), . . . } is called the
forward orbit of x ∈ X.

3.1 Invariant Measures

Definition 3.1. Let (X,M, µ) be a probability measure space. A measurable
map T : X → X is called measure preserving if for any A ∈ M, µ(T−1(A)) =
µ(A). If T is measure preserving we also call µ an invariant probability
measure of T .

Example 3.2. X = R/Z. The Lebesgue measure is invariant under:

1. Circle Rotation: x 7→ x+ θ.

2. Circle Doubling: x 7→ 2x.

Theorem 3.3. Let X be a compact metric space and T a continuous map,
then there is a Radon probability measure on X invariant under T .

Proof of Theorem 3.3. Let x ∈ X, define µn as∫
X

fdµn =
1

n

n−1∑
j=0

f(T j(x))

for any f ∈ C(X). C(X) is separable by Stone-Weierstrass, hence by Arzela-
Ascoli, there is a subsequence of {µn} which converges under weak-∗ topology
(here we identify the set of Radon measures with a subset of (C(X))∗ due to
Riesz Representation). It is easy to see that this limit L sends non negative
functions to non negative numbers, and

L(1) = lim
j→∞

∫
X

1dµnj
= 1

hence by Riesz representation theorem there is a Radon probability measure µ
such that L(v) =

∫
X
c = vdµ for all v ∈ C(X).

Now we want to show that µ is invariant under T , i.e. for any f ∈ C(X),∫
X
fdµ =

∫
X
f ◦Tdµ. For any ϵ > 0, any v ∈ C(X), there is some M , such that

if nj > M , then ∣∣∣∣∫
X

fdµ−
∫
X

fdµnj

∣∣∣∣ < ϵ
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∣∣∣∣∫
X

f ◦ Tdµ−
∫
X

f ◦ Tdµnj

∣∣∣∣ < ϵ

Then ∣∣∣∣∫
X

fdµ−
∫
X

f ◦ Tdµ
∣∣∣∣ ≤ 2ϵ+

∣∣∣∣∣ 1nj
nj∑
i=1

f(T i(x))− 1

nj

nj−1∑
i=0

f(T i(x))

∣∣∣∣∣
≤ 2ϵ+

2

nj
max
x∈X

|f(x)|

Let ϵ→ 0 and j → ∞ we finished the proof.

Remark 3.4. If T preserves probability measure µ, a measurable subset B is
called invariant under T if T−1(B) = B. Clearly B is invariant iff χB = χB ◦T ,

where χB(x) =

{
1 x ∈ B

0 x ̸∈ B
is the characteristic function. If T (B) ⊆ B, then

there is some B′ differs from B only by a measure zero set and is invariant under
T .

3.2 Ergodic Theorems

For this section, we always assume that (M,M, µ) is a measurable space with
a probability measure, and T : X → X is a measure preserving map.

3.2.1 Mean Ergodic Theorem

Proposition 3.5. Let H be a Hilbert space (vector space with inner product
(·, ·), complete under the induced metric), U a norm preserving operator (linear
map from H to H, such that (U(x), U(y)) = (x, y) for all x, y ∈ H), then

lim
n→∞

1

n

n−1∑
j=0

U j(x) = πHU (x)

where πHU is the orthogonal projection to the closed subspace HU = {x ∈ H :
U(x) = x}, and the convergence is in the topology defined by the norm of H.

The original proof by von Neumann is via spectral theory of normal opera-
tors. The following elementary proof (which is basically a rewrite of the original
spectral theory proof) is due to Riesz.

Proof. Let V = {x− U(x) : x ∈ H}. Then for any y ∈ V ⊥,

(y − U(y), y − U(y)) = (y, y − U(y))− (U(y), y − U(y))

= (y, y)− (U(y), y) = (y − U(y), y) = 0

So V ⊥ = HU .

V ⊥ = {y ∈ H : (x, y) = (U(x), y) for all x ∈ H}

14



= {y ∈ H : (U(x), U(y)) = (U(x), y) for all x ∈ H}

= {y ∈ H : y = U(y)} = HU

For any v = x− U(x) ∈ V ,

lim
n→∞

1

n

n−1∑
j=0

U j(v) = lim
n→∞

1

n
(x− Un(x)) = 0 = πHU (v)

Because 1
n

∑n−1
j=0 U

j and πHU are all bounded operators of norm no more than

1, the identity limn→∞
1
n

∑n−1
j=0 U

j(v) = πHU (v) holds for v ∈ V as well. It is

evident that this identity is also true on HU , hence by linearity, it is true on
V +HU = H.

Theorem 3.6 (von Neumann’s Mean Ergodic Theorem). For any f ∈ L2
µ(X),

the sequence { 1
n

∑n−1
j=0 f ◦ T j} converges to some T -invariant function f∗ ∈

L2
µ(X) in the sense of L2

µ(X).

Proof. Apply Proposition 3.5 by setting H = L2
µ(X) and U = UT = (f 7→

f ◦ T ).

Remark 3.7. By approximating L1
µ(X) functions by L2

µ(X) functions, one see
that in the statement of Theorem 3.6 one can replace all the L2

µ(X) with L1
µ(X).

Remark 3.8. The proof of Proposition 3.5 implies that one can replace, in the
statement of the proposition,

1

n

n−1∑
j=0

U j(x)

with

1

bn − an

bn−1∑
j=an

U j(x)

where {an}, {bn} are two sequences in Z such that limn→∞ bn − an = ∞.
Theorem 3.6 can be strengthened similarly.

Corollary 3.9. [Poincare Recurrence] For any µ-measurable subset E of X,
µ-almost every point p in E has that {n ∈ N : Tn(p) ∈ E} is an infinite set.

Proof. Suppose this is not true, then there is some E′ ⊆ E with positive mea-
sure, and some integer N , such that Tn(E′) ∩ E = ∅ for all n > N . Ap-
ply Theorem 3.6 to the characteristic function χE′ ∈ L2

µ(X), we see that
(χE′)∗ = π(L2

µ(X))UT (χE′) vanishes on E′ hence is orthogonal to χE′ , which

implies that χE′ lies in the orthogonal complement of (L2
µ(X))UT . However

1 ∈ (L2
µ(X))UT and (χE′ , 1) = µ(E′) > 0, a contradiction.
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3.2.2 Maximal and Pointwise Ergodic Theorem

Proposition 3.10. Let f ∈ L1
µ(X), define f0 = 0, fn =

∑n−1
j=0 f ◦ T j , FN =

max{fn : 0 ≤ n ≤ N}. Let

B = {x ∈ X : sup{FN (x) : N ∈ N} = ∞}

AN = {x ∈ X : FN (x) > 0}, A =
⋃
N

AN

Then

1.
∫
B
fdµ ≥ 0.

2. (Maximal Inequaltiy)
∫
AN

fdµ ≥ 0.

3.
∫
A
fdµ ≥ 0.

Proof. It is easy to see that fn+1 = fn ◦ T + f . Take maximum for 0 ≤ n ≤ N
on both sides, we see that for every x ∈ X, either one of the two cases below is
true:

i. FN+1(x) = FN (x) = 0, which implies that f(x) ≤ −FN (T (X)) ≤ 0.

ii. f(x) = Fn+1(x)− Fn(T (x)).

As a consequence, |FN+1 − FN ◦ T | ≤ |f |.

1. One can check that B is T invariant, and on B the sequence of functions
FN+1−FN◦T decreases asN increases, and at every point it will eventually
stablized at f . Apply dominated convergence we get∫

B

fdµ = lim
N→∞

∫
B

(FN+1 − FN ◦ T )dµ

∫
B

(FN+1 − FN ◦ T )dµ =

∫
B

FN+1dµ−
∫
B

FNdµ ≥ 0

2. It is clear that the elements of AN must all be in Case ii above. Hence∫
AN

fdµ =

∫
AN

FN+1dµ−
∫
AN

FN ◦ Tdµ ≥
∫
AN

FNdµ−
∫
AN

FN ◦ Tdµ

≥
∫
X

FNdµ−
∫
X

FN ◦ Tdµ = 0

3. This follows immediately from Part 2 above and dominated convergence.
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Theorem 3.11 (Maximal Ergodic Theorem). For any f ∈ L1
µ(X), any a ∈ R,

let

Ea =

x ∈ X : sup
n≥1

1

n

n−1∑
j=0

f(T j(x)) > a


Then aµ(Ea) ≤

∫
Ea
fdµ.

Proof. Apply Part 3 of Proposition 3.10 to the function f − a.

Theorem 3.12 (Birkhoff Ergodic Theorem). For any f ∈ L1
µ(X), there is some

f∗ ∈ L1
µ(X) which is T -invariant, such that for almost every x ∈ X

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) = f∗(x)

Proof. Let f∗ be constructed as in Remark 3.7. Suppose there is some ϵ > 0
such that the set Pϵ where

lim sup
n→∞

1

n

n−1∑
j=0

f ◦ T j > f∗ + ϵ

has positive measure, then apply Part 1 of Proposition 3.10 to the function
f − f∗ − ϵ/2, we get that

0 <
ϵ

2
µ(Pϵ) ≤

ϵ

2
µ(B) ≤

∫
B

(f − f∗)dµ =

∫
B

 1

n

n−1∑
j=0

f ◦ T j − f∗

 dµ = 0

which is an contradiction. Hence we must have

lim sup
n→∞

1

n

n−1∑
j=0

f ◦ T j ≤ f∗

The condition for lim inf can be shown similarly.

3.2.3 Ergodicity

Definition 3.13. µ is called an ergodic measure of T if the only T invariant
measurable function onX are almost everywhere constant. Or, equivalently, any
measurable T invariant subset of X has either zero measure or full measure.

Example 3.14.

• The Lebesgue measure is ergodic for circle rotation where θ is irrational,
and also for the circle doubling map. This can be shown by Fourier series.

• For rotation where θ is rational, the Lebesgue measure is not ergodic. For
example, the distance function to the finite set {nθ : n ∈ Z} is T invariant
and not almost everywhere constant.
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Remark 3.15. If µ is ergodic, Theorem 3.12 implies that for any measurable
subset A of X, for almost every x ∈ X,

lim
n→∞

|{j ∈ {0, . . . , n− 1} : T j(x) ∈ A}|
n

= µ(A)

Example 3.16. Remark 3.15 and Example 3.14 implies that for almost every
real number, there are asymptotically the same number of 0 and 1 in its binary
representation.

Proposition 3.17. Let (X,M) be a measurable space and T : X → X a
measurable map, µ, µ′ are two distinct ergodic measures of T , then µ and µ′

are mutually singular.

Proof. Let B be a measurable set such that µ(B) ̸= µ′(B). Then by Theorem
3.12, there are N , N ′, µ(N) = µ′(N ′) = 0, such that for any x ∈ X\N ,

lim
n→

1

n

n−1∑
i=0

χB(T
i(x)) = µ(B)

and for any x ∈ X\N ′

lim
n→

1

n

n−1∑
i=0

χB(T
i(x)) = µ′(B)

Hence N ∪N ′ = X.

Remark 3.18.

1. A sqeuence {xn} is said to be equidistributed with respect to a Radon

measure µ, if 1
n

∑n−1
i=0 δxi

converges (in weak-∗ sense in (Cc(X))∗) to µ.

2. We say x is generic with respect to T and µ, if the forward orbit {T i(x)}
of x equidistributes with respect to µ.

3. When X is a compact metric space, C(X) is separable. Hence as long as
µ is ergodic, by Theorem 3.12, µ-almost every point in X is generic with
respect to T and µ.

