
Math 561

Lectures (on Zoom): 11 am-12:15 pm, Tu Th

Office hours (on Zoom): 1-2 pm TF 1, or by appointment.

Weekly HW assignments.

Grades: 10% HW (lowest 2 dropped), 35% Midterm (in class), 55%
Final.

Letter grade range: [90, 100]: A, [75, 90): B or AB, [60, 75): BC or C.

1Office hours for some weeks may be moved to other time slots.
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Introduction
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Introduction

History of differential geometry

Apollonius (3rd century BCE): “curvature” of conic sections.

Nicole Oresme (14th century): curvature of a curve.

Christiaan Huygens, Isaac Newton (17th century): methods for
calculating curvature of curves.

Carl Friedrich Gauss (1825, 1827, General Investigations of Curved
Surfaces): basically what we will learn this semester.

Bernhard Riemann (1854, On the Hypotheses Which Lie at the

Foundations of Geometry): curvature in higher dimensions.

Charles Ehresmann (1905-1979): modern language of differential
geometry.

Michael Spivak’s A Comprehensive Introduction to Differential Geometry

Vol. 2 has the English translation of these two texts by Gauss and Riemann.
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Introduction

Topics we will cover for this semester

Plane curves (about 2 weeks)

Space curves (about 2 weeks)

Extrinsic geometry of surfaces in R3 (about 3 weeks)

Intrinsic geometry of surfaces in R3 (about 3 weeks)

Gauss-Bonnet theorem (about 3 weeks)

Textbook: do Carmo, Differential Geometry of Curves and Surfaces
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Introduction

General Advices

Make sure you understand the definition of every concept clearly
before moving on.

Use “geometric intuition” to guide your calculation.
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Introduction

Some key ideas in differential geometry

Coordinate charts: When doing computation, we often describe
curves and surfaces, at least locally, as image of maps. However we
often want our geometric quantity to be invariant under change of
coordinate.

Distance: The distance between two points of an object can be
measured by the length of the shortest path within the object. If a
map from a curve or surface to another preserves distance we call it an
isometry, and quantities preserved by isometries are called intrinsic.

Parallel transport, or connection: We want a way to relate vectors
at one point of the object with those at another.

Curvature: From parallel transport we can get varies quantities that
measures how much an object deviates from being “flat”. They can be
either intrinsic, or extrinsic.
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Plane Curves

2 Plane Curves
Basic Definitions
Arc length and arc length parameterization
Curvature and the local theory of plane curves
Global theory of plane curves: Rotation Index
Digression: Discrete Differential Geometry
1-manifolds
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Plane Curves Basic Definitions

Basic Definitions

Definition 2.1.1

A (parameterized) plane curve is a continuous function from an interval to
R2. In other words, a map 𝛾 : I → R2, such that 𝛾(t) = (𝛾1(t), 𝛾2(t)), 𝛾i
are both continuous.

Definition 2.1.2

A plane curve is said to be differentiable, C k , or smooth if the function is
differentiable, C k , or smooth.

Example 2.1.3

Let 𝛾k : R → R2 be 𝛾k(t) = (t, tk |t|). Then 𝛾0 is a plane curve that is not
differentiable, 𝛾k is C k but not C k+1.

May 2, 2021 10 / 188



Plane Curves Basic Definitions

Definition 2.1.4

A differentiable plane curve is called regular if d𝛾1/dt ̸= 0 or d𝛾2/dt ̸= 0
at any point in I .

Definition 2.1.5

A plane curve is called simple if it is injective. For simple curves sometimes
we identify the curve with its image.

Example 2.1.6

The smooth curve 𝛼 : R → R2, 𝛼(t) = (t2, t3) is simple but not regular.
The smooth curve 𝛽 : R → R2, 𝛽(t) = (t2 + t, t3 + t2) is regular but not
simple.
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Plane Curves Basic Definitions

Definition 2.1.7

Let 𝛼 : I → R2, 𝛽 : I ′ → R2 be two plane curves. If there is a continuous
(or differentiable, or C k , or smooth) bijection i : I → I ′, whose inverse is
also continuous (or differentiable, or C k , or smooth), such that 𝛽 = 𝛼 ∘ i ,
then we call 𝛼 and 𝛽 are continuous (or differentiable, or C k , or smooth)
reparameterization of one another. If i ′ > 0 this reparameterization is
orientation preserving, otherwise it is orientation reversing.

Example 2.1.8

Let I = (0, 2𝜋), 𝛼(t) = (cos(t), sin(t)). The curve is smooth, regular and
simple. Let I ′ = R, 𝛽(t) = ((t2 − 1)/(t2 + 1), 2t/(t2 + 1)). The curve is
also smooth, regular and simple, and the orientation reversing smooth
reparametrization between I and I ′ is:

I → I ′ : t ↦→ − tan((t − 𝜋)/2)

I ′ → I : t ↦→ 2 arctan(−t) + 𝜋
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Plane Curves Basic Definitions

The curve in the example is the unit circle with (1, 0) removed. The
first parameterization is by the angle between vector (1, 0) and (x , y).
The second parameterization is by the intersection of the y axis and
the line passing through (1, 0) and (x , y).

It is easy to see that under reparameterization, the image of the curve
remain unchanged.
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Plane Curves Arc length and arc length parameterization

Arc Length and Arc Length Parameterization

Recall that in R2, the Euclidean norm is ‖x‖ = (x · x)1/2 =
√︁
x2
1
+ x2

2
, the

Euclidean distance between x and y is ‖x − y‖.

Definition 2.2.1

Let 𝛾 = (𝛾1, 𝛾2) be a regular C 1 curve. The length of 𝛾 is defined as∫︀
I
‖𝛾′‖dt

Definition 2.2.2

The distance between 𝛾(a) and 𝛾(b) along the curve is defined as

|
∫︀ b

a
‖𝛾′‖dt|

Definition 2.2.3

If 𝛾 is a C 1 regular curve, t0 ∈ I , then the function s(t) =
∫︀ t

t0
‖𝛾′(u)‖du is

called the arc length. The distance from 𝛾(a) to 𝛾(b) along the curve is
|s(a)− s(b)|.

A different choice of t0 will result in an s that differ by a constant.
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Plane Curves Arc length and arc length parameterization

Justification of this definition of length

Theorem 2.2.4

If 𝛾 is a C 1 regular curve, parameterized by a finite interval I = (0, 1), then

lim
n→∞

n−1∑︁
i=0

‖𝛾(i/n)− 𝛾((i + 1)/n)‖ =

∫︁
1

0

‖𝛾′‖dt

Proof idea

Mean value theorem implies that

𝛾(i/n)− 𝛾((i + 1)/n) = (𝛾′1(s1)/n, 𝛾
′
2(s2)/n)

For some s1, s2 ∈ [i/n, (i + 1)/n]. Now apply the uniform continuity of 𝛾′.
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Plane Curves Arc length and arc length parameterization

The function s is a invertible function as it is C 1 with positive derivative.

Definition 2.2.5

The arc length parameterization of a C 1 regular curve 𝛾 is defined as
𝛽 = 𝛾 ∘ s−1.

The arc length of an arc length parameterization is t ↦→ t − t0.

Just like the arc length function depends on the choice of t0, a
different choice of t0 will result in a precomposition by some map
s ↦→ s + C .
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Plane Curves Arc length and arc length parameterization

Review for the last lecture

C k Plane curves

Regularity, simplicity

Reparameterization, orientation

Length of a plane curve, distance between two points along the curve

Arc length function

Arc length parameterization

True or false: If 𝛼 is a C 1 regular plane curve, 𝛾 = 𝛼 ∘ s−1 the arc length
parameterization. Then 𝛾 is an orientation preserving reparameterization of
𝛼.

Remark

The textbook starts with space curves. So this first chapter is just an

extended introductory example, we will move on to textbook materials next

week!
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Plane Curves Arc length and arc length parameterization

Example 2.2.6

Consider the curve 𝛾 : R → R2, t → ((t2 − 1)/(t2 + 1), 2t/(t2 + 1)).

Let t0 = 0, then the arc length is

s(t) =

∫︁ t

0

√︃
(
2t(t2 + 1)− (t2 − 1) · 2t

(t2 + 1)2
)2 + (

2(t2 + 1)− 4t2

(t2 + 1)2
)2dt

=

∫︁ t

0

2

t2 + 1
dt = 2 arctan(t)

The total length of 𝛾 is s(∞)− s(−∞) = 2𝜋.

The arc length parameterization is

(
tan2 s

2
− 1

1+ tan2 s
2

,
2 tan s

2

tan2 s
2
+ 1

) = (− cos(s), sin(s))

where I = (−𝜋, 𝜋).
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Plane Curves Arc length and arc length parameterization

Calculus digression: Chain Rule

Theorem 2.2.7

If F : Rm → Rn, G : Rn → Rr are both C 1 functions, then the derivative,

or Jacobian matrix, of F at x ∈ Rm is defined as JF (x) = [𝜕jFi |x ]n×m,

where F = (F1, . . . ,Fn). The chain rule for the derivative of G ∘ F at

x ∈ Rm is

J(G ∘ F )(x) = JG (F (x))JF (x)

Example 2.2.8

If F is the polar coordinate change (r , 𝜃) → (r cos 𝜃, r sin 𝜃), G is
(x , y) ↦→ x2 + y2, 𝜑 = G ∘ F , then

[︀
𝜕r𝜑 𝜕𝜃𝜑

]︀
=

[︀
2r cos 𝜃 2r sin 𝜃

]︀ [︂ cos 𝜃 −r sin 𝜃
sin 𝜃 r cos 𝜃

]︂
=

[︀
2r 0

]︀
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Plane Curves Arc length and arc length parameterization

Arc length and reparameterization

Theorem 2.2.9

Let 𝛼 and 𝛽 be two C 1 regular parameterizations of the same curve,

𝛽 = 𝛼 ∘ i , s𝛼 and s𝛽 are the arc length functions, then s𝛽 = ±(s𝛼 ∘ i + C )
for some constant C.

Proof.

s𝛽(t) =

∫︁ t

t0

‖𝛽′(u)‖du =

∫︁ t

t0

‖i ′(u)𝛼′(i(u))‖du

= sign(i ′)

∫︁ t

t0

‖𝛼′(i(u))‖i ′(u)du = sign(i ′)

∫︁ i(t)

i(t0)
‖𝛼′(v)‖dv

= sign(i ′)(s𝛼 ∘ i + C )
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Plane Curves Arc length and arc length parameterization

As a result, we have:

Theorem 2.2.10

Distance between two points on a curve is unchanged by reparamterization.

Theorem 2.2.11

Let 𝛼 and 𝛽 be two C 1 regular parameterizations, 𝛽 = 𝛼 ∘ i , i is invertible
and C 1. Then the arc length parameterization of 𝛽 and 𝛼 differs by a

precomposition of x ↦→ sign(i ′)x − C for some constant C.

Proof.

Let e be x ↦→ sign(i ′)x − C , then

𝛽 ∘ s−1

𝛽 = 𝛽 ∘ i−1s−1

𝛼 ∘ e = 𝛼 ∘ s−1

𝛼 ∘ e
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Plane Curves Arc length and arc length parameterization

True or false: If 𝛼 and 𝛽 are reparameterizations of one another, then the
arc length function of 𝛼 and 𝛽 differ by a constant.
Answer: False. Need to precompose with i , and possibly multiply by −1
depending on orientation.
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Plane Curves Curvature and the local theory of plane curves

Curvature

For now assume all plane curves involved to be simple.

Definition 2.3.1

Let 𝛾 be a C 2-regular plane curve, suppose 𝛾 is an arc length
parameterization. Then the curvature at 𝛾(t0) is defined as ‖𝛾′′(t0)‖. The
signed curvature is ‖𝛾′′(t0)‖ if 𝛾′′(t0) is in the direction of 𝛾′ rotated
counterclockwise by 𝜋/2 (i.e. on the left hand side of 𝛾′), −‖𝛾′′(t0)‖ if
otherwise.

Theorem 2.2.11 implies that the curvature is invariant under
reparameterization. The signed curvature is invariant under orientation
preserving reparameterization.
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Plane Curves Curvature and the local theory of plane curves

Geometric meaning of curvature

If 𝛾 is arc length parameterization, then ‖𝛾′‖ = 1, so 𝛾′(t) is a unit
tangent vector of the curve at 𝛾(t). Hence, curvature measures how fast

the unit tangent vector turn when one moves along the curve at

unit speed.
Alternatively, we can also call 𝛾′ turned counterclockwise by 𝜋/2 the unit
normal vector. In this case, we can say curvature measures how fast the

unit normal vector turn when one moves along the curve at unit

speed.
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Plane Curves Curvature and the local theory of plane curves

Curvature under general regular parameterization

If 𝛾 is not an arc length parameterization, we shall use chain rule to
calculate the curvature of 𝛾 at t0 ∈ I .
Let 𝛾1 be the arc length parameterization obtained via 𝛾, which is
𝛾1 = 𝛾 ∘ s−1, s(t) =

∫︀ t

t0
‖𝛾′‖ds. Then by chain rule and quotient rule:

𝛾′1(t) =
𝛾′ ∘ s−1(t)

‖𝛾′ ∘ s−1(t)‖

𝛾′′1 =

𝛾′′∘s−1

‖𝛾′∘s−1‖‖𝛾
′ ∘ s−1‖ − ( 𝛾′′∘s−1

‖𝛾′∘s−1‖ · 𝛾′∘s−1

‖𝛾′∘s−1‖)𝛾
′ ∘ s−1

‖𝛾′ ∘ s−1‖2
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Plane Curves Curvature and the local theory of plane curves

Now set t = 0, we get the curvature

‖‖𝛾′(t0)‖2𝛾′′(t0)− (𝛾′(t0) · 𝛾′′(t0))𝛾′(t0)‖
‖𝛾′(t0)‖4

=
Area of parallelogram formed by 𝛾′ and 𝛾′′

‖𝛾′‖3

A consequence of the formula above is that if two regular C 2 curves, up to
reparameterization, have the same derivatives and 2nd order derivatives at
a point (called osculating), they must have the same radius at the point
also.
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Plane Curves Curvature and the local theory of plane curves

Example 2.3.2

The circle with a point removed:

I = (0, 2r𝜋), 𝛾(t) = (r cos(t/r), r sin(t/r))

It is easy to see that this is an arc length parameterization, the curvature at
𝛾(t) is

‖𝛾′′(t)‖ = ‖(− cos(t/r)/r ,− sin(t/r)/r)‖ = 1/r

Because (− cos(t/r),− sin(t/r)) is 𝛾′ turned counterclockwise by 𝜋/2, the
signed curvature is also 1/r .

