
Math 521 Analysis I

Instructor: Chenxi Wu

Email: cwu367@wisc.edu

Office Hours: TuWed 1-2pm Van Vleck 517, or by appointment

Course Description: This is an introductory course on mathematical analy-
sis. We will cover basic ideas in analysis like real numbers, limits, continuity,
differentiation and integration. It is a more rigorous, proof based treatment of
what we have seen in Calculus classes.

How to succeed in this course:

I know that we all have different academic backgrounds and different learning
styles, so what works for one may not work for another. However the following
is what I found helpful when I learned this subject myself:

1. Make sure that one understands every definition and every step of every
proof.

2. Figure out the key idea behind every concept or theorem, and summarize
it in one sentence.

3. Do as many exercises as possible. To save time it is often not necessary
to write down a complete solution, just figure out the key idea then move
on.

Rudin’s book is one of the most standard introductory text on analysis and
(in my opinion) one of the more accessible one. If you finished it maybe check
out his Real and Complex Analysis or Jean Dieudonné’s Foundations of Modern
Analysis which cover more advanced topics. There are also textbooks, like the
one by Grigorii Fichtenholz, that are at the same level of Rudin’s Principles of
Mathematical Analysis but may contain more examples and application.
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1 Introduction to Naive Set Theory

A thorough treatment of logic and axiomatic set theory may take a whole
semester. So we will only mention some concepts, notations and results from
set theory that are widely used in analysis.

1.1 Set, subsets, specification and power set

Remark 1.1.1. Let A be a set. We write x ∈ A if x is an element, or a
member of A.

Example 1.1.2. 2 ∈ N, 1.5 ̸∈ Z.

Definition 1.1.3. We say a set B is a subset of a set A, if for every x ∈ B,
x ∈ A. We denote it as B ⊆ A. If there is at least one element in A which does
not belong to B, we call B a proper subset, denoted as B ⊊ A.

Remark 1.1.4. Two sets are considered equal if they contain the same ele-
ments. In other words, A = B iff A ⊆ B and B ⊆ A.

Definition 1.1.5. A set that contains no element is called an empty set,
denoted as ∅.

Remark 1.1.6. The empty set is unique by definition. Here by “unique” we
mean that if A and B are both empty sets, then A = B. Also note that ∅ ≠ {∅},
Because {∅} has a single element which is ∅. ∅ is a subset of every set.

Remark 1.1.7. To describe a set, one can write down its elements and put a
{} around them, for example:

A = {0, 1, 2}

One can also use the terminology of specification (or comprehension) to
describe a set consisting of elements that satisfy a certain property. For example:

A = {n ∈ N : n ≤ 2}

means “A is a set consists of natural numbers that are no more than 2”

B = {sin(n) : n ∈ Z}

means “B is a set consisting of the sines of integers”.

Remark 1.1.8. The “:” above can be “|” in some texts.

Remark 1.1.9. Note that in both examples in Remark 1.1.7 above, the variable
n is required to be a member of some known set, like N or Z, i. e. we are doing
restricted specification. The result of unrestricted specification may not
necessarily be a set, for example {x : x ̸∈ x} can not be a set due to Russell’s
paradox.
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Definition 1.1.10. If A is a set, the collection of all its subsets also forms a
set, denoted as P (A) or 2A, called the power set.

Remark 1.1.11. Power sets are never empty because ∅ ∈ P (A) for all set A.
If A has n elements, the number of elements in P (A) is 2n.

Remark 1.1.12. Notations for some common sets of numbers:

• N: set of natural numbers. In mathematics we usually think of 0 as a
natural number.

• Z: set of integers

• R: set of real numbers. This is a key concept for this semester which we
will discuss in more details later.

• C: set of complex numbers.

Example 1.1.13. {B ∈ P (N) : 1 ∈ B} is the set of all subsets of the set of
natural numbers that contains 1.

1.2 Unions, intersections and set differences

Definition 1.2.1. Let A be a set of sets. The union of elements in A, denoted
as
⋃
A, or

⋃
B∈A B, or (when A = {Bα : α ∈ I})

⋃
α∈I Bα, is a set that satisfies:

x ∈
⋃
A iff there is some B ∈ A, such that x ∈ B.