3.3 Ergodic decomposition, Unique Ergodicity

For this section we always assume X is a compact metric space and T : X → X
is a continuous map. It is easy to see that the set of invariant Radon probability
measures D is a compact metrizable convex subset of (C(X))∗.

Lemma 3.19. Under the notations above, µ is an extremal point of D iff it is
ergodic under T .
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Proof. 1. If µ is not ergodic, there is some invariant subset A such that
µ(A) ∈ (0, 1), hence

µ = µ(A) · 1

µ(A)
µ|A + µ(X\A) · 1

µ(X\A)
µ|X\A

where µ|A(B) = µ(A ∩B).

2. If µ = tµ′+(1− t)µ′′, µ, µ′ and µ′′ all in D, t ∈ (0, 1) and µ ̸= µ′, then let
f ∈ C(X) satisfies

∫
X
fdµ ̸=

∫
X
fdµ′. Suppose further that µ is ergodic,

then by Theorem 3.12, for µ-a.e. x ∈ X,

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i(x) =
∫
X

fdµ

Because a set N have µ(N) = 0 implies that µ′(N) = 0, the above limit
holds for µ′ a.e. x ∈ X as well. Integrate both sides by

∫
X
·dµ′ and use

dominated convergence we get∫
X

fdµ′ =

∫
X

fdµ

a contradiction.

Hence, by Choquet’s Theorem we have

Theorem 3.20 (Ergodic decomposition). Let µ be an invariant probability
Radon measure on X, then there is a Radon probability measure v on the set E
of ergodic Radon probability measures on X (with weak-∗ topology) such that
µ =

∫
E xdv(x). This is called the ergodic decomposition of µ.

For Choquet’s Theorem, the measure on extremal sets is not necessarily
unique, but because distinct ergodic measures are mutually singular, the v above
is unique.

3.3.1 Properties of unique ergodicity

Definition 3.21. T is called uniquely ergodic if there is only a single Radon
invariant probability measure on X.

In other words, the ergodic Radon probability measure on X is unique.

Theorem 3.22. Let T : X → X be continuous and µ0 a Radon invariant
probability measure on X. The followings are equivalent:

1. T is uniquely ergodic.

2. For any f ∈ C(X), 1
n

∑n−1
i=0 f ◦ T i converges uniformly to a constant

function
∫
X
fdµ0.
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3. There is a dense subset Y of C(X), such that for any f ∈ Y , 1
n

∑n−1
i=0 f ◦T i

converges pointwise to a constant function Cf .

4. There is a dense subset Y of C(X), such that for any f ∈ Y , let fn =
1
n

∑n−1
i=0 f ◦ T i,

lim
n→∞

(
sup
x∈X

fn(x)− inf
x∈X

fn(x)

)
= 0

Proof. • 1 =⇒ 2: Suppose 2 is not true, then there is ϵ > 0, for any natural
number j, there is some nj > j, xj ∈ X such that | 1

nj

∑nj−1
i=0 f ◦ T i(xj)−∫

X
fdµ0| > ϵ. Now consider the sequence { 1

nj

∑nj−1
i=0 δT i(xj)}. It has a

convergent subsequence under weak-∗ topology, and the weak-∗ limit of
this subsequence is an invariant Radon probability measure (see the proof
of Theorem 3.3). Because the integrations of f under them are different,
it is also distinct from µ0, which contradicts with 1.

• 2 =⇒ 3: This is obvious.

• 3 =⇒ 1: Suppose µ is a Radon probability measure invariant under T .
Then by dominant convergence, for any f ∈ Y ,∫

X

fdµ = lim
n→∞

∫
X

1

n

n−1∑
i=0

f ◦ T idµ = Cf

∫
X

fdµ0 = lim
n→∞

∫
X

1

n

n−1∑
i=0

f ◦ T idµ0 = Cf

So µ = µ0.

• 2 =⇒ 4: This is obvious.

• 4 =⇒ 1: Suppose µ is a Radon probability measure invariant under T .
Then for any f ∈ Y ,∣∣∣∣∫

X

fdµ−
∫
Z

fdµ0

∣∣∣∣ = ∣∣∣∣∫
X

fndµ−
∫
X

fndµ0

∣∣∣∣ ≤ |sup fn − inf fn|

Now let n→ ∞ we see that µ = µ0.

Example 3.23. By calculation on functions of the form e2πnx, we see that
irrational circle rotation is uniquely ergodic.

Example 3.24. The circle doubling map is not uniquely ergodic. For example,
δ0 is an invariant measure different from the Lebesgue measure.
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Example 3.25. Let X be a compact metric space, T : X → X an isometry
such that there is some x0 ∈ X whose forward orbit {Tn(x0)} is dense in X.
We now show that T is uniquely ergodic. By compactness, for any f ∈ C(X),
any ϵ > 0, there is δ > 0 such that x, y ∈ X, d(x, y) ≤ δ then |f(x)− f(y)| < ϵ.
Pick m such that any y ∈ X is no more than δ distance away from some T jy (x0)
where 0 ≤ jy ≤ m− 1. So for any x ∈ X,∣∣∣∣∣ 1n

n−1∑
i=0

f(T i(x))− 1

n

n−1∑
i=0

f(T i(x0))

∣∣∣∣∣ = 1

n

n−1∑
i=0

∣∣f(T i(x))− f(T i+jx(x0))
∣∣

+

∣∣∣∣∣ 1n
jx−1∑
i=0

f(T i(x0))

∣∣∣∣∣+
∣∣∣∣∣ 1n

n+jx−1∑
i=n

f(T i(x0))

∣∣∣∣∣ ≤ ϵ+
2m

n
sup
X

|fn|

So as n→ ∞, |sup fn − inf fn| = 0.
As a consequence, the rotation x 7→ x + a on Rd/Zd is uniquely ergodic if

the orbit of 0 is dense. And when this map is uniquely ergodic, for any ball B
in Rd/Zd (under the Euclidean metric), any x ∈ X = Rd/Zd,

lim
n→∞

1

n
|{k ∈ {0, . . . , n− 1} : T k ∈ B}|

equals the Euclidean volume of B.

Remark 3.26. Theorem 3.22 implies that

1. If T is uniquely ergodic, every point in X is generic with respect to T and
the invariant Radon probability measure µ.

2. If there is a Radon invariant probability measure µ such that every point
in X is generic with respect to T and µ, then T is uniquely ergodic.

3.3.2 Furstenberg’s Skew Product Theorem

By a topological group we mean a group G which is also a topological space,
where group multiplication and taking inverses are both continuous. A Radon
probability measure µ is called invariant on a topological group, or a Haar
measure, if it is invariant under multiplication by any element from the left or
from the right.

Theorem 3.27 (Furstenberg’s Skew Product). Let G be a compact metrizable
topological group, µ a Haar measure on G. LetX be a compact metric space, T :
X → X a continuous map which is uniquely ergodic, and the unique invariant
Radon probability measure on X is m. Let c : X → G be continuous. Consider
the map

S : X ×G→ X ×G, (x, g) 7→ (T (x), c(x)g)

Then clearly m × µ is invariant under S. If furthermore S is ergodic under
m× µ, then S is uniquely ergodic.

21



Proof. The fact that m × µ is invariant can be shown by Fubini or by looking
at products of open sets.

Let R ⊆ X × G be the subset consisting of points that are generic with
respect to S and m× µ. If (x, g) ∈ R, then for any h ∈ G, (x, gh) ∈ R as well,
because for any f ∈ C(X ×G),

1

n

n−1∑
j=0

f(Sj(x, gh)) =
1

n

n−1∑
j=0

fh(S
j(x, g))

where fh(x, g) = f(x, gh). Hence R is of the form Y × G where Y ⊆ X. By
Remark 3.18, m(Y ) = 1.

Let v be another S-invariant measure on X×G, the projection of v onto X is
invariant under T hence equals m, which means v(R) = 1 as well. Use Remark
3.18 again we see that there must be some element of R which is generic with
respect to S and v, hence v = m× µ.

As an application, we have:

Corollary 3.28. Let f be a real coefficient polynomial with leading coefficient
irrational and degree d ≥ 1. The sequence f(n)−⌊f(n)⌋ equidistributes on [0, 1]
with respect to the Lebesgue measure.

Proof. Consider the map

Sk : Rk/Zk → Rk/Zk

(x1, . . . xk) 7→ (x1 + a, x2 + x1, . . . , xk + xk−1)

Where a is irrational. By Fourier series, they are all ergodic with respect to the
Lebesgue measure. By Example 3.23, S1 is uniquely ergodic, and by Theorem
3.27, if Sj uniquely ergodic then so is Sj+1. Hence Sn is uniquely ergodic for
all n, and by Remark 3.26, every point in Rn/Zn is generic with respect to Sk
and the Lebesgue measure. The corollary follows.

Example 3.29. For example, to show that {bn2} equidistributes on R/Z to
the Lebesgue measure, we show, via Theorem 3.27, that (x, y) 7→ (x+2b, x+ y)
is uniquely ergodic, and consider the orbit of (b, 0).

3.4 Mixing

The circle doubling map is not uniquely ergodic, but it satisfies another property
called mixing:

Definition 3.30. Let µ be an invariant probability measure under T .

1. We say T is weakly mixing if for any measurable sets A and B,

lim
n→∞

1

n

n−1∑
j=0

|µ(T−j(A) ∩B)− µ(A)µ(B)| = 0
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2. We say T is (strongly) mixing, if

lim
n→∞

|µ(T−n(A) ∩B)− µ(A)µ(B)| = 0

3.4.1 L2-characterization

We can characterize ergodicity and mixing with L2
µ(X) as follows:

Theorem 3.31. Let µ be an invariant probability measure under T : X|rightarrowX.
Then

1. T is mixing iff for any f, g ∈ L2
µ(X),

lim
n→∞

∣∣∣∣∫
X

(f ◦ Tn)gdµ−
∫
X

fdµ

∫
X

gdµ

∣∣∣∣ = 0

2. T is weakly mixing iff for any f, g ∈ L2
µ(X),

lim
n→∞

1

n

n−1∑
j=0

∣∣∣∣∫
X

(f ◦ T j)gdµ−
∫
X

fdµ

∫
X

gdµ

∣∣∣∣ = 0

3. T is ergodic iff for any f, g ∈ L2
µ(X),

lim
n→∞

∣∣∣∣∣∣
∫
X

1

n

n−1∑
j=0

(f ◦ T j)gdµ−
∫
X

fdµ

∫
X

gdµ

∣∣∣∣∣∣ = 0

Proof. For Part 1 and Part 2, the “if” direction can be shown by letting f = χA,
g = χB . For Part 3, the “if” direction can be shown by letting f = g = χA for
any invariant measurable subset A.

Now we show the “only if” direction. For Part 3, this is due to mean ergodic
theorem. For Part 1 and Part 2, one see that the left hand side of the equation
before taking limit, when seen as a real valued function Φ with parameters f and
g, is uniformly Lipschitz hence equicontinuous on the subset where the L2

µ(X)
norms of f and g are both bounded, and have

Φ(cf, g) = Φ(f, cg) = |c|Φ(f, g) for all c ∈ R

Φ(f + f ′, g) ≤ Φ(f, g) + Φ(f ′, g)

Φ(f, g + g′) ≤ Φ(f, g) + Φ(f, g′)

Φ(f, g) ≥ 0

Hence, it is easy to verify that if B is a subset of L2
µ(X), where the set of finite

linear combinations of elements of B is dense in L2
µ(X), then to verify these

limits, we only need to verify them for a pair of elements of B. Now let B be
the set of characteristic functions and we finished the proof.
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Remark 3.32. The proof of Theorem 3.31 above implies that to check mixing,
weakly mixing or ergodic we only need to check that for a subset B ⊆ L2

µ(X)
which spans a dense subset of L2

µ(X).