This example, together with the discussion on the previous page, implies
the earliest definition of curvature of a curve: The curvature of a curve

is the reciprocal of the radius of the osculating circle of the curve.
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Plane Curves Curvature and the local theory of plane curves

Example 2.3.3

Consider
𝛾 : R → R2, 𝛾(t) = (t, t2)

The curvature at t = 0 is

‖‖(1, 0)‖2(0, 2)− ((1, 0) · (0, 2))(1, 0)‖
‖(1, 0)‖4

= 2

It is also the signed curvature.
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Plane Curves Curvature and the local theory of plane curves

Fundamental Theorem of the Local Theory of Plane Curves

Theorem 2.3.4

Given any interval I containing zero, any smooth real valued function k on

I , there is a regular smooth plane curve 𝛾 : I → R2, such that 𝛾 is an arc

length parameterization, and 𝛾′′ is k times 𝛾′ turned counterclockwise by

𝜋/2. Furthermore, any two such plane curves are identical up to rigid

motion.

In other words, up to a rigid motion, the signed curvature function k

completely characterized the shape of a plane curve.
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Plane Curves Curvature and the local theory of plane curves

The proof requires Picard’s theorem on ODEs:

Theorem 2.3.5

Let I be any interval, t0 ∈ I , x0 ∈ Rn, F is a function from R× Rn to Rn

that is continuous and Lipschitz on the second parameter (i.e. there is

some number L such that ‖F (t, x)− F (t, y)‖ ≤ L‖x − y‖, then the initial

value problem

y(t0) = x0, y
′ = F (t, y)

has a unique solution. Furthermore, if F is smooth, or real analytic, so is

the solution.

The proof can be found in textbooks on ordinary differential equations.
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Plane Curves Curvature and the local theory of plane curves

Proof of the Fundamental Theorem of the LTPC

Proof.

For existence, apply Picard’s theorem to the following IVP:

𝛾1(0) = 0, 𝛾2(0) = 0, v1(0) = 1, v2(0) = 0

𝛾′1 = v1, 𝛾
′
2 = v2, v

′
1 = −kv2, v

′
2 = kv1
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Plane Curves Curvature and the local theory of plane curves

Proof of the Fundamental Theorem of the LTPC

Proof.

Now we verify that 𝛾 = (𝛾1, 𝛾2) satisfies the requirements in the theorem:

‖𝛾′(0)‖ = ‖(1, 0)‖ = 1

(‖𝛾′‖2)′ = (𝛾′ · 𝛾′)′ = 2𝛾′ · 𝛾′′ = 2(v1, v2) · (−kv2, kv1) = 0

So ‖𝛾′‖ = 1, the arc length function when t0 = 0 would be identity, which
implies that 𝛾′ is an arc length parameterization.
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Plane Curves Curvature and the local theory of plane curves

Proof of the Fundamental Theorem of the LTPC

Proof.

Next, we have
𝛾′′ = k(−v2, v1)

Here (−v2, v1) is the unit tangent vector (v1, v2) rotated counterclockwise
by 𝜋/2.
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Plane Curves Curvature and the local theory of plane curves

Proof of the Fundamental Theorem of the LTPC

Proof.

For uniqueness, suppose 𝛽 is the arc length parameterization of another
curve that satisfy the assumptions in the theorem. Do a translation to
move 𝛽(0) to (0, 0), and a rotation around (0, 0) to move 𝛽′(0) to (1, 0),
now following the same calculation as before, we know that 𝛽1, 𝛽2, 𝛽

′
1
, 𝛽′

2

satisfies the same IVP of 𝛾1, 𝛾2, v1, v2. Hence by Picard’s theorem
𝛽 = 𝛾.
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Plane Curves Curvature and the local theory of plane curves

Local Canonical Form

Solving the ODE in the prove of the Fundamental Theorem, with t0 = 0,
we get the local canonical form:

x(t) = t − k2
0
t3

6
+ O(t4), y(t) =

k0
2
t2 +

k ′
0
t3

6
+ O(t4)

Here k0 = k(0), k ′
0
= k ′(0) Any smooth regular plane curve, after rigid

motion and arc-length reparameterization, can be turned into the local
canonical form.
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Plane Curves Curvature and the local theory of plane curves

Example

Example 2.3.6

I = [−1, 1], k(t) = t. Then the ODE for 𝛾(t)′ = (v1(t), v2(t)) becomes

v ′1 = −tv2, v
′
2 = tv1, v1(0) = 1, v2(0) = 0

Let v1 = cos(𝜃(t)), v2 = sin(𝜃(t)), we get 𝜃′ = t, 𝜃(0) = 0, so
𝜃(t) = t2/2. Hence the plane curve becomes

t ↦→ (

∫︁ t

0

cos(t2/2)dt,

∫︁ t

0

sin(t2/2)dt)

Taylor series expansion at 0 up to degree 3 gets the LCF:

t ↦→ (t + O(t4),
t3

6
+ O(t4))
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Plane Curves Curvature and the local theory of plane curves

There will be no proofs in the exam, but by the end of the

semester, understanding of proofs is needed to fully understand

the lectures and get an A in the course.

Please come to office hours more if you like geometry but is not yet
comfortable with proofs.

Review analysis and linear algebra.
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Plane Curves Curvature and the local theory of plane curves

Review of set-theoretic notations

A is a set, we call B a subset of A, if any member of B is a member
of A.

Subsets can be represented via the notation of specification:
B = {a ∈ A : 𝜑(a)}. Here 𝜑 is a sentence depending on a variable a,
which can either be true or false (in logic we call it a predicate, and
B consists of all elements of A that makes 𝜑 true.

The product of two sets A and B , denoted as A× B , is the set
consisting of ordered pairs of elements in A and B .

The power set of A, denoted as 2A, is the set consisting of subsets of
A.

May 2, 2021 35 / 188



Plane Curves Curvature and the local theory of plane curves

A map, or function, from a set A to a set B is denoted as f : A → B .
We often specify a map by describing how it may send an element of
A to an element of B , for example f : R → R2, t ↦→ (t, t2). A is
called the domain and B is called the codomain. The set
{x ∈ B : there is some a ∈ A, x = f (a)} is called the range.

If A is a set, we call id : A → A, a ↦→ a, the identity map.

We say two maps are the same iff (1) they have the same domain and
codomain; (2) they gives the same value when evaluating on every
element of the domain.

Let A, B and C be three sets, f : A → B , g : B → C are two maps,
then the composition g ∘ f is defined as (g ∘ f )(a) = g(f (a)).

If f : A → B and g : B → A satisfies g ∘ f = id , f ∘ g = id , we call g
the inverse of f . A map with an inverse is called a bijection.
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Plane Curves Curvature and the local theory of plane curves

An equivalent relation on a set A is a subset R of A× A, such that
(1) (a, a) ∈ R for all a ∈ A; (2) (a, b) ∈ R implies (b, a) ∈ R ; (3)
(a, b) ∈ R , (b, c) ∈ R implies (a, c) ∈ R . We sometimes denote
(a, b) ∈ R by aRb.

An equivalence class of A under relation ∼ is a subset of the form
{b ∈ A : a ∼ b} for some a ∈ A. This equivalence class is denoted by
[a].

The set consisting of all equivalence classes of A under ∼ is called a
quotient, denoted as A/ ∼.
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Plane Curves Curvature and the local theory of plane curves

Variable scopes

In mathematical writing, just like in programming, every variable has its
scope.

Example 2.3.7

Because f : x ↦→ sin x and g : y ↦→ y2 are both differentiable, we have∫︁ t

0

f (u)g ′(u)du = f (t)g(t)− f (0)g(0)−
∫︁ t

0

f ′(u)g(u)du

The scope of f and g are in the whole sentence.

The scope of x and y are within the definition of f and g .

The scope of t is within the equation.

The scope of u is within the integration expression.

Variables being renamed within its scope will not change the meaning of a
sentence.
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Plane Curves Curvature and the local theory of plane curves

Review: Local Theory of Plane Curves

Definition: A smooth, regular plane curve is a smooth function 𝛼
from interval I to R2, such that 𝛼′ ̸= 0 everywhere on I .

Properties of a smooth regular plane curve

The arc length function is a function s defined on I , of the form

t ↦→
∫︀ t

t0
‖𝛼′(u)‖du.

The arc length parameterization is defined as 𝛼 ∘ s−1.

Let 𝛼1 be the arc length parameterization, the signed curvature at

point 𝛼1(t) is a number k, such that 𝛼′′
1
is k times 𝛼′

1
turned left by

𝜋/2. |k| is called the curvature. Geometrically, curvature is the

reciprocal of radius of osculating circle, and the speed unit

tangent vector or unit normal vector rotate when traveling along

the curve at unit speed.
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Plane Curves Curvature and the local theory of plane curves

Fundamental Theorem: a smooth regular plane curve is defined by the
signed curvature function under arc length parameterization.

Reparameterization.

I1 R2

I2

𝛼

i
𝛽
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Plane Curves Curvature and the local theory of plane curves

Review Example

Example 2.3.8

Let 𝛼 : R → R2, t ↦→ (t, sin(t)).

Find the arc length function, using t0 = 0.

Let 𝛽 be the arc length parameterization. Find 𝛽′(0), 𝛽′′(0) using
chain rule.

Calculate the signed curvature at 𝛼(0) = (0, 0).
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Plane Curves Curvature and the local theory of plane curves

s(t) =
∫︀ t

0

√︀
1+ cos2(r)dr .

𝛽 = 𝛼 ∘ s−1, so

𝛽′(0) =
𝛼′ ∘ s−1

s ′ ∘ s−1
(0) =

1√
2
(1, 1)

𝛽′′(0) =
𝛼′′∘s−1

s′∘s−1 · s ′ ∘ s−1 − 𝛼′ ∘ s−1 · (s′′∘s−1)
s′∘s−1

(s ′ ∘ s−1)2
(0)

= 0

Calculate the signed curvature at 𝛼(0) = (0, 0) is 0. This is an
inflection point.
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Plane Curves Curvature and the local theory of plane curves

Example 2.3.9

Let 𝛼 is a plane curve defined on R via arc length parameterization, k(t) is
the signed curvature at 𝛼(t). We shall write down a formula of 𝛼 using the
proof of fundamental theorem of local theory of plane curves:

(

∫︁ t

0

cos(

∫︁ s

0

k(r)dr)ds,

∫︁ t

0

sin(

∫︁ s

0

k(r)dr)ds)
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Plane Curves Curvature and the local theory of plane curves

Recall from the proof, we can solve for 𝛼 via the system of differential
equations:

𝛼1(0) = 𝛼2(0) = 0, v1(0) = 1, v2(0) = 0

𝛼′
1 = v1, 𝛼

′
2 = v2, v

′
1 = −kv2, v

′
2 = kv1

The two equations regarding v1 and v2 implies that

(v21 + v22 )
′ = −2kv1v2 + 2v1v2 = 0

So v2
1
+ v2

2
= 1, we can let v1 = cos(𝜃), v2 = sin(𝜃).

Now we get 𝜃(0) = 0, 𝜃′ = k , hence 𝜃(t) =
∫︀ t

0
k(s)ds.

The formula for 𝛼 can then be obtained via integration.
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Rotation index

Theorem 2.4.1

If 𝛼 : R → R2 is a regular smooth plane curve with period T , k(t) be the

signed curvature at 𝛼(t), then
∫︀ T

0
k(t)‖𝛼′(t)‖dt = 2n𝜋 for some n ∈ Z.

Intuitively, if you walk around on a plane and get back to the starting point
and starting direction, the total turning you have done must be a multiple
of 2𝜋. This n is sometimes called the rotation index.
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Plane Curves Global theory of plane curves: Rotation Index

Proof.

Let 𝛼1 be the arc length parameterization of 𝛼, where t0 = 0, which is of
period

∫︀ T

0
‖𝛼′‖dt = s(T ). Now suppose 𝛼′

1
(u) = (cos(𝜃(u)), sin(𝜃(u))),

then 𝜃′(u) = k(s−1(u)), hence∫︁ T

0

k(t)‖𝛼′‖dt =
∫︁ s(T )

0

k(s−1(u))s ′(s−1(u))ds−1(u)

=

∫︁ s(T )

0

𝜃′(u)du = 2n𝜋

This n is ±1 if 𝛼 is injective on [0,T ). This is a consequence of the
Gauss-Bonnet theorem which we will discuss towards the end of the
semester.
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Digression: Discrete Differential Geometry

We can do the above to regular piecewise linear plane curves instead of
smooth regular plane curves.