Definition 1.2.2. Let A and B be two sets, A∪B is a set such that x ∈ A∪B
iff x ∈ A or x ∈ B.

Definition 1.2.3. Let A be a non-empty set of sets, then the intersection⋂
A or

⋂
B∈A B or (when A = {Bα : α ∈ I})

⋂
α∈I Bα, is defined as⋂

A = {x ∈
⋃

A : x ∈ B for all B ∈ A}

Definition 1.2.4. Let A and B be two sets, A ∩ B is defined as {x ∈ A ∪ B :
x ∈ A, x ∈ B}.

Definition 1.2.5. Let A and B be two sets, A\B (A − B in some texts) is
defined as A\B = {a ∈ A : a ̸∈ B}.

Example 1.2.6. • A ∪A = A ∩A = A, A\A = ∅.

• (1, 2] ∪ (3/2, 3] = (1, 3]. Here (a, b] means {x ∈ R : a < x ≤ b}.

• For any natural number n, let An = [n,∞) = {x ∈ R : x ≥ n}. Then⋃
n∈N An = [0,∞),

⋂
n∈N An = ∅.
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1.3 Cartesian product and relations

Definition 1.3.1. Let A and B be two sets (can be equal). The Cartesian
product between A and B is the set consisting of all ordered pairs of elements
in A and elements in B. We can write this as

A×B = {(a, b) : a ∈ A, b ∈ B}

Definition 1.3.2. A subset of A×B is called a relation between A and B.

Example 1.3.3. • If A or B is empty, then A×B = ∅.

• ∅ and A×B are both relations between A and B.

• If B is non-empty, let b ∈ B, then {(a, b) : a ∈ A} is a relation between A
and B.

1.4 Functions, orders and equivalent relations

We are going to see three families of relations for this course:

1.4.1 Functions

Definition 1.4.1. A function or a map f between A and B is a relation
between A and B, such that for any a ∈ A, there is a unique b ∈ B, such that
(a, b) ∈ f . We denote this b as f(a). We often write such a function as

f : A → B, a 7→ f(a)

Definition 1.4.2. The set A is called the domain, B is called the codomain,
the set (which is a subset of B) {f(a) : a ∈ A} is called the range.

Definition 1.4.3. A function f is called an injection if f(a) = f(b) implies
a = b. It is called a surjection if the range equals codomain. It is called a
bijection if it is both an injection and a surjection.

Example 1.4.4. • f : Z → Q, n 7→ n2/2 is a function. The domain is Z,
codomain is Q, it consists of pairs of the form (n, n2/2) where n is an
integer. It is neither an injection nor a surjection.

• g : A → P (A), g(a) = A\{a}, is an injection but not a surjection.

• h : P (N → N defined as

h(A) =

{
0 A = ∅
smallest number in A A ̸= ∅

is a surjection but not an injection.

Definition 1.4.5. Suppose B is not empty, let b ∈ B, then we can define the
constant function cb : A → B which sends any a ∈ A to b.
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Definition 1.4.6. The identity function from A to itself is defined as idA :
A → A, a 7→ a. Or, idA = {(a, a) : a ∈ A} ⊆ A×A.

Remark 1.4.7. idA is always a bijection.

Definition 1.4.8. Let A ⊆ B, then the inclusion function from A to B is
defined as a 7→ a.

Remark 1.4.9. An inclusion function is always an injection.

Definition 1.4.10. Let f be a function from A to B, g be a function from B
to C.

• The composition between f and g, denoted as g ◦ f , is defined as a 7→
g(f(a)).

• If C = A, g ◦ f = idA, f ◦ g = idB , we call g the inverse of f , denoted as
g = f−1, and f to be invertible.

Remark 1.4.11. Identity function composed with any other function equals
the other function itself.

Remark 1.4.12. A function is invertible iff it is a bijection.

Remark 1.4.13. Composition of injections is an injection. Composition of
surjections is a surjection.

Definition 1.4.14. Let f : A → B be a function, A′ ⊆ A, i the inclusion
function from A′ to A, then the restriction of f on A′, denoted as f |A′ , is
defined as f ◦ i.