Remark 3.33. It is evident that mixing implies weakly mixing, which implies
ergodicity.

Example 3.34.

1. The irrational rotation is ergodic but not weakly mixing. To show this,
consider f = g = sin(2πx), then

lim
n→∞

1

n

n−1∑
j=0

∣∣∣∣∫ 1

0

f ◦ T jgdx−
∫ 1

0

fdx

∫ 1

0

gdx

∣∣∣∣ = lim
n→∞

1

n

n−1∑
j=0

| cos(ja)|
2

=

∫ 1

0

| cos(x)|
2

dx ̸= 0

The last equal sign is because 0 is generic with respect to irrational rotation
and the Lebesgue measure, see Remark 3.26.

2. The circle doubling is mixing which can be shown by Fourier series.

3. Consider X = R2/Z2 with the Lebesgue measure, then T : (x, y) 7→
(y, x+ y) is also mixing, which can be shown in Fourier series.

By Remark 3.32, to check the second and third example above, we only need to
check them for a pair of functions in {sin(2πinx), cos(2πinx)} and {sin(2πi(mx+
ny)), cos(2πi(mx+ ny))}, respectively.

Proposition 3.35. Let µ be an invariant probability measure under T : X →
X. Then T is weakly mixing iff T ×T : X ×X → X ×X is weakly mixing with
respect to µ× µ. Here (T × T )(a, b) = (T (a), T (b)).

Proof. To show the “if” part, consider sets of the form A×X and B ×X. To
show the “only if” part, recall that by Remark 3.32, T × T is weakly mixing iff
for any measurable subsets A,A′, B,B′,

0 = lim
n→∞

1

n

n−1∑
j=0

∣∣∣∣∫
X

(χA×B ◦ (T × T )j)χA′×B′dµ−
∫
X

χA×Bdµ

∫
X

χA′×B′dµ

∣∣∣∣
Now

lim
n→∞

1

n

n−1∑
j=0

∣∣∣∣∫
X

(χA×B ◦ (T × T )j)χA′×B′dµ−
∫
X

χA×Bdµ

∫
X

χA′×B′dµ

∣∣∣∣
= lim
n→∞

1

n

n−1∑
j=0

∣∣µ(T−j(A) ∩A′)µ(T−j(B) ∩B′)− µ(A)µ(B)µ(A′)µ(B′)
∣∣
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= lim
n→∞

1

n

n−1∑
j=0

∣∣(µ(T−j(A) ∩A′)− µ(A)µ(A′))µ(T−j(B) ∩B′)

+µ(A)µ(A′)(µ(T−j(B) ∩B′)− µ(B)µ(B′))
∣∣

≤ lim
n→∞

1

n

n−1∑
j=0

∣∣µ(T−j(A) ∩A′)− µ(A)µ(A′)
∣∣µ(T−j(B) ∩B′)

+ lim
n→∞

1

n

n−1∑
j=0

µ(A)µ(A′)
∣∣µ(T−j(B) ∩B′)− µ(B)µ(B′)

∣∣ = 0

Theorem 3.36. Let µ be an invariant probability measure under T : X → X.
Then the followings are equivalent:

1. T is weakly mixing.

2. For any S : Y → Y , µ′ an ergodic probability measure on Y , the map
T × S : X × Y → X × Y is ergodic with respect to µ× µ′.

3. T × T : X ×X → X ×X is ergodic with respect to µ× µ.

Proof. 2 =⇒ 3 is obvious: suppose 2 is true, let Y be a single point and S
be the identity map, we know that µ is an ergodic measure. Now apply 2 for
(Y, S, µ′) = (X,T, µ).

To show 1 =⇒ 2, by remark 3.32 and a calculation similar to the proof
of Proposition 3.35, we only need to show that for any measurable A,A′ ⊆ X,
B,B′ ⊆ Y ,

0 = lim
n→∞

1

n

n−1∑
j=0

µ(T−j(A) ∩A′)µ′(S−j(B) ∩B′)− µ(A)µ(A′)µ′(B)µ′(B′)

However,

1

n

n−1∑
j=0

(
µ(T−j(A) ∩A′)µ′(S−j(B) ∩B′)− µ(A)µ(A′)µ′(B)µ′(B′)

)

=
1

n

n−1∑
j=0

(
(µ(T−j(A) ∩A′)− µ(A)µ(A′))µ′(S−j(B) ∩B′)

)

+
µ(A)µ(A′)

n

n−1∑
j=0

(
µ′(S−j(B) ∩B′)− µ′(B)µ′(B′)

)
and as n→ ∞, the first part goes to 0 due to T being weakly mixing, while the
second goes to 0 due to S being ergodic.
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Now we show 3 =⇒ 1. Firstly by considering subsets of the form A ×X,
B ×X, we see that T must be ergodic. Now for any measurable A, B,∣∣µ(T−j(A) ∩B)− µ(A)µ(B)

∣∣ =√(µ(T−j(A) ∩B)− µ(A)µ(B))2

=
√

((µ(T−j(A) ∩B))2 − (µ(A))2(µ(B))2) + 2µ(A)µ(B) (µ(A)µ(B)− µ(T−j(A) ∩B))

So by Cauchy-Schwartz, 1

n

n−1∑
j=0

∣∣µ(T−j(A) ∩B)− µ(A)µ(B)
∣∣2

≤ 1

n

n−1∑
j=0

(
(µ(T−j(A) ∩B))2 − (µ(A))2(µ(B))2

)

+
2µ(A)µ(B)

n

n−1∑
j=0

(
µ(A)µ(B)− µ(T−j(A) ∩B)

)
When n→ ∞, the first sum converges to 0 because T × T is ergodic, while the
second converges to 0 because T itself is ergodic.

3.4.2 Markov Shifts

The mixing of circle rotation can be shown without the use of Fourier series,
and this idea can be extended to a large family of maps, the Markov shifts.

Definition 3.37. Let

Γ = {1, . . . , n}N = {(a0, a1, . . . ) : ai ∈ {1, . . . , n}}

Γ′ = {1, . . . , n}Z = {(. . . , a−1, a0, a1, . . . ) : ai ∈ {1, . . . , n}}

Both are given a topology as the product of discrete topologies. Let σ : Γ → Γ
be defined as σ((ai)) = (bi), bi = ai+1, and σ

′ : Γ′ → Γ′ is defined analogously.
σ and σ′ are called shift maps. Then the dynamical system (Γ, σ) is called a
one-sided full shift of n letters, and (Γ′, σ′) is called a two-sided full shift
of n letters.

Remark 3.38. The topologies of Γ and Γ′ can both be metrized with metric
d((ai), (bi)) = e−t where t = max{a ∈ N : aj = bj for all |j| < a}. It is clear
that under this metric they are both compact, and are homeomorphic to the
Cantor set. Open balls of radius e−m, which are of the form {(bn) : bi =
ai for all |i| ≤ m}, form a basis of this topology, and are called cylinder sets.

For now we will focus on the case of the one sided shifts. The case for two
sided shifts are analogous.
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Example 3.39. Let µ0 be a probability measure on {1, 2, . . . , n} with the σ
algebra being the power set. Then we can define a Radon probability measure
µ on Γ as the product measure

µ({(bn) ∈ Γ : bi = ai for all 0 ≤ i ≤ m}) =
m∏
i=0

µ0({ai})

Then µ is an invariant measure under σ, and by setting the B in Remark 3.32 as
the characteristic functions of the cylinder sets, we see that σ : Γ → Γ is mixing
with respect to this measure.

Definition 3.40. A σ-invariant subset of Γ or Γ′ as in Definition 3.37 is called
a subshift. If A = [aij ] is a n×n matrix with all entries being 0 or 1, a subshift
is called a Markov shift with transition matrix A, if it equals

{(bn) : abibi+1
= 1 for all i}

Example 3.41. Let Σ ⊆ Γ be a subshift with transition matrix A. Let A′ =
[rij ] be a non negative matrix, where rij ̸= 0 implies aij ̸= 0, and

∑
j rij = 1

for all i. Then let [y1, . . . , yn] be a non-negative left eigenvector of A′ with
eigenvalue 1, such that

∑
i yi = 1. Define µ on Σ as

µ({(bn) ∈ Σ : bi = ai for all 0 ≤ i ≤ m}) = ya0

m−1∏
i=0

raiai+1

Then µ is σ-invariant because

µ(σ−1({(bn) ∈ Σ : bi = ai for all 0 ≤ i ≤ m}))

=
∑

j∈{1,...,n},aja0
=1

µ({(bn) ∈ Σ : b0 = j, bi+1 = ai for all 0 ≤ i ≤ m})

=
∑
j

yjrja0

m−1∏
i=0

raiai+1 = ya0

m−1∏
i=0

raiai+1

To show mixing, we need the following:

Theorem 3.42 (Perron-Frobenius). Let A be a n×n matrix with non negative
entries, and there is a natural number m > 0 such that Am has all entries being
positive. Then the characteristic polynomial det(A − tI) has a simple largest
positive root λ, such that all other roots (in C) z satisfies |z| < λ. And λ is also
the unique eigenvalue with an eigenvector with all positive entries.

Remark 3.43. λ is called the Perron-Frobenius eigenvalue and the cor-
responding eigenvector (up to scalar multiplication) the Perron-Frobenius
eigenvector.
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Proof. Let ∆ be the simplex {[xi]T ∈ Rn : xi ≥ 0 for all i,
∑
i xi = 1}, and let

P ([xi]
T ) = 1∑

i xi
[xi] be the projection from the set of non negative vectors to

∆. Let TA : ∆ → ∆ be TA(x) = P (Ax). Then by assumption, TnA(∆) is a
sequence of nested subsimplices whose diameter decreases exponentially, which
means that there is a unique fixed point x of TA. x is a positive eigenvector
which is unique up to scalar multiplication, and the corresponding eigenvalue is
positive which we denote as λ.

Now suppose x′ is another eigenvector corresponding to another real eigen-
value, or a real vector in the sum of eigenspaces of some eigenvalue and its
complex conjugate, then by considering the orbit of P (x + tx′) under TA, for
some t << 1, we see that the other eigenvalues have to have norm strictly
smaller than λ. Lastly, suppose the Jordan block of λ has size larger than 1×1,
then, by linear algebra, there is some positive vector x′′ close to x such that
( 1λA)

n(x′′) goes to infinity as n → ∞. This is not possible, because the fact
that ( 1λA)

n is non negative, and ( 1λA)
nx = x, provided a bound on the norm of

( 1λA)
n independent from n.

Corollary 3.44. The shift map in Example 3.41 is mixing as long as there is
some m > 0 such that (A′)m have all entries being positive.