Signed curvature becomes signed turning angle.

Fundamental Theorem becomes: a polygonal curve on the plane is, up
to rigid motion, determined by the edge lengths and size of turning
angles.

Gauss-Bonnet becomes: the sum of exterior angles of any polygon is
2𝜋.
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1-Manifolds

This is just a preview of what will happen in the second half of the
semester. Don’t worry if you find it super confusing!
It is natural to try and view curves related via reparameterization as the
same geometrical object. Now, for a plane curve 𝛼 : I → R2, I is an open
interval, say we want to define the signed curvature function k . However:

If k is defined on the domain I , then it changes when one change the
parameterization (recall the T/F question last Thursday).

If k is defined on the image 𝛼(I ), it works well for simple curves, but
not non simple curves.

How do we fix this problem?
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Plane Curves 1-manifolds

What if we pick and fix a parameterization 𝛼, and any other
reparameterization 𝛽 can be written as 𝛽 = 𝛼 ∘ i . Now k is defined on the
domain of 𝛼, I . However, the problem is that one particular
parameterization, 𝛼 will become something “special”. To get back the
“symmetry”, let’s remember all the smooth bijections with smooth inverse
i : I ′ → I , and then FORGET that I is an interval. In other words, we can
create an abstract mathematical object, I * = (I , 𝒞), where
𝒞 = {i : I ′ → I}, such that:

For any two maps i and i ′ in 𝒞, i−1i ′ is smooth with smooth inverse.

A smooth function on I * is a function f on I , such that for every i ,
f ∘ i is smooth.

For more complex objects, we may only require elements of 𝒞 be injections
and not bijections, and we may want a few extra topological constraints.
That would become the concept of a manifold.
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Historical Remarks

The concept of manifold starts with Bernhard Riemann. The word
“manifold” goes back further, e.g.
By synthesis, in its most general sense, I understand the act of putting
different representations together, and of grasping what is manifold in them
in one act of knowledge. –Immanuel Kant, Critique of Pure Reason
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Space Curves

3 Space Curves
Definitions, arc length, curvature
Torsion
Local Theory of Space Curves
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Space Curves Definitions, arc length, curvature

Basic Definitions

Definition 3.1.1

A (parameterized) space curve is a continuous function from an interval
to R3. In other words, a map 𝛾 : I → R3, such that
𝛾(t) = (𝛾1(t), 𝛾2(t), 𝛾3(t)), 𝛾i are both continuous.

Concepts like differentiability, C k , smoothness, regularity, simplicity,

reparameterization are all analogous. We will now focus on smooth

regular space curves.
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Space Curves Definitions, arc length, curvature

Arc Length Function

Definition 3.1.2

Let 𝛼 : I → R3 be a smooth, regular space curve. The arc length

function is s(t) =
∫︀ t

t0
‖𝛼′(r)‖dr .

The following follows from fundamental theorem of calculus.

Theorem 3.1.3

The derivative of the arc length function is ‖𝛼′‖, hence it is always
positive, which implies that the arc length function is a smooth bijection

with smooth inverse.
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Arc Length Parameterization, Curvature

Definition 3.1.4

Let 𝛼 : I → R3 be a smooth regular space curve, s an arc length function.
The arc length parameterization is 𝛼 ∘ s−1.

Recall that (f ∘ g)(x) = f (g(x)).

Theorem 3.1.5

If 𝛽 = 𝛼 ∘ s−1 is an arc length parameterization of 𝛼. Then

1 ‖𝛽′‖ = 1.

2 𝛽′′ is orthogonal to 𝛽′.

The length of 𝛽′′ is called the curvature.
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Space Curves Definitions, arc length, curvature

Proof.

1 ‖𝛽′‖ = ‖ 𝛼′∘s−1

‖𝛼′∘s−1‖‖ = 1.

2 𝛽′′ · 𝛽′ = 1

2
(𝛽′ · 𝛽′)′ = 1

2
1′ = 0.
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Space Curves Definitions, arc length, curvature

Example 3.1.6

Consider 𝛼 : R → R3, x ↦→ (x , x2, x3).

1 𝛼 is smooth, regular and simple.

2 Find arc length function and arc length parameterization 𝛽.

3 Find 𝛽′ and 𝛽′′ at 0.
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Orientation

Definition 3.2.1

Let x1, . . . xn be n linearly independent vectors in Rn. We say {xi} form a
basis of positive orientation iff det([x1, . . . , xn]) > 0. Otherwise they form a
basis of negative orientation. A linear bijection from Rn to itself is
orientation preserving iff it sends standard basis {e1, . . . , en} to a basis of
positive orientation, i.e. iff the matrix representation has positive
determinant.

Example 3.2.2

When n = 1, T is orientation preserving iff T ′ > 0.

When n = 2, rotation is orientation preserving, while reflection isn’t.
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Space Curves Torsion

Definition 3.2.3

The cross product in R3 is defined as
(a, b, c)× (d , e, f ) = (bf − ec , cd − af , ae − bd).

From multivariable calculus, we know that:

Theorem 3.2.4

If a and b are linearly dependent, then a × b = 0.

If a and b are linearly independent, a × b is orthogonal to both a and

b, the length of a× b is the area of the parallelgram spanned by a and

b, and {a, b, a × b} form a basis of R3 with positive orientation.
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Review for last lecture

Smooth regular space curve.

Arc length function.

Arc length parameterization.

Properties of arc length parameterization: ‖𝛼′‖ = 1, 𝛼′ · 𝛼′′ = 0

Curvature.
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Cross product: (in textbook the symbol is ∧)

(x1, x2, x3)× (y1, y2, y3) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)

Geometric meaning: x × y is orthogonal to x and y , of length equals
to the parallelogram spanned by x and y , and x , y , x × y has positive
orientation.

Calculus regarding cross product: × is bilinear, i.e.
(ka+ k ′b)× c = ka× c + k ′b× c , a× (kb+ k ′c) = ka× b+ k ′a× c .
Hence Leibniz’s law for derivatives works.
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In other words,

(a(t)× b(t))′ = lim
h→0

a(t + h)× b(t + h)− a(t)× b(t)

h

= lim
h→0

(a(t) + ha′(t) + o(h))× (b(t) + hb′(t) + o(h))− a(t)× b(t)

h

= lim
h→0

a′(t)× b(t) + a(t)× b′(t) +
o(h)

h

= a′(t)× b(t) + a(t)× b′(t)
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Space Curves Torsion

Frenet-Serret frame

Let 𝛼 be a smooth regular space curve with arc length parameterization.
At a point 𝛼(s) where the curvature is non zero, we can define three
orthogonal vectors:

Unit tangent vector: t = 𝛼′(s)

Unit normal vector: n = 𝛼′′(s)/‖𝛼′′(s)‖
Unit binormal vector: b = t × n

The three vectors form an orthonormal basis of R3.
In a neighborhood I1 of s, where 𝛼′′ is non zero, we can define the three
vectors t(s), n(s) and b(s) as above. This family of parameterized

frames is called the Frenet-Serret frames.
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Frenet formulas

Under arc length parameterization, the Frenet-Serret frames change
according to a sequence of linear differential equations called Frenet
formulas

Remark

Recall that for plane curves, under arc length parameterization, if

t(s) = 𝛼′(s) is the unit tangent vector, n(s) is t(s) rotated
counterclockwise by 𝜋/2, then t ′ = kn, n′ = −kt, where k is the signed

curvature.
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Space Curves Torsion

Derivation of the Frenet formulas

Recall that the curvature at 𝛼(s), denoted as k(s) (this is NOT the k for

plane curves!), is ‖𝛼′′(s)‖. Hence,

t ′(s) = 𝛼′′(s) = ‖𝛼′′(s)‖ · 𝛼′′(s)

‖𝛼′′(s)‖
= k(s)n(s)
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b′(s) = t ′(s)× n(s) + t(s)× n′(s)

= k(s)n(s)× n(s) + t(s)× n′(s)

= t(s)× n′(s)

Hence b′(s) ⊥ t(s).
Furthermore,

b′(s) · b(s) = 1

2
(‖b(s)‖2)′ = 0

So b′(s) is orthogonal to b(s) also.
Hence b′(s) is parallel to n(s), we denote their ratio 𝜏(s), the torsion at
point 𝛼(s).
Now b′(s) = 𝜏(s)n(s).

Remark

The plane spanned by t and n is called the osculating plane, so torsion

represents how fast osculating plane rotates under arc length

parameterization.
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Cross product and orthonormal basis

If e1, e2, e3 form an orthonormal basis of R3 of positive orientation, then

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2

e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2
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n(s) = b(s)× t(s), hence

n′(s) = 𝜏(s)n(s)× t(s) + b(s)× k(s)n(s)

= −𝜏(s)b(s)− k(s)t(s)

Theorem 3.2.5

The Frenet-Serret frames under arc length parameterization satisfies the

differential equations:

d

ds

[︀
t n b

]︀
=

[︀
t n b

]︀ ⎡⎣ 0 −k 0
k 0 𝜏
0 −𝜏 0

⎤⎦
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Remark

The matrix in the previous theorem is skew-symmetric. For those who

know matrix groups, it’s because the Lie algebra of SO(3) is so(3). We

can also understand it via linear algebra: let A(s) = [t(s), n(s), b(s)]. Then
AAT = I . Suppose A′ = AD, then take derivative to AAT = I we get

0 = A′AT + AA′T = ADAT + ADTAT = A(D + DT )AT

So D + DT = 0.
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Example

Example 3.2.6

Consider the curve 𝛼 : R → R3, t ↦→ (cos(t), sin(t), t).

Find the arc length parameterization.

Find the Frenet-Serret frames.

Find the curvature and torsion.
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Example

Example 3.2.7

Suppose 𝛼 : (−1,∞) → R3 is a smooth regular curve, 𝛼′ · 𝛼′′ = 1,
𝛼′(0) = (1, 1, 0).

Find the arc length parameterization using t0 = 0.

Write down the curvature and torsion using 𝛼′ and 𝛼′′.
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Fundamental Theorem of the Local Theory of Space Curves

Just like for plane curves, the curvature and torsion under arc length
parameterization completely charaterized the curve.

Remark

There are some key differences between space curves and plane curves

however:

There is no signed curvature for space curves.

There is no Frenet frame, hence no torsion, when curvature is 0.

The “normal vector” for space curves is different from the “normal

vector” for plane curves.

The statement of Fundamental Theorem need to take these into account.
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Theorem 3.3.1 (Fundamental Theorem of LTSC)

Let I be an interval containing zero, k a positive smooth function on I , 𝜏
a smooth function on I , then there is a smooth regular curve 𝛼 : I → R3,

unique up to rigid motion (rotation and translation), which is an arc length

parameterization, and the curvature at 𝛼(t) is k(t) and the torsion at 𝛼(t)
is 𝜏(t).

Key idea of the proof: Picard’s theorem for ODE.
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Picard’s Theorem

Theorem 3.3.2 (Picard’s Theorem)

Let I be any interval, t0 ∈ I , x0 ∈ Rn, F is a function from R× Rn to Rn

that is continuous and Lipschitz on the second parameter (i.e. there is

some number L such that ‖F (t, x)− F (t, y)‖ ≤ L‖x − y‖), then the initial

value problem

y(t0) = x0, y
′ = F (t, y)

has a unique solution. Furthermore, if F is smooth, or real analytic, so is

the solution.

Example 3.3.3

y ′0 = −y1, y
′
1 = y0, y0(0) = y1(0) = 1

Has a unique solution y0(t) =
√
2 cos(t + 𝜋/4), y1(t) =

√
2 sin(t + 𝜋/4).
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Review for last lecture

Frenet-Serret frames.

Frenet equations.

Fundamental Theorem of LTSC

Picard’s Theorem
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Proof of Fundamental Theorem of LTSC.

We prove it in the case when k and 𝜏 are bounded. The argument for
unbounded k and 𝜏 is a standard trick in analysis.
Firstly, we prove existence: consider the system of differential equations:

t(0) = e1, n(0) = e2, b(0) = e3, t
′ = kn, n′ = −kt − 𝜏b, b′ = 𝜏n

Here we see the above as an IVP for a function I → R9,
s ↦→ (t(s), n(s), b(s)).
Because both k and 𝜏 are smooth hence bounded, the equation is
Lipschitz, hence satisfies the assumption of Picard’s Theorem, hence there
is a unique solution on I .
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Proof of Fundamental Theorem of LTSC.

Now we show that for any s ∈ I , t(s), n(s) and b(s) form an orthonormal
basis of positive orientation.

To show that they form orthonormal basis, we just need to show
[t, n, b][t, n, b]T = I . When s = 0 this is true. Take derivative on the
left hand side with respect to s, we get:

([t, n, b][t, n, b]T )′ = [t ′, n′, b′][t, n, b]T + [t, n, b][t ′, n′, b′]T

= [t, n, b]

⎡⎣ 0 −k 0
k 0 𝜏
0 −𝜏 0

⎤⎦ [t, n, b]T+[t, n, b]

⎡⎣ 0 k 0
−k 0 −𝜏
0 𝜏 0

⎤⎦ [t, n, b]T

= 0

From the above, det([t, n, b]) is ±1. However this is continuous, and
is 1 when s = 0, hence it must always be 1.

As a consequence, b(s) = t(s)× n(s).
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Proof of Fundamental Theorem of LTSC.

Now let 𝛼(s) =
∫︀ s

0
t(r)dr . We need to verify that

𝛼 is an arc length parameterization.