Definition 1.4.15. Let f : A → B be a function. Then for every C ⊆ A, we
define

f(C) = {f(a) : a ∈ C}
For every D ⊆ B, we define

f−1(D) = {a ∈ A : f(a) ∈ D}

Remark 1.4.16. Any function is the composition of a surjection with an in-
jection. Let f : A → B be a function, f can always be seen as the composition
of surjection f : A → f(A) and the inclusion map from the range f(A) of f to
B.

Example 1.4.17. • If f : N → P (N) is defined as f(n) = N\{n}, g :
P (N) → N is defined as

g(A) =

{
0 A = ∅
smallest element in A A ̸= ∅

Then

(g ◦ f)(n) =

{
1 n = 0

0 n > 0
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• If g is the same as above, f ′ : N → P (N) is defined as

f ′(n) = {x ∈ N : x ≥ n}

Then g ◦ f ′ = idN but f ′ ◦ g ̸= idP (N). For example, f ′ ◦ g(∅) = N. Hence
f ′ is not an inverse of g.

• Let h : P (N) → P (N) be defined as P (A) = N\A. Then h ◦ h = idP (N),
h = h−1.

Remark 1.4.18. The set of all functions from A to B is denoted as Map(A,B)
or BA.

Example 1.4.19. The composition of functions gives a map

◦ : Map(A,B)×Map(B,C) → Map(A,C)

(f, g) 7→ g ◦ f

Theorem 1.4.20. There is a bijection betweenMap(A×B,C) andMap(A,Map(B,C)),
defined as

f 7→ (a 7→ (b 7→ f(a, b))

Proof. It is easy to show that the map fromMap(A×B,C) toMap(A,Map(B,C))
defined above is well defined.

We can also verify that the map fromMap(A,Map(B,C)) toMap(A×B,C)
defined by g 7→ ((a, b) 7→ (g(a))(b)) is its inverse, so it is a bijection.

Remark 1.4.21. This is called Currying after the American logician Haskell
Curry. It is often used in computer science to reduce multi variable functions
to single variable ones. For example, the binary operator + : Z×Z → Z can be
seen as a function sending integer a to a function b 7→ a+ b.

Remark 1.4.22. The concept of functions allow us to define Cartesian product
of possibly infinite families of sets: Let A be a non-empty set of sets, we can
define ∏

A =
∏
B∈A

B = {f ∈ Map(A,
⋃

A) : f(B) ∈ B for all B ∈ A}

When all elements of A are non-empty, the axiom of choice (AC) says that
this product is non-empty. For this course, as is in most math courses, we always
assume AC.

1.4.2 Orders

Definition 1.4.23. Let A be a set. A partial order ⪯ is a relation from A to
itself such that

• For any a ∈ A, (a, a) ∈⪯.
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• If (a, b) ∈⪯, (b, a) ∈⪯, then a = b.

• If (a, b) ∈⪯ and (b, c) ∈⪯ then so is (a, c).

If furthermore for any a, b ∈ A, (a, b) ∈⪯ or (b, a) ∈⪯, we call it a total or
linear order. We often write (a, b) ∈⪯ as a ⪯ b.

Remark 1.4.24. If a ⪯ b and a ̸= b we write a ≺ b.

Remark 1.4.25. If ⪯ is a partial or linear order, the relation ⪯′ defined as
a ⪯′ b iff b ⪯ a is also a partial or linear order respectively.

Example 1.4.26. • The usual ≤ on N is a linear order.

• A ⪯ B iff B ⊆ A is a partial order on P (N) but not a linear order. For
example, {1} ̸⪯ {2}, {2} ̸⪯ {1}.

• A ⪯′ B iff there is a bijection from A to B is not a partial order on P (N).
This is because {1} ⪯′ {2}, {2} ⪯′ {1} but {1} ≠ {2}.

• There is a linear order ⪯ on P (N) defined as follows:

– If A = B then A ⪯ B.

– If A ̸= B, let n be the smallest natural number that belongs to either
A or B but not the other. If n ∈ A then B ⪯ A, if n ∈ B then
A ⪯ B.