Proof. Similar to Example 3.39, we only need to consider cylinder sets. Let
U = {(bi) : bj = cj for all j ≤ d}, V = {(bi) : bj = c′j for all j ≤ d′}, n >> d′,
then

µ(T−n(U)∩V ) =
∑

c′
d′+1

,...,c′n−1,rc′j ,c
′
j+1

>0,rc′
n−1

,c0
>0

(
yc′0

n−2∏
k=0

rc′kc′k+1
rc′nc0

d−1∏
k=0

rckck+1

)

= µ(V )µ(U)

eTc′d′A′n−d′−1ec0

yc0


where ej is the j-th standard basis vector, i.e. the column vector with the j-th
entry being 1 and all others being 0. By Theorem 3.42 we have

lim
n→∞

eTc′
d′
A′n−d′−1ec0 = yc0

Definition 3.45. Let f : X → X and f ′ : X ′ → X ′ be two maps. We say
h : X → X ′ is a conjugation between the two, if h ◦ f = f ′ ◦ h.

Proposition 3.46. Let f : X → X be a measurable map with invariant prob-
ability measure µ, f ′ : X ′ → X ′ another measurable map, with a measurable
conjugation h : X → X ′. Then h∗(µ) is an invariant probability measure on
X ′, and if µ is mixing, weakly mixing or ergodic then so is µ′.

Proof. Let A be a measurable set on X ′, then (h∗(µ))(A) = µ(h−1(A)) =
µ(f−1h−1(A)) = µ(h−1f ′−1(A)) = (f∗(µ))(f

′−1(A)). The argument for mixing,
weakly mixing and ergodic are similar.
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Example 3.47. Let X be the full shift of two letters {1, 2}, X ′ = R/Z, f = σ,
h((ai)) =

∑∞
i=0(ai − 1)2−i−1, then pushforward of the µ in Example, where

3.39 for µ0 being uniform measure, is just the Lebesgue measure on R/Z, and
f ′ is the circle doubling map x 7→ 2x. Hence Example 3.39 and Proposition 3.46
imply that the circle doubling is mixing with respect to the Lebesgue measure.

Example 3.48. The map (x, y) 7→ (y, x+ y) on R2/Z2 can be conjugated to a
two sided Markov shift.

Consider the following decomposition of a fundamental domain of R2/Z2:

I

II

III

IV

III

I

IV

II

(0, 0) (1, 0)

(0, 1) (1, 1)

Now T is sending the red blocks continuously and affinely to the blue blocks,
and

A′ =


(
√
5− 1)/2 (3−

√
5)/2 0 0

0 0 0 1
1 0 0 0

0 0 (3−
√
5)/2 (

√
5− 1)/2


Then, other than a measure zero set, there is a measure preserving bijection

from X to the two sided Markov shift Σ which gives a conjugation between T
and σ, sending every x ∈ X to (an) ∈ Σ such that Tn(x) lies in the an-th red
block.
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Remark 3.49. Decompositions like in the previous 2 examples that can be
used to establish conjugations with one or two sided Markov shifts are called
Markov decompositions.

3.5 Entropy

Proposition 3.46 can be used to show the non existence of measure preserving
conjugations. Another invariant that can be used for this purpose is the concept
of entropy.

3.5.1 Measure Theoretic Entropy

For this subsection we always let T : X → X be measurable and µ an invariant
probability measure.

Definition 3.50.

1. By a partition of X we mean a finite set of disjoint measurable subsets
whose union is X.

2. (Boltzmann) The entropy of a partition P is defined as

h(P) = −
∑
U∈P

µ(U) log(µ(U))

Here we set 0 log(0) = 0.

3. Let P and P ′ be two partitions, let partition P ∨ P ′ be defined as

P ∨ P ′ = {A ∩B : A ∈ P, B ∈ P ′}

4. Let P be a partition, T : X → X a measurable map, we define a partition

T−1(P) = {T−1(U) : U ∈ P}

5. The entropy of a map T with respect to invariant measure µ and partition
P (with finite entropy) is defined as

h(T, µ,P) = lim
n→∞

1

n
h

n−1∨
j=0

T−j(P)


Remark 3.51. It is easy to show, via calculus, that h(P ∨P ′) ≤ h(P)+h(P ′),
and the maximum is archived when for any A ∈ P, A′ ∈ P ′, µ(A ∩ A′) =

µ(A)µ(A′). So H : n 7→ h(
∨n−1
j=0 T

−j(P)) satisfies H(m + n) ≤ H(m) +H(n).
Because for any n > 0, any m ∈ N, m = kn + r where k is a natural number
and 0 ≤ r < n, we have

H(m)

m
=
H(kn+ r)

kn+ r
≤ kH(n)

kn+ r
+

H(r)

kn+ r

30



Let m→ ∞ we get

lim sup
m→∞

H(m)

m
≤ H(n)

n

Let n→ ∞ we get

lim sup
m→∞

H(m)

m
≤ lim inf

n→∞

H(n)

n

Hence, h(T, µ,P) = limn→∞
H(n)
n always exists.

Remark 3.52. Intuitively, one can think of entropy as measuring “how much
information you gained via knowing x ∈ X belongs to a fixed element of P”.
Hence the inequaltiy in Remark 3.51 can be thought of as “knowing membership
in two partitions gets at most the sum of the information one gets from knowing
membership in each”.

Example 3.53. Consider one sided full shifts (Example 3.39) and Markov
shifts (Example 3.41), let the partition P be the set of cylinder sets of the form
{(an) : a0 = k}, then for full shift,

h(σ, µ,P) = −
∑
i

µ0({i}) log(µ0({i}))

and for Markov shifts,

h(σ, µ,P) = −
∑
i

yi
∑
j

rij log(rij)

Definition 3.54. The measure theoretic entropy of T with respect to in-
variant probability measure, is defined as

h(T, µ) = sup
P
h(T, µ,P)

Remark 3.55. It is easy to see that if T : X → X is conjugate to T ′ : X ′ → X ′

via h : X → X ′, then h(T, µ) ≥ h(T ′, h∗(µ)).

Measure theoretic entropy can be calculated via Kolmogorov-Sinai Theorem
below:

Theorem 3.56 (Kolmogorov-Sinai). We say a partiton P is a generator, if

either
⋃
n

∨n−1
i=0 T

−i(P), or, when T is invertible,
⋃
n

∨n
i=−n T

i(P), generates a
σ algebra whose completion is the same as the completion of the σ algebra of
measurable subsets on X. If P is a generator, then h(T, µ,P) = h(T, µ).

Proof. It is easy to see, by definition, that

h(T, µ,P) = h(T, µ,

n−1∨
i=0

T−i(P))
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and, if T is invertible,

h(T, µ,P) = h(T, µ,

n∨
i=−n

T i(P))

Furthermore, if Q is a partition that is finer than P (i.e. every element in Q is
a subset of some element of P), then h(T, µ,P) ≤ h(T, µ,Q).

Now let P ′ be another partition ofX. By assumption, there is a partition P ′′,
coarser than some

∨n−1
i=0 T

−i(P) or some
∨n
i=−n T

i(P), with the same cardinality
as P ′, such that the set difference between each element of P ′′ and P ′ have
measures that can be made arbitrarily small, which means h(P ′ ∨P ′′)− h(P ′′),
which we call relative entropy and denote as h(P ′|P ′′), can be made arbitrarily
small. Furthermore, by calculation, if P1, P2, Q1, Q2 are all partitions, then,
by a calculation very similar to Remark 3.51,

h(Q1 ∨Q2|P1 ∨ P2) ≤ h(Q1|P1 ∨ P2) + h(Q2|P1 ∨ P2) ≤ h(Q1|P1) + h(Q2|P2)

Hence,

h(T, µ,P ′) ≤ h(T, µ,P ′ ∨ P ′′) = lim
n→∞

1

n
h(

n−1∨
j=0

T−j(P ′ ∨ P ′′))

which can be made arbitrarily close to

lim
n→∞

1

n
h(

n−1∨
j=0

T−j(P ′′)) = h(T, µ,P ′′) ≤ h(T, µ,P)

Example 3.57.

1. The partitions in Example 3.53 are all generators.

2. The entropy of irrational cycle rotation with the Lebesgue measure is 0.
The entropy of cycle doubling with the Lebesgue measure is log(2).

Proposition 3.58. h(T k, µ) = kh(T, µ)

Proof. By considering
∨k−1
j=0 T

−j(P), we see that h(T k, µ) ≥ kh(T, µ). The other

direction follows from the fact that
∨n−1
j=0 T

−kj(P) is coarser than
∨nk−1
j=0 T−j(P).

3.5.2 Topological Entropy, Variational Principle

For this subsection, we let X be a compact metric space and T : X → X a
continuous map.
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Theorem 3.59. The following three numbers are equal:

h1(T ) = sup
µ Radon invariant probability measure

h(T, µ)

h2(T ) = sup
C finite open cover of X

lim sup
n→∞

1

n
logMCov


n−1⋂
j=0

T−j(Uj) : Uj ∈ C




where MCov(C) is the smallest number of elements of C whose union is X.

h3(T ) = lim
ϵ→0

(
lim sup

n→∞

1

n
logN(n, ϵ)

)
where N(n, ϵ) is the largest number of points in X such that for any two distinct
points x, x′ among them,

max
j=0,...,n−1

d(T j(x), T j(x′)) ≥ ϵ

(called (n, ϵ) separability).

Remark 3.60. By the same argument as in Remark 3.51, in the definition of
h2(T ) above, the lim supn→∞ can be replaced by limn→∞. The limϵ→0 is well
defined because N(n, ϵ) is non decreasing with respect to ϵ.

Remark 3.61. Proposition 3.58 implies that h1(T
k) = kh1(T ). An analogous

argument shows that h2(T
k) = kh2(T ).

Proof. 1. h1 ≤ h2: For any measurable partition P = {B1, . . . , Bm}, let
Vj ⊆ Bj be compact and has measure very close to Bj , let P ′ = {Vj , V0 =
X\
⋃
j Vj}, then h(P ′|P) can be made arbitrarily small, hence by the proof

of Theorem 3.56, h(T, µ,P) can be arbitrarily approximated by h(T, µ,P ′).

We observe that h(
∨n−1
j=0 T

−j(P ′)) is bounded by the number of non empty

elements of
∨n−1
j=0 T

−j(P ′), which is bounded by

2nMCov


n−1⋂
j=0

T−j(V0 ∪ Vij )




hence h1(T ) ≤ log 2 + h2(T ). Now apply Remark 3.61 one gets the con-
clusion.

2. h2 ≤ h1: Given any finite open cover C, let ϵ > 0 be small enough such
that for any x, x′ ∈ X, if d(x, x′) ≤ ϵ then they both lie in a single element
of C. Now any set of (n, ϵ) separable points gives rise to a finite subset of

{
⋂n−1
j=0 T

−j(Uj) : Uj ∈ C} of the same or fewer elements which is an open
cover of X. The inequality follows.
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3. h3 ≤ h1: Pick ϵ small enough, let vn be the average of the Dirac δ function
on N(n, ϵ) points that form a (n, ϵ) separable set, let µn =

∑n−1
j=0 T

j
∗ (µn).

Let µ be a weak-∗ limit of µn, then by construction it is an Radon invariant
probability measure.

Let P be a finite partition whose pieces are all of diameter smaller than
ϵ, and all boundaries have zero µ measure. Let h(P, v) be the entropy of
partition P under probability measure v, then by remark 3.51 and the two
observations below:

(a) h(T−1(P), µ) = h(P, T∗(µ)).
(b) ti ≥ 0,

∑
i ti = 1, then h(P,

∑
i tiµi) ≥

∑
i tih(P, µi).

we get that if p << n,

1

n
h

n−1∨
j=0

T−j(P), vn

 ≤ 1

p
h

 p∨
j=0

T−j(P), µn

+O(p/n)

And the inequality follows.