The curvature at 𝛼(s) is k(s), torsion at 𝛼(s) is 𝜏(s).

To show that 𝛼 is arc length parameterization, calculate the arc length
function using t0 = 0, we get:

s(t) =

∫︁ t

0

‖𝛼′(r)‖dr =
∫︁ t

0

‖t(r)‖dr = t

Hence the arc length parameterization is 𝛼 ∘ s−1 = 𝛼 ∘ id = 𝛼.
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Proof of Fundamental Theorem of LTSC.

Now we calculate curvature and torsion: the curvature at 𝛼(s) is

‖𝛼′′(s)‖ = ‖t ′(s)‖ = ‖k(s)n(s)‖ = k(s)

Hence n(s) is indeed the unit normal vector, the torsion is

‖(t × n)′‖ = ‖b′‖ = 𝜏(s)

The existence is proved.
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Proof of Fundamental Theorem of LTSC.

Now we prove the uniqueness: if 𝛼1 is another smooth regular curve such
that it is an arc length parameterization, and the curvature at 𝛼1(s) is
k(s), torsion is 𝜏(s). Do rigid motion to move 𝛼1(0) to 0 (via a
translation), and the unit tangent, unit normal and unit binormal vectors at
𝛼1(0) to the three standard basis vectors (via a rotation). Then the unit
tangent, normal and binormal vectors satisfies Frenet’s equations, hence by
Picard’s theorem, they must be identical to those of 𝛼. Hence 𝛼1 is
identical to 𝛼.
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Example 3.3.4

Find arc length parameterization 𝛼 : R → R3, such that
k(s) = 1, 𝜏(s) = −1.
We get system of equations

t(0) = (1, 0, 0), n(0) = (0, 1, 0), b(0) = (0, 0, 1), t ′ = n, n′ = −t+b, b′ = −n

Solving it, we get

t(s) = (
cos(

√
2s) + 1

2
,
sin(

√
2s)√
2

,
1− cos(

√
2s)

2
)

n(s) = (−sin(
√
2s)√
2

, cos(
√
2s),

sin(
√
2s)

2
)

b(s) = (
1− cos(

√
2s)

2
,−sin(

√
2s)√
2

,
1+ cos(

√
2s)

2
)
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Summary of FTLTSC

A smooth regular space curve with non zero curvature is, up to rigid
motion, completely determined by the curvature and torsion under arc
length parameterization.

Any pair of smooth functions k , 𝜏 , k > 0, can be the curvature and
torsion of a smooth regular space curve under arc length
parameterization.

The uniqueness is due to Frenet equations with fixed initial value has a
unique solution. The existence is due to the existence of such a
solution. Both follows from Picard’s theorem.
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Application: Local canonical forms

Similar to the LCF of plane curves, if we choose the coordinate chart such
that 𝛼(0) = 0, t(0) = e1, n(0) = e2, b(0) = e3, and then do Taylor
expansion of 𝛼(s) up to s3 term, we get

𝛼(s) = s(1, 0, 0) + s2(a1, a2, a3) + s3(b1, b2, b3) + O(s4)

Hence

t(s) = 𝛼′(s) = (1, 0, 0) + 2s(a1, a2, a3) + 3s2(b1, b2, b3) + O(s3)

𝛼′′(s) = 2(a1, a2, a3) + 6s(b1, b2, b3)

So a1 = a3 = 0, a2 = k/2.

𝛼′′′ = (kn)′ = k ′n − k2t − k𝜏b

𝛼′′′(s) = 6(b1, b2, b3)

Hence b1 =
−k2

6
, b2 =

k ′

6
, b3 =

−k𝜏
6

. This is called the local canonical
form.
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Applications of LCF

LCF

(s − k2

6
s3 + O(s4),

k

2
s2 +

k ′

6
s3 + O(s4),−k𝜏

6
s3 + O(s4))

Remark

When k > 0, there is a neighborhood of p on the curve where all

points on the curve within this neighborhood lies within a half space

whose boundary pass through p.

The plane spanned by t and n, passing through p = 𝛼(0), has the
property that distance from 𝛼(s) to the plane is O(s3), and this is the

unique plane that satisfies this condition. Hence it should be said to

be the osculating plane.
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Space Curves Local Theory of Space Curves

Example

Example 3.3.5

𝛼 is a smooth regular space curve under arc length parameterization, which
lies on the unit sphere. What can we say about k(s) and 𝜏(s), assuming
k ′ ̸= 0, 𝜏 ̸= 0?

𝛼 lies on the unit sphere, hence 𝛼 · 𝛼 = 1. Hence

𝛼′ · 𝛼 = 0

𝛼′′ · 𝛼 = −𝛼′ · 𝛼′ = −1

𝛼′′′ · 𝛼 = −𝛼′′ · 𝛼′ = 0

t = 𝛼′, kn = 𝛼′′, k ′n − k2t − k𝜏b = 𝛼′′′, so k(n · 𝛼) = −1,
k ′(n · 𝛼)− k𝜏(b · 𝛼) = 0.
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Space Curves Local Theory of Space Curves

Hence, the coordinate of 𝛼 under the chart (t, n, b) must be
(0,−1/k ,− k ′

k2𝜏
). However, ‖𝛼‖2 = 1, hence

1

k2
+

k ′2

k4𝜏2
= 1

Can you prove that this is a sufficient condition for 𝛼 to be on a sphere of
radius 1? This is exercise 13 of Section 1.5.
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Space Curves Local Theory of Space Curves

Review for LTSC

Smooth regular space curve

Arc length function, arc length parameterization

Unit tangent, normal, binormal vectors, curvature, torsion

Frenet equations

Fundamental theorem

When k > 0, a curve is, up to rigid motion, uniquely determined by k

and 𝜏 under arc length parameterization.

Any smooth function k > 0, 𝜏 can be the curvature and torsion of a

smooth regular space curve under arc length parameterization.
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Hypersurfaces

4 Hypersurfaces
Review for implicit function theorem
Definition, coordinate charts
Tangent space
First fundamental form, geometry on surfaces
Orientability
Gauss Map, Second fundamental form
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Hypersurfaces Review for implicit function theorem

Review for implicit function theorem

Theorem 4.1.1 (Implicit function theorem)

Let U be an open subset of Rn+m = Rn × Rm, f : U → Rm a C 1 function.

Suppose f ((a, b)) = y, and the last m columns of the Jacobian of f at

(a, b) is linearly independent, then there is some open neighborhood V of

a, C 1 function g from V to Rm, such that b = g(a), and for any x ∈ V ,

f (x , g(x)) = y.

Remark

When m = n, f (a, b) = b − h(a), this becomes the inverse function

theorem.
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Hypersurfaces Definition, coordinate charts

Definition

Definition 4.2.1

A smooth regular function on an open set of Rn is a smooth function
where the derivative is nowhere zero.

Definition 4.2.2

A subset S of Rn is a smooth regular hypersurface if for every p ∈ S ,
there is an open neighborhood p ∈ U, a smooth regular function f on U

such that S is a level set of f .

This definition, due to the argument in 2.2 in the textbook, is equivalent to
the definition in Section 2.2 of the textbook.
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Hypersurfaces Definition, coordinate charts

Example 4.2.3

The followings are smooth regular hypersurfaces in R2:

{(x , y) : x2 − y2 = 1}
{(t, sin(t)) : 0 < t < 1}

The followings are not smooth regular hypersurfaces in R2:

{(t cos(1/t), t sin(1/t)) : 0 < t < 1} ∪ {(0, 0)}
{(x , y) : x2 − y2 = 0}
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Some general definitions regarding topology of Rn

Definition 4.2.4

A subset U of Rn is called open, if for any p ∈ U, there is some ball
centered at p with radius r > 0 contained in U; it is called closed if
its complement is open.

Let A ⊂ Rn, a subset of A is called open or closed in A, if it is the
intersection between A and some open set or closed set in Rn.

A map is called continuous if the preimage of open set is open.

A continuous bijection whose inverse is also continuous is called a
homeomorphism, a smooth bijection whose inverse is smooth is
called a diffeomorphism.
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Coordinate charts

Some immediate consequences of the implicit function theorem applied to
smooth regular hypersurface:

Let S be a smooth regular hypersurface. p = (p1, . . . , pn) ∈ S be a
point. Suppose that around p, S is defined as the level set of some
smooth regular function f .
Because f is regular, we can find a smaller open ball B centered at p
where one of the partial derivatives of f is always non-zero. Suppose it
is 𝜕nf ̸= 0.
Now apply implicit function theorem, we get g : V → R, where V is a
neighborhood of p′ = (p1, . . . , pn−1), g(p

′) = pn, and for all x ∈ V ,
(x , g(x)) ∈ S . Define i : V → S to be i(x) = (x , g(x)).
Now look at open set U = B ∩ (V ×R), then by mean value theorem,
we know that S ∩ U = i(V ), and i is a homoemorphism from V to
S ∩ U, because i−1 can be written as an orthogonal projection which
is continuous.
i is evidently smooth with rank of Jacobian n − 1.
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The map i is a special case of the following:

Definition 4.2.5

A coordinate chart, or parameterization, of a hypersurface S ⊂ Rn is a
smooth homeomorphism from some open set U ⊂ Rn−1 to an open
subset set of S , whose Jacobian matrix is always of rank n − 1. The
image is called a coordinate neighborhood.

And the argument above implies that

Theorem 4.2.6

Around every point in a smooth regular hypersurface there is a coordinate

neighborhood.

Example 4.2.7

Let S = {x2 + y2 + z2 = 1}, find a coordinate chart around (1, 0, 0).
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Hypersurfaces Definition, coordinate charts

Coordinate change

Theorem 4.2.8 (Proposition 1 in Section 2.3)

Let S be a smooth regular hypersurface, i1 : V1 → S, i2 : V2 → S be two

coordinate charts, i1(V1) ∩ i2(V2) ̸= ∅, then
i−1

2
∘ i1 : i−1

1
(i1(V1) ∩ i2(V2)) → i−1

2
(i1(V1) ∩ i2(V2)) is a diffeomorphism.

Definition 4.2.9

This diffeomorphism i−1

2
∘ i1 is called a coordinate change.

Proof idea

These maps are obviously homeomorphisms, hence we only need to show

that they are smooth. Let p be a point in the intersection of two

coordinate neighborhoods, one can build a coordinate chart ip : Vp → S

using implicit function as before, then use inverse function theorem to show

that i−1

2
∘ ip is smooth. i−1

p is orthogonal projection, hence i−1
p ∘ i1 is also

smooth, hence i−1

2
∘ ip ∘ i−1

p ∘ i1 is smooth on i−1

1
(i1(V1)∩ i2(V2)∩ ip(Vp)).
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More definitions

Definition 4.2.10

A differentiable manifold is a set M, a collection of subsets U ⊂ M, each
corresponding to a bijection i from an open subset of Rn, such that for any
two such bijections i and i ′, i ′−1 ∘ i is smooth where it is defined. Usually
we add a few more technical assumptions from point set topology which we
will ignore for now.

It is easy to see that the charts we defined using implicit function theorem
gives a differentiable manifold structure to a smooth regular hypersurface.
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Review for Previous lecture

Definition of smooth regular hypersurfaces.

Concept of coordinate charts

Existence of charts via implicit function theorem (proof sketch:
definition->IFT->MVT)

Change of coordinates. (follow the textbook, or go through charts we
found earlier)

Example 4.2.11

Find some coordinate charts on the unit circle {(x , y) : x2 + y2 = 1} and
find the change of coordinate functions.
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Definition 4.2.12

A smooth function on a smooth regular hypersurface S is a function
f , such that for any p ∈ S , there is a coordinate chart i : V → S , such
that f ∘ i is smooth.

A smooth map between two smooth regular hypersurfaces S and S ′

is a map f , such that for any p ∈ S , there are coordinate charts
i : U → S , j : V → S ′, smooth map g : U → V , such that
f ∘ i = j ∘ g .

Theorem 4.2.13

A map from a smooth regular hypersurface in Rm to a smooth regular

hypersurface in Rn is smooth iff it is of the form x ↦→ (f1(x), . . . , fn(x)),
where fi are smooth functions.

One can prove this using the charts obtained via implicit function theorems.
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Hypersurfaces Tangent space

Tangent Spaces

Definition 4.3.1

Let S be a smooth regular curve, the tangent space of S at p, denoted as
Tp(S), can be defined in one of the three ways:

1 Suppose locally S is a level set of some smooth regular function f ,
then Tp(S) is the null set (or kernel) of the Jacobian matrix of f at p.

2 Suppose there is a local coordinate chart i around p, then Tp(S) is
the column space (or range) of the Jacobian matrix of i at i−1(p).

3 Tp(S) is the set of all possible 𝛼′(0), where 𝛼 is a smooth curve on S

and 𝛼(0) = p.

Theorem 4.3.2

The three definitions of Tp(S) are all equivalent.
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Proof.

We denote the three definitions as T1, T2 and T3.

T1 = T2: both T1 and T2 are n − 1-dimensional subspace of Rn. f ∘ i
is constant, hence J(f )J(i) = 0, hence T2 ⊂ T1, hence T1 = T2.

T2 ⊂ T3: for any v = (a1, . . . , an), consider 𝛼(t) = i(i−1(p) + vt),
then 𝛼′(0) is the linear combination of the columns of J(i) with
coefficients ai .

T3 ⊂ T1: f ∘ 𝛼 is constant, hence 𝛼′ ⊂ kerJ(f ).
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Hypersurfaces Tangent space

Review for last lecture

Key properties and concepts of smooth regular surfaces:

Smooth regular hypersurfaces, coordinate charts, smooth functions
and smooth maps

Existence of coordinate charts: IFT plus MVT

Existence of smooth change of coordinate

Three equivalent definitions of the tangent space.