We can check that it is a linear order as follows:

– By construction, for any A ∈ P (N), A ⪯ A.

– Suppose A ̸= B, then there must be some natural number that be-
longs to either A or B but not the other. Let n be the smallest such
number, then if n ̸∈ A then B ̸⪯ A, if n ̸∈ B then A ̸⪯ B. Hence
A ⪯ B and B ⪯ A implies A = B.

– The argument above can also be used to show that A ⪯ B or B ⪯ A.

– Suppose A ⪯ B, B ⪯ C. If either A = B or B = C then A ⪯ C is
obvious. If A ̸= B, B ̸= C, let n be the smallest number that belongs
to either A or B but not the other, n′ be the smallest number that
belong to either B or C but not the other, then n ∈ B and n′ ̸∈ B,
hence n ̸= n′. Suppose n < n′, then n ∈ C, n ̸∈ A, and all natural
numbers less than n are either in all of A, B and C, or in none of the
three. Hence A ⪯ C. The case when n > n′ is analogous.

1.4.3 Equivalence relations

Definition 1.4.27. Let A be a set, an equivalence relation on A is a relation
∼ between A and A, that satisfies:

• For any a ∈ A, (a, a) ∈∼.
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• (a, b) ∈∼ iff (b, a) ∈∼.

• If (a, b) ∈∼, (b, c) ∈∼, then (a, c) ∈∼.

We usually write (a, b) ∈∼ as a ∼ b.

Example 1.4.28. • idA = {(a, a) : a ∈ A} is an equivalence relation.

• A×A is an equivalence relation.

• Let f : A → B be a map, then ∼f defined as a ∼f b iff f(a) = f(b) is an
equivalence relation.

Definition 1.4.29. When ∼ is an equivalence relation on a set A, the quotient
set is defined as

A/ ∼= {{b ∈ A : b ∼ a} : a ∈ A}

Here the set {b ∈ A : b ∼ a} is called the equivalence class containing (or
represented by) a, denoted as [a].

Example 1.4.30. • If ∼= idA, A/ ∼= {{a} : a ∈ A}

• If ∼= A×A, A/ ∼= {A}.

1.5 Cardinality

Definition 1.5.1. Let A and B be two sets. If there is a bijection from A to
B, we say that they have the same cardinality, denoted as |A| = |B|.

Definition 1.5.2. If there is an injection from A to B then we write |A| ≤ |B|.
If |A| ≤ |B| and |A| ≠ |B| we write |A| < |B|.

Remark 1.5.3. By AC, if both A and B are non-empty, there is an injection
from A to B would be equivalent to there is a surjection from B to A.

Theorem 1.5.4. Let A and B be two sets, then either |A| ≤ |B|, or |B| ≤ |A|.
Furthermore, if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

The proof of this theorem can be found in textbooks on logic or set theory.

Remark 1.5.5. Let A be any set, define equivalence relation ∼ on P (A) as
B ∼ C iff |B| = |C|. Then Theorem 1.5.4 implies that | · | ≤ | · | is a linear order
in P (A)/ ∼.

Example 1.5.6. |Z| = |N|. A bijection from Z to N can be defined as, for
example,

f(n) =

{
2n n ≥ 0

−2n− 1 n < 0

There isn’t a set with the largest possible cardinality, because of the following
theorem:
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Theorem 1.5.7. (Cantor’s diagonal argument) Let A be a set, then |A| <
|P (A)|.

Proof. The map a 7→ {a} is an injection from A to P (A), hence |A| ≤ |P (A)|.
Now we only need to prove that |A| ≠ |P (A)|. Suppose there is a bijection
f : A → P (A). Let B = {a ∈ A : a ̸∈ f(a)}. Because f is surjective, there
must be some b ∈ A such that B = f(b). If b ∈ B = f(b) by construction of B,
b ̸∈ B. If b ̸∈ B = f(b), by construction of B, b ∈ B. Both possibilities result in
contradiction. Hence such a bijection f can not exist.

Example 1.5.8. |P (N)| > |Z|.