Definition 3.62. h1(T ) = h2(T ) = h3(T ) is called the topological entropy,
denoted as htop(T ).

Example 3.63. By h3 above, the topological entropy of circle rotation is 0 and
of circle doubling is log(2).

Example 3.64. The topological entropy of a one sided full shift with m letters
is log(m).

Example 3.65. The topological entropy of a one sided Markov shift ΣA, where
A satisfies Theorem 3.42, is log of the spectral radius of A. An invariant Radon
probability measure µ on ΣA such that htop(T ) = h(T, µ) (called measure of
maximal entropy) can be written down as follows: let x = (x1, . . . , xm) be the
non negative eigenvalue corresponding to leading eigenvector λ > 0, normalized
such that

∑
i xi = 1. Then let µ be constructed as in example 3.41, with yi

defined via
∑
i
aijyixj

xi
= λyj , rij =

aijxj

λxi
.

3.5.3 Dimension Theory, Thermodynamics Formalism

Thermodynamics Formalism (TF) is a way to obtain invariant measures with
“good” geometric properties. We will illustrate the idea with an example:

Example 3.66. Let X = ΣA, T = σ be the one-sided Markov shift, such that
A satisfies Theorem 3.42. The measure of maximal entropy in Example 3.65
can also be interpreted as follows:

1. Consider linear map L : C(X) → C(X) defined as f 7→ (x 7→
∑
y∈T−1(x) f(y)),

L∗ its dual on (C(X))∗.
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2. The spectral radius of both L and L∗ are both λ which is the spectral
radius of A.

3. The leading eigenvector of L is the locally constant function h sending
(a0, a1, . . . ) ∈ X to za0 such that λzj =

∑
i aijzi, while the leading eigen-

vector of L∗ is µ/h, so their product is exactly the measure of maximal
entropy µ as in Example 3.65.

Now let ψ a Hölder continuous function called the potential, φ = eψ.

1. TheRuelle-Perron-Frobenius operator on C(X) is defined as (Lφ(f))(x) =∑
y∈T−1(x) φ(y)f(y). L∗

φ is an operator on Radon measures.

2. The Ruelle-Perron-Frobenius theorem says that both Lφ and L∗
φ have a

unique leading positive eigenvalue and eigenvector, and the leading eigen-
values are the same, denoted as λ > 0, the eigenvectors are denoted as h
and µ respectively.

3. hµ is an invariant measure, because∫
X

f(T (x))h(x)dµ(x) =

∫
X

f(T (x))(φ(x)h(x))((φ(x))−1dµ(x))

=

∫
X

f(y)λh(y)d(λ−1µ)(y) =

∫
X

f(y)h(y)dµ(y)

called the Gibbs measure. log(λ) is called the topological pressure.

Some applications:

1. When ψ = 0, or φ = 1, the Gibbs measure is the measure of maximal
entropy and the topological pressure equals the topological entropy.

2. Let i be an injection from X to R, such that disjoint cylinder sets are
sent to subsets of disjoint intervals, and T = σ is conjugated to some
smooth map S via i. Let φβ(x) = |S′(i(x))|−β . Then the β that makes
the topological pressure equals 0 is the Hausdorff dimension of i(X).

3.6 Some other important topics in ergodic theory

• Subadditative and multiplicative ergodic theorems

• Lyapunov exponents

• Factors and joinings.

• Quantative version of ergodicity and mixing

• . . .
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4 Further topics

4.1 Interval Exchange Transformation

Definition 4.1. Let T : X → X be a map, Y ⊆ X, the first return map is a
map T ′ from Y to itself such that T ′(y) = Tn(y) where n is the smallest natural
number such that Tn(y) ∈ Y . Let µ be an invariant probability measure on X,
then Poincare recurrence (Corollary 3.9) shows that T ′ is µ-a.e. well defined.

Definition 4.2. An interval exchange transformation (IET) is defined
with the following data: x = (x1, . . . , xn) ∈ Rn>0, such that

∑
i xi = 1; σ ∈ Sn.

Tx,σ : I = [0, 1] → I = [0, 1] is carried out with the following steps:

1. Divide I into n subintervals I1, . . . , In, such that the interval Ij has length
xj .

2. Permute the subintervals according to σ, put them together into I again.

An IET of n intervals is also called an n-IET.

Remark 4.3.

1. The interval exchange transformation is well defined on all but countable
many points on I.

2. The Lebesgue measure is an invariant probability measure.

3. When n = 2 and σ = (1, 2), this reduces to cycle rotation.

4. Let S be a surface formed by gluing parallel sides of a polygon together
via translation, then the first return map of the straight line flow on any
embedded interval is an IET. Such surfaces corresponds to holomorphic
1-forms on closed Riemann surfaces, hence the dynamics of IETs is deeply
connected to the study of Teichmuller dynamics.

The key tool for the study of IET is the following observation, which one
can prove by calculation:

Proposition 4.4. Let T be an IET of m intervals defined using x ∈ Rm,
σ ∈ Sm. Then:

1. The first return map on [0, 1 − min{xm, xσ−1(m)}] is an IET of no more
than m intervals.

2. The first return map of any subinterval I ′ ⊆ I is an IET of no more than
m+ 1 intervals.

Remark 4.5. The procedure of taking first return map on [0, 1−min{xm, xσ−1(m)}]
is called the Rauzy-Veech induction. For 2-IETs, Rauzy-Veech induction is
related to continued fraction.
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Theorem 4.6 (Katok, 1980). IETs can never be strongly mixing under the
Lebesgue measure.

Proof. Suppose T : I → I is anm-IET. Let ∆ be a subinterval of I = [0, 1], then
the first return map of T on ∆ is an IET of no more than m+ 1 sub intervals.
Denote these subintervals as Ij , then I has a partition by Ij and their images
under T , denoted as P∆.

For each Ij , consider first return map on it, one gets another IET, and Ij
is then decomposed into no more than m + 1 subintervals Ijk. Let rjk > 0 be
the smallest positive integer such that frjk(Ijk) ⊆ Ijk, then, for any element B
of the partition P∆, we have that up to a measure 0 set, B ⊆

⋃
j,k T

−rjk(B).
Hence for any A consisting of unions of elements of P, there is some rjk such
that the Lebesgue measure of A ∩ T−rjk(A) is no less than 1

(m+1)2 times the

measure of A.
Now let A ⊆ I be a measurable set with a very small measure, N > 0 be

any natural number, then either one can pick ∆ very small, such that one can
approximate A by unions of elements of P∆, and rjk > N for all j, k, or, when
such ∆ is impossible, the set of periodic points would have positive measure,
hence the Lebesgue measure would not be an ergodic measure.

Gutkin and Katok (1987) showed some IETs are weakly mixing. Avila and
Forni (2007) proved that almost every IET is either a rotation or weakly mixing,
by showing that the only measurable eigenfunction of eigenvalue 1 is constant,
and then do Rauzy-Veech induction.

4.2 Group Actions

Definition 4.7. Let G be a locally compact topological group.

1. A Radon measure on G m is called a (left) Haar measure, if for any
measurable A ⊆ G, g ∈ G, m(A) = m(gA).

2. G is called amenable, if for any compact subset K, any ϵ > 0, there is
some measurable subset F with compact closure, such that

m(KF\F ) +m(F\KF ) < ϵm(F )

Here AB = {ab : a ∈ A, b ∈ B}.

Example 4.8.

1. Let G be a discrete group, then the counting measure is a Haar measure.

2. Let G be R with the Euclidean topology, then the Lebesgue measure is a
Haar measure.

3. Z as a discrete group is amenable. One can further show that a discretr
group is amenable iff all of its finitely generated subgroups are amenable,
hence any abelian group as a discrete group is amenable.

37



4. Free group of 2 generators as a discrete group is not amenable.

Definition 4.9. A sequence of measurable subset {Fn} is called a Følner
sequence, if for any compact subset K, any ϵ > 0, there is some N , such that
if n > N , then

m(KFn\Fn) +m(Fn\KFn) < ϵm(Fn)

Theorem 4.10. Let X be a compact metric space with a continuous G action
for some amenable group G, µ a Radon measure on X invariant under group
action, {Fn} a Følner sequence, then in L2(X,µ) (or L1(X,µ)),

lim
n→∞

1

µ(Fn)

∫
Fn

f(gx)dm(g)

exists and is G-invariant.

Proof. The proof is analogous to the proof of Theorem 3.11.

Remark 4.11. When G = R with Euclidean topology, we call a continuous G
action a flow. Theorem 4.10 implies that flows have mean ergodic theorem and
Poincare recurrence.

Theorem 4.12. Let G be an amenable locally compact group. There is a linear
map A from bounded continuous functions to real numbers, such that

1. A(1) = 1

2. If f(x) ≥ 0 for all x ∈ G then A(f) ≥ 0

3. If f ′(gx) = f(x) for all x ∈ G and some g ∈ G, then A(f) = A(f ′).

Proof. Let B(X) be the space of bounded continuous functions on G, with
norm ∥f∥ = supg∈G |f(g)|. Let H be a subspace spanned by elements of the
form f(x) − f(gx) and 1. Define real valued linear map A′ on H such that
A′(f(·)− f(g·)) = 0.

Now if we can show that the operator norm of A′ is 1 (if ∥f∥ ≤ 1 then
|A′(f)| ≤ 1), then by Hahn-Banach we can extend it to B which satisfies all the
requirements. To show this, we only need to show that there can not be ϵ > 0,
fj ∈ B, gj ∈ G, such that

∑n
j=1(fj(x)− fj(gjx)) > ϵ. Now pick ϵ′ > 0, let F be

a subset of G with finite measure, such that m(F\giF ) +m(giF\F ) < ϵ′m(F ),
wherem is the Haar measure. The existence of such F follows from the definition
of amenability. Then

ϵ ≤ 1

m(F )

∫
F

∑
j

(fj(x)− fj(gjx))dm(x) ≤ ϵ′
∑
j

2∥fj∥

Now make ϵ′ small enough we get a contradiction.

Theorem 4.13. If G is a locally compact amenable group acting continuously
on a compact metric space X, then there is a Radon invariant probability mea-
sure on X.

38



Proof. Let A be as in Theorem 4.12, pick x ∈ X, then for any f ∈ C(X), define∫
X
fdµ = A(g 7→ f(gx)).

Remark 4.14. One can write down a pair of homeomorphisms from R/Z to
itself whose set of invariant Radon probability measures are disjoint. Hence, by
Theorem 4.13, the free group of two generators F2 is non amenable.

Remark 4.15. The staring point of the concept of amenability, and ergodic
theory on groups, is the Banach-Ruziewicz problem, raised initially by Stanislaw
Ruziewicz: if a function on subsets of the sphere is invariant under isometry and
finitely additive, does the function have to be a multiple of Lebesgue measure.

Banach provided the answer for the first case, the case of dimension 0, in the
negative. To show that, first observe that R/Z is abelian, hence as a discrete
group it is amenable. This discrete group acts on R/Z by addition. Pick V as the
intersection of countably many dense open subsets of R/Z (under the Euclidean
topology). Let B be the space of bounded functions on R/Z, with the sup
norm. Let H be the subspace generated by f(·) − f(g·), 1 and χV , and define
A′ : H → R as a linear map such that A′(f(·)−f(g·)) = 0, A′(1) = A′(χV ) = 1,
then by the same argument as in the proof of Theorem 4.12, and the Baire
Category Theorem, A′ has norm 1 hence can be extended to a function on B
with norm 1. Now Y 7→ A(χY ) is the desired function.