Depending on the context, sometimes “tangent space” or “tangent plane”
at p is the affine space p + Tp(M).
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The normal space Np(S) is defined as the orthogonal complement of the
tangent space.

Example 4.3.3

t ↦→ (cos(t)/2, sin(t)/2,
√
3/2) is a smooth regular curve on

S = {(x1, x2, x3) : x21 + x2
2
+ x2

3
= 1}.
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Maps between tangent spaces

Coordinate charts gives bijections between Tp(S) and Rn−1, which we
can also call Ti−1(p)(V ), which is represented by the Jacobian map.

Smooth map between hypersurfaces induce linear maps between
tangent spaces, via the second or third definition.

Example 4.3.4

Let S = {(x , y , z) : x2 + y2 + z2 = 1}. Show that
(x , y , z) ↦→ (−x ,−y ,−z) is smooth, and find the induced map between
two tangent spaces.
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Hypersurfaces First fundamental form, geometry on surfaces

Quadratic forms

Recall that a symmetric bilinear form on a vector space V is a map
V × V → R, denoted as (x , y) ↦→ ⟨x , y⟩, which satisfies:

⟨x , y⟩ = ⟨y , x⟩
⟨ax1 + bx2, y⟩ = a⟨x1, y⟩+ b⟨x2, y⟩

If {xi} is a finite basis of V , then

⟨
∑︁
i

aixi ,
∑︁
i

bixi ⟩ = [a1 . . . an]A[b1 . . . bn]
T

Where A is a symmetric matrix.
A quadratic form on V is Q : V → I defined by Q(x) = ⟨x , x⟩ for some
symmetric bilinear form ⟨, ⟩. Quadratic forms and symmetric bilinear forms
have a 1-1 correspondence via

Q(x) = ⟨x , x⟩

⟨x , y⟩ = 1

4
(Q(x + y)− Q(x − y))
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First fundamental form

Definition 4.4.1

The first fundamental form is a quadratic form on Tp(S) defined via
Euclidean inner product in Rn.

The first fundamental form allow us to do geometry on hypersurface S , in
particular, define concepts like distance, angle and area. Later we will
show that first fundamental form characterizes the intrinsic geometry of
the hypersurface. This is also called the Riemannian metric.
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Review of last lecture

Maps between tangent spaces

First fundamental form
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First fundamental form in coordinate chart

Because we want to use × to simplify our notations, from now on we will
restrict ourselves to the n = 3 case, i.e. surfaces in 3-d Euclidean spaces,
but everything can be easily generalized to arbitrary n.
Now, under coordinate chart i : V → S , Tp(S) is spanned by xu and xv
which are the image of two basis vectors under Ji , and the first
fundamental form becomes

I (axu + bxv ) = Ea2 + 2Fab + Gb2

And the corresponding inner product is

⟨axu + bxv , a
′xu + b′xv ⟩ = Eaa′ + F (ab′ + a′b) + G (bb′)
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Arc length

Let 𝛼 be a smooth regular curve on a smooth regular surface S . Assume
that 𝛼 lies within a coordinate neighborhood (if not, subdivide it). Then 𝛼
can be written as i ∘ 𝛽, where 𝛽 = (𝛽1, 𝛽2) is a smooth regular curve on V .
Then the length of 𝛼 is ∫︁

I

‖𝛼′‖dr =
∫︁
I

I (𝛼′)1/2dr

=

∫︁
I

I (𝛽′
1xu + 𝛽′

2xv )
1/2dr

=

∫︁
I

(E𝛽′2
1 + 2F𝛽′

1𝛽
′
2 + G𝛽′2

2 )
1/2dr

To measure the distance between two points on S , find the shortest
smooth regular curve between them and measure its length.
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Angles and area

The angle 𝜃 between two tangent vectors x and y is
cos−1( ⟨x ,y⟩

(I (x)I (y))1/2
).

The area of a shape that lies in a coordinate neighborhood, of the
form i(D) where D ⊂ V , is defined as∫︁

D

‖xu × xv‖dudv =

∫︁
D

√︃⃒⃒⃒⃒
⟨xu, xu⟩ ⟨xu, xv ⟩
⟨xv , xu⟩ ⟨xv , xv ⟩

⃒⃒⃒⃒
dudv

For D that can not fit inside a single coordinate neighborhood, split it
and add the calculated areas.

Example 4.4.2

Let S = {(x , y , z) : x2 + y2 + z2 = 1}
Write down the first fundamental form on S using a coordinate chart.

Find the angle between two circles on S .

Find the total area of S .
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Application of coordinate charts: Map projections

Orthographic projection (our IFT charts) (Hipparchus of Nicaea, 2nd
c. BCE)

Stereographic projection (Hipparchus of Nicaea, 2nd c. BCE)

Equirectangular Projection (Marinus of Tyre, 1-2 c. CE)

Mercator Projection (cylinder, conformal) (1569)

Lambert Projection (from axis) (1772)

Can you write down the first fundamental form under all these local
coordinate charts?
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Hypersurfaces First fundamental form, geometry on surfaces

Review for last lecture

First fundamental form

Length, angle, area

First fundamental form under coordinate charts

Example 4.4.3

Sphere under Central Cylindrical projection Consider the coordinate chart
of unit sphere: i : (0, 2𝜋)× R → S2,
i(u, v) = (cos u/

√
1+ v2, sin u/

√
1+ v2, v/

√
1+ v2). Write down the

first fundamental form under this coordinate chart.
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Orientability of surfaces

Definition 4.5.1

A smooth regular hypersurface S is called orientable, if it admits a set of
coordinate charts covering S , where the Jacobian of all change of
coordinates are orientation preserving.

Theorem 4.5.2

Let S be a smooth regular surface, then S is orientable, if and only if there

is a continuous, non zero map N from S to R3, such that N(p) ∈ Np(S).

Proof.

If S is orientable, we can define N(p) = xu×xv
‖xu×xv‖ .

If N is such a function, we choose a set of coordinate charts covering S ,
and precompose (u, v) ↦→ (v , u) for any chart where xu × xv and N are not
in the same direction.
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Hypersurfaces Orientability

Example 4.5.3

If S can be covered by a single coordinate chart, then S is orientable.

The unit sphere is orientable,

Any smooth regular hypersurface in R2 is orientable.

The Mobius strip is not orientable.

When discussing local geometry of a surface, we can always assume that it
is orientable.
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Vector bundles and sections

Definition 4.5.4

If S is a smooth regular hypersurface, on every point of S , there is a
subspace V of Rn of dimension d , and the subspace changes smoothly
on S (are defined by linear equations with smooth coefficients). Then
we call the set E = {(p, v) ∈ S ×Rn : v ∈ V (p)} a vector bundle on
S . The subspace V (p) is called the fiber at p, denoted as Ep.

A smooth map f : S → Rn, such that f (p) ∈ Ep, is called a section
of a vector bundle E .
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Example 4.5.5

The vector bundle {(p, v) : v ∈ Tp(S)} is called the tangent bundle,
denoted as T (S).

The vector bundle {(p, v) : v ∈ Np(S)} is called the normal bundle,
denoted as N(S).

The bundle S × Rn is denoted as T (Rn)|M .

Now the theorem above becomes

Theorem 4.5.6

S ⊂ R3 is a smooth regular surface, then S is orientable iff N(S) has a
non-zero section.
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Midterm Review

Definition of smooth regular plane curve and smooth regular space
curves

Arc length function and arc length parameterization

Geometry of plane curves

Unit tangent and normal vector

Signed curvature k, t ′ = kn, n′ = −kt

Fundamental theorem, local canonical form:

(s − k2s3/6+ O(s4), ks2/2+ k ′s3/6+ O(s4))

Geometry of space curves

Unit tangent, normal and binormal vector

Curvature k and torsion 𝜏 , t ′ = kn, n′ = −kt − 𝜏b, b′ = 𝜏n
Fundamental theorem, local canonical form:

(s − k2s3/6+ O(s4), ks2/2+ k ′s3/6+ O(s4),−k𝜏s3/6+ O(s4)).
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Hypersurfaces Orientability

Definition of smooth regular hypersurfaces. When n = 3 we call them
“surfaces”.

Coordinate charts

Definition: smooth homeomorphism to open subsets, Jacobian full

rank.

Existence: Implicit function theorem

Change of coordinate smooth: inverse function theorem

Smooth functions and smooth maps

Tangent spaces

Three equivalent definitions

Coordinate chart induces bijections from tangent spaces to Rn−1

Smooth maps induces maps between tangent spaces

Normal spaces

First fundamental form

Definition

Expression under coordinate charts

Length, angle, area
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Review examples

Let f be a smooth real valued function. Consider smooth regular
surface S = {(x , y , f (x , y)}.

Find a coordinate chart i : R2 → S , such that i−1(x , y , z) = (x , y).
Find Ti(0)(S) and write down the first fundamental form under the

coordinate chart above.

Suppose 𝛼 is a smooth regular plane curve under arc length

parameterization. Write down the arc length function of i ∘ 𝛼.
Write down the curvature at i ∘ 𝛼(0). When is this curvature equals

the curvature of 𝛼(0)?

Show that if S is a smooth regular surface, for any p ∈ S , the normal
space Np(S), as a linear subspace of R3, contains p, and any two
points in S are connected by a smooth path, then S is contained in a
sphere.

Suppose S is a smooth regular surface that admits a coordinate chart
(u, v) ↦→ f (u) + g(v), which covers the whole surface. Find a curve
on S along which the tangent space all contains a specific non-zero
vector.
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Digression: How to read and write math

How to read definitions and propositions: figure out terms.
Example: A coordinate chart is a smooth homeomorphism from an
open set in Rn−1 to an open subset of a hypersurface, such that the
Jacobian has rank n − 1.
Example: We call a function f on a hypersurface S smooth, if for any
point p ∈ S , there is a coordinate chart i : U → S , p ∈ i(U), and f ∘ i
is smooth.

How to read proofs: fill in gaps.
Example: Existence of local coordinate charts.

Understanding via examples.
Example: Implicit Function Theorem

How to write proofs: plan, then fill in gaps.
Example: Show that if f is a smooth function on S , i : U → S is any
coordinate chart, then f ∘ i is smooth.
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Review for last lecture

Tangent bundle and Normal bundle of surfaces, sections.

Orientability

Orientability equivalent to non-zero sections on normal bundles.
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Hypersurfaces Gauss Map, Second fundamental form

Gauss Map, Second Fundamental Form

If S is a smooth orientable regular surface, by an “orientation” we mean a
set of coordinate charts covering S where change of coordinates are all
orientation preserving.

Definition 4.6.1

If S is a smooth orientable regular surface in R3. Let S2 be the unit
sphere, then the map G : S → S2 defined locally by p ↦→ xu×xv

‖xu×xv‖ is called

the Gauss map. The induced map on tangent space DG is called the
shape operator or Weingarten map.
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Hypersurfaces Gauss Map, Second fundamental form

Theorem 4.6.2

Let DG be the map between tangent spaces induced by the Gauss map.

Then DG is a map from Tp(S) to Tp(S), and is represented by a

symmetric matrix under an orthonormal basis under the first fundamental

form, i.e. x · DG (y) = DG (x) · y.

Proof.

DG is a map from Tp(S) to TG(p)(S
2), and both are orthogonal

complements of G (p) hence equal. Now we consider a local coordinate
chart i whose image contains p, (bi)-linearility implies that we only need to
check the identity for x and y being xu = iu and xv = iv , and the only case
one need to check is x = xu and y = xv .
Now because G · xu = G · xv = 0, we have
G · iuv + Gv · xu = G · ivu + Gu · xv = 0. By definition it’s easy to see
Gu = DG (xu), Gv = DG (xv ). The identity now follows from iuv = ivu
which we know from multivariable calculus.
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Example 4.6.3

Find the map DG of a point in a:

Planes

Cylinders

Cones

Spheres
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Hypersurfaces Gauss Map, Second fundamental form

Definition 4.6.4

The second fundamental form on Tp(S) is defined as

II (v) = −⟨v ,DG (v)⟩

Recall from linear algebra:

Theorem 4.6.5

Any symmetric n × n matrix has n eigenvectors forming an orthonormal

basis, and all eigenvalues are real.
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Review from last lecture

Gauss map: G (p) = xu×xv
‖xu×xv‖

Shape operator: DG : Tp(S) → Tp(S).

Shape operator is self adjoint.

Second fundamental form II (v) = −v · DG (v).

Midterm Exam:
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Definition 4.6.6

The negative of the eigenvalues of DG are called principal

curvatures. The eigenvectors are called principal directions.

The negative of the average of the two eigenvalues is called the mean

curvature. A surface whose mean curvature vanishes is called a
minimal surface.

The product of the two eigenvalues is called the Gaussian curvature.

The non zero vectors v where II vanishes is called an asymptotic

direction.

In many other textbooks there isn’t a negative sign, and mean curvature
and principal curvatures are also off by a sign. We follow the convention of
Ddo Carmo.
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Shape operator and second fundamental form under local
coordinate

Starting data: i : U → S .

First fundamental form: xu = iu, xv = iv , matrix representation of first
fundamental form A = [xu, xv ]

T [xu, xv ].