Remark 4.16. In the remark above, by unique ergodicity of rotation, for any
continuous function f on X, A(f) equals the integral of f with respect to the
Lebesgue measure. However χY is not continuous.

Theorem 4.17 (Lindenstrauss, 2001). The convergence in Theorem 4.10 is a.e.
pointwise if f ∈ L1(X,µ) and {Fn} satisfies the condition that there is C > 0,
such that for all n ∈ N, m(

⋃
k<n F

−1
k Fn) ≤ Cm(Fn).

The idea of the proof is as follows:

• The Birkhoff ergodic theorem can be deduced from maximal ergodic the-
orem.

• Maximal ergodic theorem can be reduced, via integration, to maximal
ergodic theorem on a G orbit.

• Maximal ergodic theorem on single G orbit can be reduced to Vitali cov-
ering lemma when G = Z or R.

• For more general amenable groups like in Lindenstrauss’s theorem, con-
sider “probabilistic covering lemma” as a replacement.

4.3 Hyperbolic Plane

Let H be the upper half plane {z = x+yi ∈ C : y > 0} with the metric dx2+dy2

y2 .

The group SL(2,R) acts on H as isometries by[
a b
c d

]
z =

az + b

cz + d
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It induces an action on the unit tangent bundle T1H, and via it one can identify
T1H with the group PSL(2,R) = SL(2,R)/{±I}.

There are two commuting left actions of PSL(2,R) on PSL(2,R), as (g, x) 7→
gx and (g, x) 7→ xg−1. We can define a Riemannian metric on PSL(2,R) which
is invariant under one action, then the other action preserves the volume. For
example, the Riemannian metric on H itself induces a metric which is invariant
under the first action, and the corresponding volume form is invariant under
the second action.

Now let Γ be a discrete subgroup, the set of right Γ cosets Γ\PSL(2,R) is
an orbifold with Riemannian metric induced by the metric described above. We
further assume that it has finite volume (such subgroups are called lattices).
Now a group homomorphism to PSL(2,R) composed with the second action
(g, x) 7→ xg−1 gives a group action with a finite invariant measure. This is one
of the first example in the field of homogenuous dynamics.

Remark 4.18. An example that will give finite volume is Γ = PSL(2,Z). Now
elements of Γ\PSL(2,R) would be related to the space of flat tori of area 1 with
a direction, and geodesic flow has connection to the dynamics of Rauzy-Veech
induction, see Remark 4.5.

Definition 4.19. The geodesic flow gt is the R action defined via the group
homomorphism

t 7→
[
et 0
0 e−t

]
The Horocycle flow ht is the R action defined via the group homomorphism

t 7→
[

1 t
0 1

]
4.3.1 Hopf’s argument

A fundamental result in the study of this dynamical system is that the geodesic
flow is ergodic, which we will show via the Hopf’s argument below:

Theorem 4.20. If PSL(2,R) acts transitively and continuously to some metric
space X that has finite invariant probability measure µ, and the induced (right)
action on L2(X,µ) is continuous, then the map x 7→ gtx is ergodic for any t > 0.

Proof. Let f ∈ L2(X,µ) be invariant under U : f 7→ f ◦ gt. Then, for any s, as
n→ ∞,

g−nt

[
1 s
0 1

]
gnt → I

gnt

[
1 0
s 1

]
g−nt → I

Let Vs : f(z) 7→ f

([
1 s
0 1

]
z

)
, Ws : f(z) 7→ f

([
1 0
s 1

]
z

)
, then

lim
n→∞

U−nVsU
nf = f
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hence

∥f∥2 = (f, f) = lim
n→∞

(U−nVsU
nf, f) = lim

n→∞
(VsU

nf, Unf) = lim
n→∞

(Vsf, f)

Because ∥Vsf∥ = ∥f∥, Vsf = f . Similarly Wsf = f . However the group
PSL(2,R) is generated by elements of the form[

1 s
0 1

]
or

[
1 0
s 1

]
Hence f is a.e. constant on X, i.e. the map x 7→ gtx is ergodic.

Remark 4.21.

hnt

[
1 0
ϵ 1

]
gmt =

[
1 + nϵt mt+ nt+mnt2ϵ

ϵ 1 +mtϵ

]
Now set ϵ small and pickm,n appropriately such that 1+nϵt = 2, 1+mϵt = 1/2,

one see that any ht invariant function must be invariant under

[
2 0
0 1/2

]
,

hence by Theorem 4.20, it is also a constant. This shows that x 7→ htx is
ergodic as well.

4.3.2 Mixing and unique ergodicity

Theorem 4.22. Let Γ be a lattice, {an} a sequence in PSL(2,R). Let v ∈
L2(Γ\PSL(2,R)), if v0 is a weak-* limit of v(anx), limn→∞ anga

−1
n = 1, then

v0(x) = v0(gx).

Proof. For any L2 function w,

(v0(g·), w) = lim
n→∞

(v(ang·), w) = lim
n→∞

(v(anga
−1
n ·), w(a−1

n ·))

= lim
n→∞

(v, w(a−1
n ·)) = (v0, w)

Remark 4.23. By Theorem 4.22 and Remark 4.21, both the geodesic flow and
the horocycle flow are mixing.

A consequence of the mixing of geodesic flow is the following:

Theorem 4.24. When Γ\PSL(2,R is compact, the horocycle flow is uniquely
ergodic.

Remark 4.25. This is the first non trivial case of Ratner’s theorem in ho-
mogenuous dynamics.
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5 Final Review

1. Existence of invariant Radon probability measure.

2. Mean Ergodic theorem

3. Poincare recurrence

4. Maximal identity, Maximal Ergodic Theorem

5. Birkhoff Ergodic Theorem

6. Unique ergodicity and uniform convergence

7. Mixing and weakly mixing

8. Markov shifts

9. Measure theoretic entropy

10. Topological entropy

Example 5.1.

1. Apply the mean, maximal and pointwise ergodic theorems to circle dou-
bling map x 7→ 2x on R/Z and χ[0,1/2], we have:

• Let fn(x) be the number of 0s in the first n binary expansions of x.
Then in L2 sense fn

n → 1/2.

• For any α ∈ (0, 1), let Eα be the set consisting of number x in (0, 1)
where there is some n ∈ N such that the first n digits in the binary
expansion of x has more than nα zeros. Then α times the Lebesgue
measure of Eα is no more than 1/2.

• For almost every x ∈ (0, 1), limn→∞
fn(x)
n = 1/2.

2. Unique ergodicity of x 7→ x + log 2/ log 10 in R/Z can be used to prove
that

lim
n→∞

number of k ∈ {0, . . . , n− 1} such that 2k has first digit 1

n
=

log(2)

log(10)

3. Consider the map T : [0, 1] → [0, 1] defined as T (x) =


3x x < 1/3

2− 3x 1/3 ≤ x < 2/3

3x− 2 x ≥ 2/3

.

Then

• T is 3-Lipschitz, and for any ϵ, [0, 1] can be covered by O(3n/ϵ) balls
of diameter ϵ

3n·2 , each containing no more than one element in any
(n, ϵ) separated set. Hence htop(T ) ≤ log(3).
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• Consider the Lebesgue measure and the partition

P = {[0, 1/3), [1/3, 2/3), [2/3, 1]}

we see that h(T, µLebesgue) ≥ log(3).

• Because htop(T ) ≥ h(T, µLebesgue), htop(T ) = h(T, µLebesgue) = log(3)

Practice Problems

• Consider the flat torus R2/Z2 as a quotient group, show that any group
homomorphism to itself, of the form (x, y) 7→ (ax+ by, cx+ dy), which is
ergodic with respect to the Lebesgue measure, must also be mixing with
respect to the Lebesgue measure.

• Let Σ be a subshift of {0, 1}Z consisting of sequences with no more than
2 consecutive 0s. Find a Radon invariant probability measure on Σ and
calculate the measure theoretic entropy.

• If X is a measurable space with probability measure µ, T a measure
preserving map. Let f be a non negative measurable function on X
such that

∫
X
fdµ = ∞. What can you say about the convergence of

1
n

∑n−1
i=0 f(T

i(x))?

• Show that the set of ergodic measures on one sided full shift of 2 symbols
is dense in the set of all invariant measures under the weak ∗ topology.

• Let X be a compact metric space and f : X → X a continuous map.
What is the relationship between the topological entropy of f and of g :
X ×X → X ×X defined as g(a, b) = (b, f(b))?

Answer

• By Fourier series, the Lebesgue measure is ergodic iff |ad−bc| = 1 and the

matrix

[
a b
c d

]
has two real and irrational eigenvalues. Mixing follows

from the L2 characterization.

• Σ is conjugate via homeomorphism to a Markov subshift of {0, 0′, 1}Z,
where the 0s followed by 0 are sent to 0 and the 0s followed by 1 are sent
to 0′. Now one can continue the calculation as in the lectures.

• It converges almost everywhere to either infinity or a measurable function
taking value on a measurable subset of X.

• Two invariant probability measures are close under weak ∗ topology iff
they are close when evaluating at all the 2N cylinder sets where N consec-
utive digits are fixed. Now do a conjugation via homeomorphism from the
original full shift to a Markov subshift of 2N symbols, where each digit is
sent to the N digits starting at itself. Pick A′ appropriately such that it is
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Perron-Frobenious and the eigenvector is close to the prescribed measures
on the cylinder sets, and define the invariant measure as in Example 3.41.
Such measures are mixing hence ergodic.

• The topological entropies are the same. By Poincare recurrence, any
invariant probability measure for g is supported in the compact subset
{(b, f(b))}, hence the topological entropy of g equals the topological en-
tropy of g|{(b,f(b))}, which is conjugate to f via a homeomorphism.
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A Homeworks

A.1 HW1

1. Let (X,Σ) be a measurable space with a complete probability measure µ,
T : X → T a measurable map such that T∗(µ) = µ.

(a) Show that µ(T (X)) = 1.

(b) If B ∈ Σ satisfies T (B) ⊆ B, then there is some B′ ∈ Σ, such
that T−1(B′) = B′, and two sets Z,Z ′ with measure zero such that
B ∪ Z = B′ ∪ Z ′.

(c) Let A ∈ Σ be a set, such that for any a ∈ A, there is some na > 0,
such that if n > na then Tn(a) ̸∈ A. Show that µ(A) = 0.

2. Let X be a compact metric space and T : X → X a continuous map.

(a) Show that if T (x) = x then δx is an ergodic measure of T .

(b) Write down an X and a T , so that T has three Radon invariant
ergodic measures.

3. LetX and Y be two mesurable spaces, S : X → X, T : Y → Y measurable
self maps. Let µ be a probability measure on X ergodic under S, µ′ a
probability measure on Y ergodic under T . Let S × T be a map from
X × Y to itself defined as (S × T )(x, y) = (S(x), T (y)).

(a) Show that µ× µ′ is a probability measure on X × Y invariant under
S × T .

(b) Find an example of X, Y , S, T , µ and µ′, such that µ×µ′ is ergodic
under S × T .

(c) Find an example of X, Y , S, T , µ and µ′, such that µ× µ′ is not an
ergodic measure under S × T .