Gauss map G ∘ i = xu×xv
‖xu×xv‖ . [DG (xu),DG (xv )] = J(G ∘ i). Second

fundamental form: −[xu, xv ]
T [DG (xu),DG (xv )] = −[xu, xv ]

T J(G ∘ i).
To find matrix representation B of the shape operator, we have

[xu, xv ]B = [DG (xu),DG (xv )]

B = (J(i)T J(i))−1J(i)T J(G ∘ i)
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Remark

The matrix representation of the second fundamental form of surface is

often denoted as

[︂
e f

f g

]︂
.

Example 4.6.7

Calculate the shape operator and second fundamental of the surface
{(x , y , x2 + y2)} at (0, 0, 0).
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Geometric meaning and generalization

Normal curvature: If 𝛼 is a smooth regular curve on S under arc length
parameterization, then the normal curvature is 𝛼′′ · n = −𝛼′ ·DG𝛼′.

Principal directions are where normal curvature is at maximum or

minimum.

Asymptotic directions are where normal curvature is zero.

Gaussian curvature: ratio of signed area.

Generalization of Gauss map, shape operator, second fundamental
form in other dimensions. For hypersurfaces in R2, the “Gaussian
curvature” is the signed curvature.

The norm of the projection of 𝛼′′ on Tp(S) is the absolute value of the
geodesic curvature, which we will discuss in the next chapter.
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Hypersurfaces Gauss Map, Second fundamental form

Review

Hypersurfaces, coordinate charts, coordinate changes

First fundamental form, length, angle and area

Shape operator and second fundamental form, principal curvature,
mean curvature, Gaussian curvature.

Geometric meaning of the second fundamental form: normal
curvature, area ratio.
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Intrinsic geometry of surfaces

5 Intrinsic geometry of surfaces
Parallel transport
Intrinsic curvature, Gauss theorem
Geodesics
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Intrinsic geometry of surfaces

Definition 5.0.1

A map between hypersurfaces is an isometry if it preserves distance, a
conformal map if it preserves angles.

“Local isometry” means an isometry from a neighborhood of one point
on one surface to a neighborhood of another point on another surface.

Properties invariant under isometry are called “intrinsic”.

If a property can be evaluated using only the local formula or first
fundamental form, then it is intrinsic.
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Intrinsic geometry of surfaces Parallel transport

Parallel Transport

From first fundamental form we can define angles, and after integration,
areas. However to do more “global” geometry we need to connect tangent
spaces at one point to tangent spaces at another. This geometric object is
called connection, and in particular, we will talk about Levi-Civita
Connection or Parallel Transport.
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Intrinsic geometry of surfaces Parallel transport

Definition

Definition 5.1.1

Let S be a smooth regular surface, i : U → S ⊂ R3 a coordinate chart,
𝛼 : I → i(U), 0 ∈ I is a smooth regular path. Then the parallel transport is
a family of linear transformations P𝛼,t : T𝛼(0)(S) → T𝛼(t)(S), such that
d
dt
P𝛼,t(x) is in N𝛼(t)(S).

As a consequence, P preserves length, i.e. the first fundamental form.
It is easy to see that reparameterization of 𝛼 sends parallel transport to
parallel transport.
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Intrinsic geometry of surfaces Parallel transport

Review for last lecture

Geometric meaning of second fundamental form: normal curvature,
generalization to other dimensions, area.

Isometric and conformal maps

Definition of parallel transport along a smooth regular curve.
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Intrinsic geometry of surfaces Parallel transport

Calculation

Theorem 5.1.2

The Parallel transport under basis xu, xv is uniquely determined by i−1 ∘ 𝛼
and the first fundamental form under coordinate chart i . In other words, it

exists, is unique, and also intrinsic.

Proof.

Suppose [P𝛼,t(xu),P𝛼,t(xv )] = [xu, xv ]A(t). It is evident that A(0) = I2.
Let 𝛽 = i−1 ∘ 𝛼 = (𝛽1, 𝛽2). Now take derivative with respect to t, we get

[𝜕uxu𝛽
′
1 + 𝜕vxu𝛽

′
2, 𝜕uxv𝛽

′
1 + 𝜕vxv𝛽

′
2]A(t) + [xu, xv ]A

′(t)
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Intrinsic geometry of surfaces Parallel transport

Proof, cont.

By assumption, both columns must be in N𝛼(t)(S), hence multiplying with

[xu, xv ]
T from the left must be zero. Hence:

[xu, xv ]
T [xu, xv ]A

′(t) = −[xu, xv ]
T [𝜕uxu𝛽

′
1 + 𝜕vxu𝛽

′
2, 𝜕uxv𝛽

′
1 + 𝜕vxv𝛽

′
2]A(t)

= (−𝛽′
1([xu, xv ]

T𝜕u[xu, xv ])− 𝛽′
2([xu, xv ]

T𝜕v [xu, xv ]))A(t)

The existence and uniqueness of parallel transport now follows from
Picard’s theorem.

We replace u by 1 and v by 2, and p, q, r ∈ {1, 2}. xTp 𝜕qxr is also denoted
as Γpqr , called Christoffel symbols of the first kind.
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Intrinsic geometry of surfaces Parallel transport

Proof, cont.

Now we prove that the Christoffel symbols can be represented using only
the first fundamental form, i.e. the matrix [xu, xv ]

T [xu, xv ]. For any
p, q, r ∈ {u, v},

1

2
(𝜕q(x

T
p xr ) + 𝜕r (x

T
p xq)− 𝜕p(x

T
q xr ))

=
1

2
((ip · ir )q + (ip · iq)r − (iq · ir )p)

=
1

2
(ipq · ir + ip · iqr + ipr · iq + ip · iqr − ipq · ir − iq · ipr )

= ip · iqr = xTp 𝜕qxr = xTp 𝜕rxq

Now the intrinsicness is proved.
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Intrinsic geometry of surfaces Parallel transport

Example 5.1.3

Find the Christoffel symbols of the first kind, and parallel translation along
a circle, on unit spheres.

Consider coordinate chart

i : {(u, v) : −𝜋 < u < 𝜋,−𝜋/2 < v < 𝜋/2} → S2

i(u, v) = (cosv cos u, cos v sin u, sinv)

Then

xu = (− sin u cos v , cos u cos v , 0), xv = (− sin v cos u,− sin v sin u, cos v)

𝜕uxu = (− cos u cos v ,− sin u cos v , 0)

𝜕vxu = 𝜕uxv = (sin u sin v ,− cos u sin v , 0)

𝜕vxv = (− cos u cos v ,− sin u cos v ,− sin v)

xu · xu = cos2 v , xu · xv = 0, xv · xv = 1
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Intrinsic geometry of surfaces Parallel transport

Hence the Christoffel sysmbols are

Γ111 = 0, Γ211 = sin v cos v

Γ122 = 0, Γ222 = 0

Γ121 = Γ112 = − cos v sin v , Γ212 = Γ221 = 0

Alternatively, we can do the computation using first fundamental forms, e.g.

Γ112 =
1

2
(𝜕u0+ 𝜕v cos

2 v − 𝜕u0) = − cos v sin v
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Intrinsic geometry of surfaces Parallel transport

Now consider the path 𝛼 : (−𝜋, 𝜋) → S ,
𝛼(t) = (cos r cos t, cos r sin t, sin r). Then 𝛽 = i ∘ 𝛼 is 𝛽(t) = (t, r). Hence
the differential equation becomes:[︂

cos r2 0
0 1

]︂
A′ = −

[︂
0 − cos r sin r

cos r sin r 0

]︂
A

A′ = −
[︂

0 − sin r/ cos r
cos r sin r 0

]︂
A

So, if one apply parallel transport to the vector xu, we have
A(t)(e1) = (cos(t sin r),− cos r sin(t sin r)). When t → 𝜋 and t → −𝜋, the
resulting vectors have an angle of 2𝜋 sin r . When r is small, we can also
made it into 2𝜋(1− sin r) which equals to the area bounded by the circle 𝛼.
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Intrinsic geometry of surfaces Parallel transport

Remark

Parallel translation along any smooth simple closed curve on unit sphere

has rotation angle equals to the area of the bounded region.

Example 5.1.4

Calculate the Christoffel symbols for

Plane under Cartesian coordinate.

Cylinder under coordinate chart (u, v) ↦→ (cos u, sin u, v)

Plane under Polar coordinate.

Definition 5.1.5

The Christoffel symbols of the second kind is defined as
𝜕pxq −

∑︀
r Γ

r
pqxr ∈ NP(S).

It is easy to see that the Christoffel symbols of the second type can be
calculated using Christoffel symbols of the first kind and the first
fundamental form.
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Intrinsic geometry of surfaces Parallel transport

Review for Levi-Civita connection

{u, v} is represented by {1, 2}. i : U → S a coordinate chart.

Christoffel symbols:

Γijk = xi · 𝜕jxk = xi · 𝜕kxj

𝜕jxk = 𝜕kxj =
∑︁
i

Γijkxi + LG (p)

Relationship between Christoffel symbols of first and second kind:

Γijk =
∑︁
l

(xi · xl )Γljk

Christoffel symbols from first fundamental form

Γijk =
1

2
(𝜕j(xi · xk) + 𝜕k(xi · xj)− 𝜕i (xj · xk))
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Intrinsic geometry of surfaces Parallel transport

Matrix representation of parallel transport:∑︁
k

(xi · xk)A′
kj(t) = −

∑︁
k

∑︁
l

(Γilk𝛽
′
l )Akj

A′
ij(t) = −

∑︁
l

(
∑︁
k

Γikl𝛽
′
k)Alj
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

Intrinsic (Riemann) curvature, Holonomy

Suppose S is, or is isometric to, a plane, i : U → S a coordinate chart.
Then parallel transport along any closed curve will send every vector
back to itself.

However, if you walk from the south pole to north pole via two
different longitudes, and do parallel transport along the way, then it is
no longer true.

Hence, the turning angle after parallel transport along a closed curve,
called holonomy, characterized how much a surface is intrinsically
curved.
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

Theorema Egregium (“Remarkable theorem”)

Theorem 5.2.1

The Gaussian curvature can be calculated using ONLY first fundamental

form. In other words, Gaussian curvature is invariant under local isometry.

Proof idea

Because Gaussian curvature is smooth, it is continuous, hence at every

point there is a neighborhood where the Gaussian curvature is almost

constant. Find a simple closed curve in that neighborhood 𝛼. Consider the
corresponding curve on unit sphere G ∘ 𝛼. Because
T𝛼(t)(S) = TG(𝛼(t))(S

2), the parallel transport along 𝛼 and G ∘ 𝛼 are

identical hence has the same turning angle, which equals the area bounded

by G ∘ 𝛼. Hence, the turning angle of 𝛼 divides the area of the part on S

bounded by 𝛼 is the Gaussian curvature. Hence Gaussian curvature is

intrinsic because parallel transport is intrinsic.
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

We can make the idea more precise as follows:

Proof.

Let the matrix representation of the −DG be [bij ], i.e. 𝜕jG = −
∑︀

i bijxi
(here G means G ∘ i where i is the coordinate chart).
Suppose 𝜕ixj =

∑︀
k Γ

k
ijxk + LijG . Because xi · G = 0, we have

Lij + xi · 𝜕jG = 0, hence Lij =
∑︀

k(xi · xk)bkj is the i , j-th entry of the
matrix representation of second fundamental form. Now look at the
equation 𝜕1𝜕2x1 = 𝜕2𝜕1x1. By calculation, the left hand side becomes

𝜕1(Γ
1

21)x1+Γ121(Γ
1

11x1+Γ211x2+ eG )+𝜕1(Γ
2

21)x2+Γ221(Γ
1

12x1+Γ212x2+ fG )

+𝜕1(f )G − fb11x1 − fb21x2

The right hand side is

𝜕2(Γ
1

11)x1+Γ111(Γ
1

21x1+Γ221x2+ fG )+𝜕2(Γ
2

11)x2+Γ211(Γ
1

22x1+Γ222x2+ gG )

+𝜕2(e)G − eb21x1 − eb22x2
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

Proof.

Look at the coefficients of x2 on both sides, we get

eb22 − fb21 = Γ111Γ
2

21 + 𝜕2Γ
2

11 + Γ211Γ
2

22 − Γ121Γ
2

11 − 𝜕1Γ
2

21 − Γ221Γ
2

12

The right hand side is evidently intrinsic, the left hand side equals

(x1 · x1)b11b22 + (x1 · x2)b21b22 − (x1 · x1)b12b21 − (x1 · x2)b22b21

= (x1 · x1)(b11b22 − b21b12)
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

Remark

To see how the proof is related to the idea stated earlier, consider parallel

transport of x1 along 𝛽1(t) = (t, s), and 𝛽2(t) = (s, t), one gets

Pt,𝛽1(x1) = x1 − t
∑︁
j

Γj
11
xj + o(t) = x1 − t𝜕1x1 + teG + o(t)

Pt,𝛽2(x1) = x1 − t
∑︁
j

Γj
21
xj + o(t) = x1 − t𝜕2x1 + tfG + o(t)

The study of the infinitestimal holonomy is equivalent to calculating d
ds

of

the t-coefficients of the former minus d
ds

of the t-coefficients of the latter.

In other words, in the first equation of the preceding slide, the LHS and

RHS represents the leading term of a coefficient of the holonomy along a

tiny square in U.
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Intrinsic geometry of surfaces Intrinsic curvature, Gauss theorem

Review for last lecture

Proof of Gauss theorem:

𝜕ixj =
∑︀

k Γ
k
ijxk + LijG , Lij is the i , j-th entry of the matrix

representation of second fundamental form.