Answer

1. (a) µ(T (X)) = µ(T−1(T (X)) = µ(X) = 1

(b) Because T (B) ⊆ B, B ⊆ T−1(B). Because µ(B) = µ(T−1(B)), we
have µ(T−1(B)\B) = 0. Now let B′ =

⋃
i T

−i(B), then T−1(B′) =
B′, Z ′ = ∅, Z = ∪iT−i(T−1(B)\B) has measure 0.

(c) This follows immediately from Poincare recurrence.

2. (a) T∗(δx) = δT (x) = δx, hence it is an invariant measure. Any invariant
subset, by construction, either contains x or doesn’t contain x, hence
has measure of either 1 or 0.

(b) Let X be the interval [−1, 1], T : x 7→ x3. By 1(c) above, for any
ϵ > 0, any invariant probability measure µ, µ([−1+ϵ,−ϵ]∪[ϵ, 1−ϵ]) =
0, hence the support of µ is contained in {0,±1}. The three radon
ergodic probability measures are δ0, δ±1.
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3. (a) This follows from, for example, the Fubini’s theorem.

(b) Let X = Y = R/Z, with the invaruant measure being the Lebesgue
measure, S : x 7→ x + a, T : x 7→ x + b, such that 1, a, b are Q-
linearly independent. Then for any invariant measurable subset A,
in L2(X × Y ) we have χA =

∑
m,n cm,ne

2πi(mx+ny). Invariance of A

implies that cm,n = cm,ne
2πi(ma+nb), hence cm,n = 0 unless m = n =

0, which implies that A has either zero or full measure.

(c) X, Y , S and T same as above but a = b and is irrational, then
the subset consisting of (x, y) where the distance between them is no
more than 1/3 is an inavriant subset of measure 2/3.

A.2 HW2

1. Let X = R/Z, T : X → X defined as T (x) = x+ a where a ∈ R\Q.

(a) Show that for any open subinterval I = (a, b) ⊆ X, any x ∈ X,
limn→∞

1
n

∣∣{j ∈ {0, 1, . . . , n− 1} : T j(x) ∈ I}
∣∣ equals b−a, where |A|

is the cardinality of the set A.

(b) Show that there is an open subset U ⊆ X, x ∈ X, such that
limn→∞

1
n

∣∣{j ∈ {0, 1, . . . , n− 1} : T j(x) ∈ U}
∣∣ does not equal the Lebesgue

measure of U .

2. Let X = R/Z, µ be the Lebesgue measure, T : x 7→ 2x. Find an a ∈ X
such that {a, T (a), T 2(a), . . . } is dense in X but does not equidistributes
to µ.

3. LetX be a compact metric space, M the set of Radon probability measure
on X with the weak ∗ topology (Here we identify M with a subset of
(C(X))∗ via Riesz Representation Theorem). Then by Stone-Weierstrass,
M with the weak ∗ topology is homeomorphic to a compact metric space.

(a) Let T : X → X be a continuous map. Show that µ 7→ T∗(µ) is a map
from M to itself that is continuous under the weak ∗ topology.

(b) Let X = R/Z, T (x) = x+ a, a ̸∈ Q. Find a non atomic measure on
M which is an ergodic measure of the map µ 7→ T∗(µ).

(c) Let X = R/Z, find a T such that µ 7→ T∗(µ) is uniquely ergodic, or
prove that such a T does not exist.

Answer:

1. (a) Let A = (a, b), d(·, ·) the Euclidean distance function, ϵ > 0 be very
small, define f, g ∈ C(X) as

f(x) =


1 x ∈ A

1− d(x,A)
ϵ x ̸∈ A, d(x,A) ≤ ϵ

0 d(x,A) > ϵ
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g(x) =


0 x ̸∈ A
d(x,A)
ϵ x ∈ A, d(x,X\A) ≤ ϵ

1 d(x,X\A) > ϵ

Then by construction,

1

n

n−1∑
i=0

g(T i(x)) ≤ 1

n

∣∣{j ∈ {0, 1, . . . , n− 1} : T j(x) ∈ I}
∣∣ ≤ 1

n

n−1∑
i=0

f(T i(x))

Because T is uniquely ergodic, for any x,

lim
n→∞

1

n

n−1∑
i=0

g(T i(x)) = b− a− ϵ

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) = b− a+ ϵ

Now let ϵ→ 0 we finish the proof.

(b) Let U =
⋃∞
i=0(T

i(x)− 10−1−i, T i(x)+10−1−i), then the limit equals
1 and the measure of U is no more than 2

9 .

2. Let a =
∑∞
n=4

∑2n−1
j=0 j2−(10+2n+1+j)!−n. By construction, {T 2(10+2n+1+j)!

(a)}
is dense in X, and in the binary expansion there are way more 0 than 1s
asymptotically so it can not equidistribute on X (see 1(a) above).

3. (a) Let U ⊆ M be open under weak-∗ topology, we need to show (T∗)
−1(U)

is open as well. Let µ ∈ U , then there is a neighborhood µ ∈ U ′ ⊆ U
defined as

U ′ =

{
µ ∈ M : ai <

∫
X

fidµ < bi, f1, . . . , fn ∈ C(X)

}
So (T∗)

−1(µ) ∈ (T∗)
−1(U ′) ⊆ (T∗)

−1(U) and

(T∗)
−1(U ′) =

{
µ ∈ M : ai <

∫
X

(fi ◦ T )dµ < bi, f1, . . . , fn ∈ C(X)

}
which is open.

(b) Consider continuous map F : x 7→ δx. It is easy to see that it gives a
conjugation from T to T∗. The unique ergodic measure on X pushed
forward into M via F is a non atomic ergodic measure of T∗.

(c) If T has multiple ergodic measures, like µ, µ′, then δµ and δµ′ are
distinct ergodic measures of T∗, so T∗ won’t be uniquely ergodic.

If T is uniquely ergodic, let µ be the unique ergodic Radon measure,
then F∗(µ) and δµ are both ergodic measures of T∗. If we want T∗ to
be uniquely ergodic, they must be identical. So we can, for example,
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let T be the constant map sending everything to 0, then T∗ sends M
to δ0. Now if µ is a Radon probability measure invariant under T∗
then

µ(U) = µ(T−1(U)) =

{
µ(M) = 1 δ0 ∈ U

µ(∅) = 0 δ0 ̸∈ U
= δδ0

A.3 HW3

1. Let Σ = {(an), n ∈ Z : aj ∈ {1, 2}, aj = 2 =⇒ aj+1 = 1} be a two sided
Markov subshift.

(a) Write down a Radon probability measure µ invariant under the shift
map σ, such that σ is mixing with respect to this measure.

(b) Calculate the measure theoretic entropy of σ with respect to this
measure µ.

2. Prove that if P and P ′ are two finite partitions of X with probability
measure µ, then h(P ∨ P ′) ≤ h(P ) + h(P ′).

3. Let X be a measurable space with a probability measure µ, T : X → X
a measure preserving map. Show that if for any measurable subset A,
limn→∞ µ(T−n(A) ∩A) = (µ(A))2, then T is mixing.

4. Write down an ergodic Radon probability measure for a two sided full shift
of 3 letters, such that the shift map is not weakly mixing with respect to
this measure, but has positive measure theoretic entropy.

5. Let X be a compact metric space, V1, . . . , Vm be n compact subsets of
X whose union is X, and T : X → X a continuous map. Let A be a
m×m matrix whose entries are either 0 or 1. Suppose further that if the
i, j-th entry of A is 1, then Vj ⊆ T (Vi), and if x, x′ lies in the same Vi, we
have d(T (x), T (x′)) > Ld(x, x′) for some L > 1, then there is a continuous
conjugation h from one sided Markov subshift

ΣA = {(an) ∈ {1, . . . ,m}N : the aj , aj+1-th entry of A is 1}

to X, such that T ◦ h = h ◦ σ (σ((an)) = (bn) then bj = aj+1), and
T k(h((an))) ∈ Vak .

Remark: As a further exercise, can you write down a sufficient condition
for the existence of a continuous conjugation from a two sided Markov shift to
a homoemorphism on a compact metric space?

Answer:

1. (a) µ({(an) : aj = bj , . . . , ak = bk}) = ybj
∏j−1
l=k rblbl+1

, where y1 = 2/3,
y2 = 1/3, r11 = r12 = 1/2, r21 = 1, r22 = 0.

(b) The entropy is h = 2/3 log(2).
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2. Let the measures of the elements of P and P ′ be µ(Ui) = si and µ(Vj) = tj
respectively, µ(Ui ∩ Vj) = rij . Then

h(P ∨ P ′)− h(P ) = −
∑
ij

rij log(rij/si) =
∑
i

si

−
∑
j

rij
si

log

(
rij
si

)
By concavity of the function −

∑
j xj log(xj), the above is bounded from

above by h(P ′).

3. Let f ∈ L2(X), we only need to show that

lim
n→∞

∫
X

f(χA ◦ Tn)dµ = µ(A)

∫
X

fdµ

Consider H = span{1, χA◦Tn}. For any element g = c+
∑
j aj(χA◦T j) ∈

H,

lim
n→∞

∫
X

g(χA ◦ Tn)dµ = cµ(A) + lim
n→∞

∑
j

ajµ(T
−j(A) ∩ T−n(A))

=

c+∑
j

ajµ(A)

µ(A) = µ(A)

∫
X

gdµ

By continuity of inner product,

lim
n→∞

∫
X

f(χA ◦ Tn)dµ = µ(A)

∫
X

fdµ

is true for any f ∈ H. It is evident that for any f ∈ H⊥,

lim
n→∞

∫
X

f(χA ◦ Tn)dµ = 0 = µ(A)

∫
X

fdµ

Hence the identity is proved for all f due to orthogonal projection.

4. µ({(an) : aj = bj , . . . , ak = bk}) = ybj
∏j−1
l=k rblbl+1

, where y1 = y2 = 1/4,
y3 = 1/2,

[rij ] =

 0 0 1
0 0 1
1/2 1/2 0


By considering subsets A = B = {(an) : an = 3 iff n is even} we see that
the shift map σ is not weakly mixing. However, σ2 is strongly mixing on
A, hence any measurable invariant subset intersecting with A must have
either zero measure or full measure (µ(A) = 1/2), which implies that the
invariant subset itself must have a measure of 0 or 1. By calculation it is
easy to see that the topological entropy is log(2)/2 > 0.
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5. h is defined as follows:

h(an) =
⋂
n

(T |Va0
)−1(T |Va1

)−1 . . . (T |Van−1
)−1Van

Now one can verify that h is well defined (it is the intersection of a nested
sequence of compact sets with diameter goes to 0), continuous, and satis-
fies all the other assumptions.

A.4 HW4

1. Let X be a compact metric space and T : X → X is a continuous map.
Suppose A ⊆ X is a closed subset such that T−1(A) = A. What is the
relationship between the topological entropy of T and of T |A? Justify
your answer.

2. Write down a continuous map from R/Z to itself, such that the Lebesgue
measure is invariant unfer this map, and the measure theoretic entropy
with respect to the Lebesgue measure is infinity.

3. Let X be a compact metric space and T : X → X a continuous map.
Let D be the set of invariant Radon probability measures, with weak ∗
topology. For any µ ∈ D, let h(T, µ) be the measure theoretic entropy. Is
the function µ → h(T, µ) a continuous function on D? Prove it or write
down a counter example.

Answer:

1. The topological entropy of T is no less than the topological entropy of
T |A. This is because any open cover of X must always induce an open
cover of A.