𝜕i𝜕jx1 = 𝜕j𝜕ix1

EK = Γ1
11
Γ2
21

+ 𝜕2Γ
2

11
+ Γ2

11
Γ2
22

− Γ1
21
Γ2
11

− 𝜕1Γ
2

21
− Γ2

21
Γ2
12

Remark on HW: Two equivalent ways to define induced map between
surfaces. F : S1 → S2, F (p) = q, DF : Tp(S1) → Tq(S2).

i : U → S1, j : V → S2 are two coordinate charts containing p and q

respectively, G = j−1 ∘ F ∘ i . Then DF = J(j)J(G )J(i)−1.

𝛼 is any smooth regular curve on S1, 𝛼(0) = p.
DF (𝛼′(0)) = (F ∘ 𝛼)′(0).
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Intrinsic geometry of surfaces Geodesics

Geodesics

Let S be a smooth regular surface, 𝛾 a smooth regular space curve under
arc length parameterization that lies on S .

Definition 5.3.1

𝛾 is called a geodesic on S iff 𝛾′(t) = P𝛾,t𝛾
′(0).
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Intrinsic geometry of surfaces Geodesics

It follows from the definition that

Theorem 5.3.2

Suppose 𝛾 : I → S is a smooth regular curve, 0 ∈ I . The followings are

equivalent:

1 𝛾 is a geodesic under arc length parameterization.

2 𝛾 is under arc length parameterization, and the curvature of 𝛾 equals

the absolute value of its normal curvature.
3 For any coordinate chart i : U → S, 𝛽 = i−1 ∘ 𝛾 satisfies

E𝛽′2
1
+ 2F𝛽′

1
𝛽′
2
+ G𝛽′2

2
= 1

𝛽′′
i = −

∑︀
j,k Γ

i
jk𝛽

′
j𝛽

′
k .
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Intrinsic geometry of surfaces Geodesics

From the third point above and Picard’s theorem, we have:

Corollary 5.3.3

Let p be any point on a smooth regular surface S, v ∈ Tp(S) any unit

vector, then there is a geodesic 𝛾 such that 𝛾(0) = p, 𝛾′(0) = v.

Example 5.3.4

Straight lines are geodesics.

Great circles are geodesics on spheres.
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Intrinsic geometry of surfaces Geodesics

Proof of Theorem 5.3.2.

1 =⇒ 2: 𝛾′′ = d
dt
𝛾′ = d

dt
P𝛾,t(𝛾

′(0)) ∈ N𝛾(t)(S), hence the unit
normal vector is parallel to 𝛾′′, the absolute value of normal curvature
equals curvature.

2 =⇒ 3: The first equation is equivalent to ‖𝛾′‖ = 1. Because the
curvature equals the absolute value of normal curvature, 𝛾′′ is parallel
to G (𝛾(t)), hence

𝛾′′ = (i ∘ 𝛽)′′ = d

dt
(𝛽′

1x1 + 𝛽′
2x2)

=
∑︁
i

(𝛽′′
i xi + 𝛽i

∑︁
j ,k

Γjik𝛽
′
kxj +

∑︁
k

𝛽′
kLikG )

Compare coefficients, we get the second equation.
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Intrinsic geometry of surfaces Geodesics

Proof.

3 =⇒ 1: The first equation implies that 𝛾 is under arc length
parameterization. Consider H(t) = 𝛾′(t)− P𝛾,t𝛾

′(0). H(0) = 0,

H ′(t) =
∑︁
i

𝛽′′
i xi +

∑︁
i

𝛽′
i (
∑︁
j ,k

Γjik𝛽
′
kxj +

∑︁
k

𝛽′
kLikG ) +

d

dt
P𝛾,t𝛾

′(0)

Which is in N𝛾(t)(S). H · x1, H · x2 satisfies a homogenuous ODE with
zero initial conditions, hence the solution must be 0.

Remark

A geodesic is the curve on S whose length is locally minimized. To see this,

let 𝛾 be a geodesic, a a compactly supported real valued function on I ,

𝛽s = 𝛾(t) + sa(t)(G (𝛾(t))× 𝛾′(t)), then because 𝛾′′ is parallel to G,

‖𝛽′
s‖ = ‖𝛾′ + sa′(G (𝛾(t))× 𝛾′(t)) + sa((G ∘ 𝛾)′ × 𝛾′) + saG × 𝛾′′‖ ≥ 1
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Gauss-Bonnet Theorem, Global differential geometry

6 Gauss-Bonnet Theorem, Global differential geometry
Geodesic curvature
Calculation in orthogonal coordinate charts
Gauss-Bonnet Theorem
Topics that will not be in the final exam
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Gauss-Bonnet Theorem, Global differential geometry Geodesic curvature

Geodesic Curvature

Definition 6.1.1

Let 𝛾 be a smooth regular curve on smooth regular surface S , G is the
Gauss map. Then

Normal curvature kn = 𝛾′′ · G
Geodesic curvature kg = 𝛾′′ · (G × 𝛾′).

It is easy to see that k2 = k2n + k2g . Geodesic curvature is a generalization
of the concept of signed curvature:

Example 6.1.2

Let S = {(x , y , 0)}, G = (0, 0, 1), then the geodesic curvature is the signed
curvature.

Example 6.1.3

Geodesic curvature of circles on sphere.
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Gauss-Bonnet Theorem, Global differential geometry Geodesic curvature

Calculation

Let i : U → S be a coordinate chart, 𝛽 = i−1 ∘ 𝛾. Suppose
E𝛽′

1

2 + 2F𝛽′
1
𝛽′
2
+ G𝛽′

2

2 = 1, i.e. it is under arc length parameterization.
Then the orthogonal projection of 𝛾′′ on T𝛾(t)(S) is

PT𝛾(t)
(𝛾′′) =

∑︁
i

(𝛽′′
i +

∑︁
j ,k

Γijk𝛽
′
j𝛽

′
k)xi

The absolute value of the geodesic curvature is the squared root of the first
fundamental form of this vector. Alternatively, we also have

kg = 𝛾′ × PT𝛾(t)
(𝛾′′) · G (𝛾(t))
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Gauss-Bonnet Theorem, Global differential geometry Calculation in orthogonal coordinate charts

Example 6.2.1

Suppose F = 0, i.e. we are in the case of orthogonal coordinate charts.
Find formula for Christoffel symbols, Gaussian curvature and geodesic
curvatures.

Christoffel symbols of first kind:

Γ111 =
1

2
Eu, Γ112 = Γ121 =

1

2
Ev , Γ122 = −1

2
Gu

Γ211 = −1

2
Ev , Γ212 = Γ221 =

1

2
Gu, Γ222 =

1

2
Gv

Christoffel symbols of second kind:

Γ111 =
Eu
2E

, Γ112 = Γ121 =
Ev
2E

, Γ122 = −Gu

2E

Γ211 = − Ev
2G

, Γ212 = Γ221 =
Gu

2G
, Γ222 =

Gv

2G
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Gauss-Bonnet Theorem, Global differential geometry Calculation in orthogonal coordinate charts

Gaussian curvature

1

E
((Γ211)v − (Γ221)u + Γ111Γ

2

21 + Γ211Γ
2

22 − Γ121Γ
2

11 − Γ221Γ
2

12)

=
1

E
(−(

Ev
2G

)v − (
Gu

2G
)u +

Eu
2E

Gu

2G
− Ev

2G

Gv

2G
+

Ev
2E

Ev
2G

− Gu

2G

Gu

2G
)

= − 1

2
√
EG

((
Ev√
EG

)v + (
Gu√
EG

)u)
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Gauss-Bonnet Theorem, Global differential geometry Calculation in orthogonal coordinate charts

Geodesic curvature

Let 𝛽 = i−1 ∘ 𝛾.
Approach 1:

k2g = E (𝛽′′
1 +

Eu
2E

𝛽′2
1 +

Ev
E

𝛽′
1𝛽

′
2 −

Gu

2E
𝛽′2
2 )

2

+G (𝛽′′
2 − Ev

2G
𝛽′2
1 +

Gu

G
𝛽′
1𝛽

′
2 +

Gv

2G
𝛽′2
2 )

2

Approach 2:

kg =
√
EG𝛽′

1(𝛽
′′
2 − Ev

2G
𝛽′2
1 +

Gu

G
𝛽′
1𝛽

′
2 +

Gv

2G
𝛽′2
2 )

−
√
EG𝛽′

2(𝛽
′′
1 +

Eu
2E

𝛽′2
1 +

Ev
E

𝛽′
1𝛽

′
2 −

Gu

2E
𝛽′2
2 )
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Gauss-Bonnet Theorem, Global differential geometry Calculation in orthogonal coordinate charts

Approach 3: Use parallel transport

For any t, identify T𝛾(t)(S) with R2 by Dt : (a, b) ↦→ ax1√
E
+ bx2√

G
.

Under this identification, Euclidean distance is sent to first
fundamental form, and standard basis is sent to a basis with the same
orientation as {x1, x2}.
As a consequence, D−1

t ∘ P𝛾,t ∘ D0 is an orientation and distance
preserving linear transformation from R2 to itself hence must be
rotation with rotation angle 𝜃.

When t << 1, 𝜃 << 1, and by definition of parallel transport, we have

𝜃 =
t

2
√
EG

(Ev𝛽
′
1 − Gu𝛽

′
2) + o(t)
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Remark

When 𝛾 is a closed curve, 𝛾(1) = 𝛾(0), by Green’s theorem we have the

total turning angle when parallel transported through 𝛾 (a.k.a. holonomy)

is ∫︁
1

0

dt

2
√
EG

(Ev𝛽
′
1 − Gu𝛽

′
2) =

∫︁
𝛽

1

2
√
EG

(Evdu − Gudv)

=

∫︁
Region bounded by 𝛽

−(
Ev

2
√
EG

)v − (
Gu

2
√
EG

)ududv

=

∫︁
Region bounded by 𝛾

Gaussian Curvature d Area

This made precise the argument on Slide 141.
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Review for last lecture

Geodesic curvature kg = 𝛾′′ · (G × 𝛾′) = G · (𝛾′ × 𝛾′′)

Calculation of geodesic curvature: use the fact that

PT𝛾(t)
(𝛾′′) =

∑︁
i

(𝛽′′
i +

∑︁
j ,k

Γijk𝛽
′
j𝛽

′
k)xi

Gaussian curvature under orthogonal coordinate chart:

− 1

2
√
EG

((
Ev√
EG

)v + (
Gu√
EG

)u)

Combining with Green’s theorem:

Theorem 6.2.2

The holonomy along 𝛾 is
∫︀
Ω KdA where A is the area form on S.
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Existence of orthogonal coordinate charts

Theorem 6.2.3

Let S be a smooth regular surface, then around any point p ∈ S there is an

orthogonal coordinate chart.

Proof idea

Find a nearby point q, make “polar coordinate” centered at q.
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Geodesic curvature under orthogonal coordinate charts

Assume that 𝛾 is under arc length parameterization,

Theorem 6.2.4

(
d

dt
(P𝛾,t ∘ P−1

𝛾,t0(𝛾
′(t0))× 𝛾′(t))) · G (𝛾(t0))|t=t0 = kg (t0)

Proof.

(
d

dt
(P𝛾,t ∘P−1

𝛾,t0(𝛾
′(t0))×𝛾′(t)))|t0 ·G = (CG ×𝛾′(t0)+𝛾′(t0)×𝛾′′(t0)) ·G

= (𝛾′ × 𝛾′′) · G |t0 = 𝛾′′ · (G × 𝛾′)|t0 = kg (t0)
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As a consequence:

Theorem 6.2.5

Under orthogonal coordinate, when 𝛽 = i−1𝛾, let 𝜑 be the angle between

𝛾′ and xu, then

kg = 𝜑′ +
1

2
√
EG

(−Ev𝛽
′
1 + Gu𝛽

′
2)
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Local Gauss-Bonnet Theorem

Theorem 6.3.1 (Hopf theorem)

If 𝛾 is a smooth simple closed curve bounding a small region within an

orthogonal coordinate chart, and travel around it counterclockwise when

seen from the direction of the Gauss map, then
∫︀ T

0
𝜑′dt = 2𝜋, here T > 0

is the smallest positive number such that 𝛾(T ) = 𝛾(0).

As a consequence,

Theorem 6.3.2

Let 𝛾 be a smooth simple closed curve on S bounding a small enough

region Ω, and travel around Ω counterclockwise when seen from the

direction of the Gauss map. Then
∫︀
𝛾 kgds +

∫︀
Ω KdA = 2𝜋.
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Definition 6.3.3

We call a curve 𝛾 a piecewise smooth curve, if its domain can be
decomposed into finitely many intervals, and 𝛾 is smooth on the closure of
each. Let t0 be a boundary point of two consecutive intervals, the angle
from limh→0−

𝛾(t0+h)−𝛾(t0)
h

to limh→0+
𝛾(t0+h)−𝛾(t0)

h
is called the turning

angle at t0.

Because piecewise smooth curves can be approximated by smooth curves,
we have:

Theorem 6.3.4 (Local Gauss-Bonnet)

Let 𝛾 be a piecewise smooth simple closed curve on S bounding a small

enough region Ω, and travel around Ω counterclockwise when seen from

the direction of the Gauss map. Let 𝜃k be all the turning angles, then∑︀
k 𝜃k +

∫︀
𝛾 kgds +

∫︀
Ω KdA = 2𝜋.
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Review: Outline for the argument to Local Gauss-Bonnet

Let 𝛾 be a smooth closed curve on S bounding a region Ω which is on its
left and is contained in a coordinate neighborhood.

1 Around every point there is an orthogonal coordinate chart.

2 Gaussian curvature under orthogonal coordinate chart:

− 1

2
√
EG

((
Ev√
EG

)v + (
Gu√
EG

)u)

3 Identify T𝛾(t)(S) with R2 by (a, b) ↦→ a√
E
x1 +

b√
G
x2.

4 Parallel transport is a rotation by angle 𝜃(t), such that

𝜃′ =
1

2
√
EG

(Ev𝛽
′
1 − Gu𝛽

′
2)

5 𝜃 is the angle from x1 to P𝛾,t(x1), viewed from the direction of G .
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6 Let 𝜃1 be the angle from P𝛾,t𝛾
′(0) to 𝛾′(t). Then

𝜃′1(s) = (
d

dt
(P𝛾,t ∘ P−1

𝛾,s (𝛾
′(s))× 𝛾′(t)))|t=t0 · G (𝛾(t0)) = kg (t0)

6 𝜃′
1
= 𝜑′ − 𝜃′, where 𝜑 is the angle from x1 to 𝛾′.

6 By Green’s theorem,∫︁
𝛾
kgds +

∫︁
Ω
KdA =

∫︁
𝛾
𝜑′ds = 2𝜋

The last step is by Hopf’s theorem.
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Global Gauss-Bonnet

Definition 6.3.5

If M is a finite cell complex (finitely many discs of different dimensions
glued together, discs of higher dimension has boundary in discs of lower
dimension), then the Euler characteristic is the number of even dimensional
cells minus the number of odd dimensional cells, called 𝜒(M)

Example 6.3.6

A single disc has 𝜒 = 1.
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One can show that any compact region on S bounded by piecewise smooth
curves can be decomposed into small regions bounded by a single piecewise
smooth closed curve, and that when one glue two regions along the
boundary, integral of kg and K are additive, when the gluing is via m

intervals, Euler characteristic is subtracted by m and the turning angle is
subtracted by 2m𝜋. The gluing can also happen along cylinders, during
which the Euler characteristics, turning angles and integral of kg and K are
all unchanged. Hence we have

Theorem 6.3.7 (Gauss-Bonnet)

Let Ω be a compact region on smooth regular oriented surface S bounded

by piecewise smooth curves which travel counterclockwise around Ω, with
turning angles 𝜃k , then∑︁

k

𝜃k +

∫︁
𝛾
kgds +

∫︁
Ω
KdA = 2𝜋𝜒(Ω)
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Exponential map and geodesic polar coordinate

Definition 6.4.1

The Exponential map is defined as exp : U → S , exp(v) = 𝛾v (1), where U
is a neighborhood of 0 in Tp(S), 𝛾v (‖v‖t) is a geodesic under arc length
parameterization, such that 𝛾(0) = p, 𝛾′(0) is in the direction of v .

Definition 6.4.2

The geodesic polar coordinate is the composition of exp and
(r , 𝜃) ↦→ (r cos 𝜃, r sin 𝜃).

Theorem 6.4.3

The exponential map when restricted to a small enough neighborhood of 0,
is a coordinate chart.

The proof is by the continuous dependence on initial conditions of ODE.
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Theorem 6.4.4

Under the geodesic polar coordinate, F = 0, E = 1,
√
G rr/

√
G = −K.

Proof.

Fr = 𝜕rxr · x𝜃 + xr · 𝜕rx𝜃 =
1

2
𝜕𝜃(xr · xr ) = 0

Obviously E = 1, hence

K = − 1

2
√
EG

((
E𝜃√
EG

)𝜃 + (
Gr√
EG

)r ) = − 1

2
√
G
(
Gr√
G
)r = −

√
G rr/

√
G

Remark

It is easy to see that G = 0 when r = 0. Hence two surfaces with the same

constant Gaussian curvatures are locally isometric.
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Proof of Hopf’s theorem

1 The integral must be 2k𝜋, hence unchanged under continuous
deformation.

2 Deform E and G to 1.

3 Find the point where v is smallest, reparametrized so that this point is
𝛾(0).

4 Replace tangent with secant line.

5 Deform the end points of the secant line.
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Summary of the philosophy of local differential geometry

Differential geometry of a manifold is represented via connections, i.e.,
parallel translations, on its tangent bundles (or other bundles).

Holonomy of the connection measures the “intrinsic curvature”.

Difference between the connection of a sub manifold and the larger
space (the Lij , k , 𝜏 etc) measures the “extrinsic curvature”.
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What can we go from here

Further topics of global differential geometry: Jacobi field and
comparison theorem, 4 vertex theorem, classification of surfaces with
zero curvature, rigidity of sphere etc.

Generalizations to differential geometry on general bundles.

Generalizations of Gauss-Bonnet: Chern-Weil theory, Hodge theory,
K-theory, index theory.

Connection with PDE: Geometric Analysis.

Connection with physics: Gauge theory, Yang-Mills equation etc.

Symplectic, complex and algebraic geometry.
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7 Final Review

May 2, 2021 174 / 188



Final Review

Differential geometry of plane curves and space curves

Arc length function and arc length parameterization

Signed curvature, curvature and torsion

Structural equation. Fundamental theorems.

Basic concepts of smooth regular surfaces

Coordinate charts via implicit function theorem, change of coordinates,

smooth functions, smooth maps.

Tangent space and normal space, induced maps on tangent space.

First fundamental form

Orientation and Gauss map, shape operator, second fundamental form,

principal, mean and Gaussian curvature.
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Gauss’s theorem and Gauss-Bonnet

Parallel transport and Christoffel symbols, Christoffel symbols are

intrinsic.

Gauss’s theorem.

Holonomy along a closed curve.

Local and global Gauss-Bonnet.

Curves on surfaces

Normal curvature and geodesic curvature.

Geodesics and geodesic equation.

Key idea:

Geometry is all about how to move a vector around in a vector bundle
(parallel transport for surfaces, unit tangent, normal, binormal vectors
for curves)

How much the vectors are rotated under such movement characterizes
extrinsic curvature (shape operator for surfaces, curvature and torsion
for curves)

Holonomy characterizes intrinsic curvature.

May 2, 2021 176 / 188



Final Review

Example 7.0.1

Consider the surface S = {(x , y , z) : (
√︀
x2 + y2 − 2)2 + z2 = 1}.

Show that S is a smooth regular surface.

Show that when u ∈ (−𝜋, 𝜋), v ∈ (−𝜋, 𝜋),
f : (u, v) ↦→ (2 cos u + cos u cos v , 2 sin u + sin u cos v , sin v) is a
coordinate chart.

Find the first fundamental form, shape operator, second fundamental
form, principal curvatures, Christoffel symbols on S .

Verify that the integral of the Gaussian curvature on S is 0.

Answer:

This is because the function (
√︀
x2 + y2 − 2)2 + z2 is regular on

{(x , y , z) : x2 + y2 ̸= 0, and either z ̸= 0 or x2 + y2 ̸= 4}.
Check that it is a homeomorphism to an open subset of S , smooth,
and the Jacobian has rank 2.
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Tangent space at f (u, v) is spanned by

x1 = (−2 sin u − sin u cos v , 2 cos u + cos u cos v , 0)

and
x2 = (− cos u sin v ,− sin u sin v , cos v)

So E = x1 · x1 = (2+ cos v)2, F = 0, G = 1. Now calculate the Gauss
map:

G ∘ f =
x1 × x2

‖x1 × x2‖
= (cos u cos v , cos v sin u, sin v)

J(G ∘ f ) =

⎡⎣ − sin u cos v − cos u sin v
cos u cos v − sin u sin v

0 cos v

⎤⎦
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(J(f )T J(f ))−1 =

[︂
(2+ cos v)−2 0

0 1

]︂
J(f )T =

[︂
−2 sin u − sin u cos v 2 cos u + cos u cos v 0

− cos u sin v − sin u sin v cos v

]︂
So second fundamental form is

−J(f )T J(G ∘ f ) =
[︂
− cos v(2+ cos v) 0

0 −1

]︂
The matrix representation of shape operator is

(J(f )T J(f ))−1J(f )T J(G ∘ f ) =
[︂

cos v
2+cos v 0

0 1

]︂
Principal curvatures are − cos v

2+cos v , −1, Gaussian curvature is cos v
2+cos v .
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Non-zero Christoffel symbols of first kind:

Γ211 = sin v(2+ cos v), Γ121 = Γ112 = − sin v(2+ cos v)

Non-zero Christoffel symbols of second kind:

Γ211 = sin v(2+ cos v), Γ112 = Γ121 = − sin v

2+ cos v

Remark

One can verify that the Christoffel symbols calculated above satisfies their

definitions. Also, the Gaussian curvature can be calculated using formula

K = −
√
E 22√
E
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Now do integration∫︁ 𝜋

−𝜋
du

∫︁ 𝜋

−𝜋
dv(2+ cos v) · cos v

2+ cos v
= 0
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Example 7.0.2

Let S be a surface with first fundamental form under a coordinate chart f
being E = 1, G = eu, F = 0.

Find Christoffel symbols.

Find the geodesic curvature of the curve 𝛾 : t ↦→ f (1, t), t ∈ [−1, 1].

Find the parallel transport of x1 along the curve above to 𝛾(1).

Non-zero Christoffel symbols of first kind:

Γ122 = −eu/2, Γ212 = Γ221 = eu/2

Non-zero Christoffel symbols of second kind:

Γ122 = −eu/2, Γ212 = Γ221 = 1/2
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Arc length reparameterization:

𝛼 = f −1 ∘ 𝛾 : t ↦→ (1, t)

Arc length function, t0 = 0:

s(t) =

∫︁ t

0

e1/2dr = e1/2t

So,
𝛽 = f −1 ∘ 𝛾 ∘ s−1 : s ↦→ (1, s/e1/2)

PT(𝛾∘s−1)−1(t)
((𝛾 ∘ s−1)′′) = −x1

2

(𝛾 ∘ s−1)′ = x2/e
1/2

G ∘ 𝛾 ∘ s−1 =
x1 × x2

e1/2

kg = (𝛾∘s−1)′′·(G×(𝛾∘s−1)′) = PT(𝛾∘s−1)−1(t)
((𝛾∘s−1)′′)·(G×(𝛾∘s−1)′)

= −x1
2

· (x1 × x2

e1/2
× x2

e1/2
) =

x1 × x2

e1/2
· x1 × x2

2e1/2
=

1

2
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First way to find the parallel transport: the turning angle from
P(𝛾∘s−1),t(𝛾 ∘ s−1)′ to (𝛾 ∘ s−1)′ changes with the speed kg under arc
length parameterization. So this angle at time t = 1 becomes∫︀ e1/2

0

1

2
ds = e1/2

2
, x1 will be sent to cos(− e1/2

2
)x1 + sin(− e1/2

2
) x2
e1/2

.

Second way to find the parallel transport: via the differential equation.
Suppose P𝛾,t(x1) = a(t)x1 + b(t)x2. Then

0 = PT𝛾(t)(S)
d

dt
P𝛾,t(x1) = a′(t)x1 +

a(t)

2
x2 + b′(t)x2 −

b(t)e

2
x1

So
a′ = eb/2, b′ = −a/2, a(0) = 1, b(0) = 0

a(t) = cos(
e1/2

2
t), b(t) = −

sin( e
1/2

2
t)

e1/2
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Remark

Two ways to calculate parallel transport:

Use kg : the angle from P𝛾,t(𝛾
′(0)) to 𝛾′(t) changes at speed kg .

Need to make sure 𝛾 is arc-length parameterization.

Use definition: P𝛾,t(v) = a1(t)x1 + a2(t)x2

0 = PT𝛾(t)(S)
d

dt
P𝛾,t(v) =

∑︁
i

(a′i (t) +
∑︁
j ,k

Γijkaj𝛽
′
k)xi

So

a′i (t) +
∑︁
j ,k

Γijkaj𝛽
′
k = 0

Here 𝛽 = f −1 ∘ 𝛾, where f is the coordinate chart. Do not need to

make sure that 𝛾 is arc-length parameterization.
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Example 7.0.3

If three smooth oriented regular surfaces M,N,R intersects at only a single
point p, show that:

Their tangent spaces at p coincides.

Choose orientation such that all their Gauss maps are identical at p. If
N lies between M and R , M and R all have positive mean and
Gaussian curvature, then so is N.

Example 7.0.4

If S is a smooth oriented surface with non-positive curvature. 𝛼, 𝛽 are two
geodesic segments on S intersecting at two end points. Use Gauss-Bonnet,
show that 𝛼 and 𝛽 can not bound a region that is homeomorphic to a disk.
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Example 7.0.5

If S and T are two smooth oriented surfaces intersecting on a simple closed
smooth curve 𝛾, and at any point on 𝛾 S and T has the same tangent
space. 𝛾 bounds a disk D1 on S and another disk D2 on T . S and T both
have positive Gaussian curvature. Show that the image of D1 and D2 under
Gauss map have either the same area or the areas add up to 4𝜋.

Example 7.0.6

Let S be a smooth oriented surface, 𝛾 a geodesic passing through a point
p, 𝛽 another smooth regular curve intersects with 𝛾 only at p, and seen
from the direction of the Gauss map, 𝛽 is to the right of 𝛾. Show that 𝛽 is
tangent to 𝛾 at p, and if their tangent vectors are at the same direction at
p, the geodesic curvature of 𝛽 is non-positive at p.
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There will not be complicated computation or proofs. Should be
similar or easier than HW and practice problems.

Don’t panic if you can not do a specific problem! Just move on to the
next.

Letter grade range provided in the beginning of the semester is just
the minimum. I may adjust the grades upwards. Average should be at
around AB.

Don’t forget to do the course evaluation if you haven’t done it already!

Good luck with the exams and have a nice summer break!
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