2. From definition it is easy to see that if X can be decomposed into disjoint
unions of T -invariant subsets Ai with positive measures, then h(T, µ) =∑
i µ(Ai)h(T |Ai

, µ|Ai
). Here for any measurable B ⊆ Ai, µ|Ai

(B) =
µ(B)/µ(Ai). Hence we can define the map T as:

T (x) =


1

n+1 + 32
n
(
x− 1

n+1 − 2j
32nn(n+1)

)
1

n+1 + 2j
32nn(n+1)

< x ≤ 1
n+1 + 2j+1

32nn(n+1)

1
n+1 + 32

n
(

1
n+1 + 2k+2

32nn(n+1)
− x
)

1
n+1 + 2k+1

32nn(n+1)
< x ≤ 1

n+1 + 2k+2
32nn(n+1)

Here n goes through all positive integers, j integer such that 0 ≤ j ≤
(32

n − 1)/2, k integer such that 0 ≤ k ≤ (32
n − 3)/2.

3. It is not continuous. As an example, consider one sided full shift of 2
symbols. Let µ be the measure of maximal entropy, then h(T, µ) = log(2).
Let µn be the average of the δ-measure on x ∈ X such that Tn(x) = x,
then it is easy to see that µn converges to µ under weak-∗ topology, yet
h(T, µn) = 0 for all n.
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A.5 HW5

1. Let f : R → R be a continuous function such that f(x + n) = f(x) + 2n
for all integer n. Let T : R/Z → R/Z be defined as T ([x]) = [f(x)], where
[a] is the equivalence class represented by a in the quotient space. Show
that the topological entropy of T is no less than log(2).

2. Let X be a compact metric space and T : X → X a continuous map.
Let T ′ : X ×X → X ×X be defined as T ′(a, b) = (T (a), T (b)). What is
the relationship between the topological entropy of T and the topological
entropy of T ′? Here the metric on product space X × X is chosen as
dX×X((a, b), (a′, b′)) = max{dX(a, a′), dX(b, b′)}.

3. Let X be a compact metric space with a continuous map H : X ×R≥0 →
X, such that H(H(x, s), t) = H(x, s+ t).

(a) Show that there is a Radon probability measure µ on X such that
for any measurable set A, any t ∈ R≥0, µ({a ∈ X : H(a, t) ∈ A}) =
µ(A).

(b) Find X and H such that this Radon invariant probability measure
is unique.

4. (This is how we get continued fraction from the Rauzy-Veech induction
of a 2-IET) Let α be an irrational number between 0 and 1, consider

sequence an and bn defined as follows: a0 = α, bn =

{
0 an < 1/2

1 an > 1/2
,

an+1 =

{
an/(1− an) bn = 0

(1− an)/an bn = 1
. Can you write down the continued frac-

tion of α from the sequence {bn}?

Answer:

1. By compactness, there is some ϵ > 0, such that for any x ∈ R/Z, there are
y, y′ ∈ T−1(x) such that the distance between them is more than ϵ. Now
for any natural number n, let x1,1, x1,2 ∈ T−1(0) with distance larger than
ϵ, x2,1, x2,2 ∈ T−1(x1,1), x2,3, x2,4 ∈ T−1(x1,2), such that the distance
between x2,1 and x2,2, as well as x2,3 and x2,4, are both larger than ϵ.
Continue the process to xn−1,i, we see that they form a (n, ϵ)−separated
set with 2n−1 elements, which implies that the topological entropy is no
less than log(2).

2. h(T ′) = 2h(T ). For any ϵ > 0, the product of an (n, ϵ)-separated set in
X with itself is an (n, ϵ)-separated set in X × X, hence h(T ′) ≥ 2h(T ).
Now consider the product of a maximal (n, ϵ/3)-separated set in X with
itself, the open balls centered at these points, with radius ϵ/2, cover the
whole X × X, and each such ball contains at most one element in an
(n, ϵ)-separated set in X ×X, hence h(T ′) ≤ 2h(T ).
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3. (a) Pick x ∈ X, consider µn defined as follows: for any f ∈ C(X),∫
X

fdµn =
1

n

∫ n

0

f(H(x, t))dt

and let µ∗ be the weak-* limit of a subsequence. Now for any n, any
f ∈ C(X), any t ≥ 0,∣∣∣∣∫

X

f(H(a, t))dµn(a)−
∫
X

f(a)dµn(a)

∣∣∣∣
=

∣∣∣∣ 1n
(∫ n+t

t

f(H(x, s))ds−
∫ n

0

f(H(x, s))ds

)∣∣∣∣ ≤ 2tmax(|f |)
n

By construction of µ∗, one can always find arbitrarily large n such
that µn is close to µ∗ under weak-∗ topology, and the above inequality
shows that µ∗ is H(·, t)-invariant for all t.

(b) Let X = R/Z and H(x, t) = x+ t.

4. Suppose α = [0; a1, a2, a3, . . . ], then the sequence {bn} would be a1 − 1
zeros followed by 1 followed by a2−1 zeros followed by 1 followed by a3−1
zeros followed by 1 . . . .

B Final Practice Problems

1. Let X be a compact closed subset of R2, with Euclidean metric, T : X →
X such that d(T (x), T (b)) ≤ 2d(x, y) for any x, y ∈ X. Show that the
topological entropy of T is no more than log(4).

2. Let X be a compact metric space, T : X → X a continuous map. If
T ◦T = idX and T is uniquely ergodic, then T contains no more than two
points.

3. Let X = [0, 1] be the closed interval, T : X → X defined as T (x) ={
2x x ≤ 1/2

2− 2x x > 1/2
.

(a) Show that the topological entropy of T is log(2).

(b) Show that the Lebesgue measure is an invariant Radon probability
measure, and the measure theoretic entropy of T under the Lebesgue
measure is log(2).

(c) Write down a Radon invariant probability measure on X which is
ergodic but not mixing.

4. Let A be a compact metric space, X = AN, T sends (a0, a1, . . . ) ∈ X to
(a1, a2, . . . ).
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(a) Show that T is continuous.

(b) Show that if A has more than one points then T is not uniquely
ergodic.

(c) Show that if A has infinitely many points then T has topological
entropy ∞.

Answer:

1. Given any ϵ > 0, cover X with discs of diameter ϵ/2n, then the number
of such discs are bounded from above by O(4n/ϵ2). Each disc contains at
most one element of a (n, ϵ) separated set, hence the topological entropy
is no more than log(4).

2. For any x ∈ X,
δx+δT (x)

2 is an ergodic measure. Hence if there is a single
ergodic measure then X must have 2 points.

3. You can use a method similar to problem 1 to show that the topological
entropy is no more than log(2). By making use of Markov decomposition
{[0, 1/2], [1/2, 1]} we can find a conjugacy from full shifts of two letters to
this map (see also HW3 problem 5), and the measure of maximal entropy
is sent to the Lebesgue measure by this conjugacy, hence the topological
entropy is no less than log(2). To find an ergodic but not mixing measure,
find a point with finite forward orbit and consider the average of the δ
measures along this orbit.

4. (a) This is by the definition of product topology.

(b) If A has two distinct points a and b, then δ(a,a,a,... ) and δ(b,b,b,... ) are
both ergodic Radon measures.

(c) For any n there is a closed T -invariant subset of X {a1, . . . , an}N,
where a1, . . . an are distinct elements of A. This subset is T invariant
and the topological entropy of T on it is log(n), hence the topological
entropy of T on X is no smaller than log(n) for all n, which means
it has to be infinity.

C Final Exam

1. Let X = {0, 1, 2}, with the discrete topology. Let continuous map T :
X → X be defined as T (0) = T (2) = 1, T (1) = 0. Let µ = 1

2 (δ0 + δ1) be
a probability measure on X.

(a) Show that µ is invariant under T , and it is also an ergodic measure.
(15 points)

(b) Is T uniquely ergodic? Why or why not? (10 points)

(c) Is T weakly mixing with respect to µ? Why or why not? (10 points)
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2. Let Y = R/Z with the Euclidean metric, and S : Y → Y be defined as
S(x) = x + a, where a ̸∈ Q. Let X be a compact metric space, whose
elements are all the non empty compact subsets of Y , and distance function
is the “Hausdorff metric” defined as

dH(A,B) = max

{
sup
a∈A

(
inf
b∈B

d(a, b)

)
, sup
b∈B

(
inf
a∈A

d(a, b)

)}
You do not need to write down a proof that (X, dH) is compact as a metric
space. Define T : X → X as T (A) = {S(a) : a ∈ A}. Let µ be a Radon
probability measure on X defined as µ(U) = µY ({y ∈ Y : {y} ∈ U}),
where µY is the Lebesgue measure.

(a) Show that µ is an ergodic measure of T . (15 points)

(b) Write down the measure theoretic entropy of T with respect to µ.
Hint: The measure theoretic entropy of h(S, µY ) is bounded from
above by the topological entropy of S, hence equals 0. (15 points)

(c) Show that T is not uniquely ergodic by writing down a different
Radon ergodic probability measure for T . (5 points)

(d) Does X have a Radon invariant probability measure µ′ such that the
measure theoretic entropy h(T, µ′) is positive? Why or why not? (5
points)

3. Let A = {z ∈ C : |z| = 1}, with the Euclidean metric on C. Let Σ ⊆ AZ

be defined as follows:

(. . . , a−n, . . . , a−1, a0, a1, . . . , an, . . . ) ∈ Σ iff a2i = a3i+1 for all i ∈ Z

Let σ be the shift map, i.e. σ(zi) = (wi) then wi = zi+1.

(a) Show that Σ is a closed subset of AZ under the product topology,
and σ(Σ) = σ−1(Σ) = Σ (15 points)

(b) Calculate the topological entropy of σ|Σ : Σ → Σ. (10 points)

Answer

1. (a) There are only 8 possible subsets of X and you can check them one
by one.

(b) Yes. Any probability measure is of the form aδ0 + bδ1 + cδ2, and
being invariant under T implies that a = b and c = 0.

(c) No. Let A = B = {0}.

2. (a) The map h : Y → X, h(y) = {y}, is a conjugation from S to T that
sends µY to µ, hence µ is ergodic.

(b) It is 0, because h(T, µ) = h(S, µY ) ≤ h(S) = 0.
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(c) No, because the topological entropy of any isometry on compact met-
ric space is 0, which one can see easily from the n, ϵ-separable set
definition of topological entropy.

3. (a) σ(Σ) = σ−1(Σ) = Σ follows immediately from definition. a2i = a3i+1

involves only finitely many ais hence are all closed conditions, and a
set defined by a set of closed conditions is closed.

(b) Let the metric on Σ be d((ai), (bi)) =
∑
i∈Z 2

−|i||ai − bi|. Let ϵ <
1/10. For any n, pick 3n−1 elements of the form (zi) in Σ such that
z0 = 1, and z1, . . . , zn−1 goes through all 3n−1 possibilities, then
these elements form a n, ϵ-separated set. Hence h(σ) ≤ log(3). Now
given any ϵ, pick M points in Σ such that the ϵ/2-balls centered at
these points cover Σ. Pick N ′ such that 2−N

′+2 < ϵ/2. Now for every
n, for each of the M points (zi), pick 3n+N

′
points of the form (wi),

such that wi = zi when i ≤ 0 and w1, . . . wn+N ′ goes through all
possibilities. Then for any a = (ai) ∈ Σ, a, σ(a), . . . , σn−1(a) must
all be in the ϵ/2-neighborhood of one of the M · 3n+N ′

points, hence
h(σ|Σ) ≤ log(3).
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