1.5.1 Finite sets and infinite sets

Theorem 1.5.9. Let A be a set. The followings are equivalent:

1. There is a bijection between A and a proper subset of A.

2. There is an injection from N to A.

3. There isn’t a bijection from A to {x ∈ N : x < n}.

The proof is unrelated to analysis but we include it here as an illustration
of the mathematical induction.

Proof. 1 implies 3: Let f be a bijection from A to some B ⊊ A. Suppose
g : A → {x ∈ N : x < n} is a bijection, then g ◦ f ◦ g−1 is an injection from
{x ∈ N : x < n} to itself which is not a bijection. One can show that such
an injection can not exist by the “pigeon hole principle”, or by mathematical
induction as follows:

• If n = 0, the set {x ∈ N : x < n} = ∅, hence there can not be an injection
from this set to itself which is not a bijection.

• Suppose the statement is true for n = k, and there is an injection h from
{x ∈ N : x < k+ 1} to itself which is not a surjection. We will now define
a map h′ : {x ∈ N : x < k} → {x ∈ N : x < k} as

h′(j) =

{
h(k) h(j) = k

h(j) h(j) < k

If h(j) = k for some j < k, then injectivity of h would implies that h(k) <
k, hence h′ is well defined. It is also evident from definition that h′ is
injective. When k ∈ Range(h), Range(h′) = Range(h)∩{x ∈ N : x < k};
when k ̸∈ Range(h), Range(h′) = Range(h)\{h(k)}, hence in both cases
h′ can not be surjective, which contradicts with the inductive hypothesis.
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3 implies 2; Let C = {A\F : |F | = |{x ∈ N : x < n}| for some n ∈ N}.
Then 3 implies that ∅ ̸∈ C. By AC, there is a function c : C →

⋃
C = A

such that c(x) ∈ x. Pick a ∈ A, define f : N → A inductively as f(0) = a,
f(n + 1) = c(A\{f(k) : k ∈ N, k < n + 1}). This is an injection due to the
construction of c.

2 implies 1: Let f : N → A be an injection, then g : A → A\{f(0)} defined
as

g(a) =

{
a a ̸∈ Range(f)

f(n+ 1) a = f(n)

is a bijection.

Definition 1.5.10. If a set A satisfies any of the 3 conditions in Theorem 1.5.9,
we call it an infinite set. Otherwise we call it a finite set.

Definition 1.5.11. As shown in Theorem 1.5.9, a finite set A must have a
bijection to a set of the form {x ∈ N : x < n}. We can write |A| = n.

1.5.2 Countably infinite set

Definition 1.5.12. If |A| = |N|, we call A a countably infinite set. If
|A| > |N|, we call A an uncountable set.

Remark 1.5.13. The following sets are countably infinite:

• The set of integers.

• The set of prime numbers.

• N× N. A bijection from N× N to N can be defined as

(i, j) 7→ (i+ j)(i+ j + 1)/2 + i

• The union of countably many countably infinite sets.

• The Cartesian product of finitely many countably infinite sets.

• The set of finite subsets of a countably infinite set.

• Q.

• Set of polynomials with integer coefficients.

• Set of polynomials with rational coefficients.

12



2 Real Numbers

2.1 Ordered fields

Remark 2.1.1. Consider the set of rational numbers Q, with two functions
+ : Q×Q → Q and × : Q×Q → Q, and a linear order ≤. These three relations
satisfy the following properties:

• a+ b = b+ a, ab = ba.

• (a+ b) + c = a+ (b+ c), (ab)c = a(bc).

• a+ 0 = a, a× 1 = a.

• For any a ∈ Q, there is some −a ∈ Q such that (−a) + a = 0.

• If a ̸= 0, there is some a−1 ∈ Q, such that aa−1 = 1.

• a(b+ c) = ab+ ac.

• a ≤ b then a+ c ≤ b+ c.

• If 0 ≤ a, 0 ≤ b, then 0 ≤ ab.

Definition 2.1.2. A set F , with two distinct elements 0, 1 ∈ F , two functions
+,× : F×F → F , and a linear order ≤, is called an ordered field, if it satisfies
the conditions in the remark above. In other words,

• For any a, b ∈ F , a+ b = b+ a, a× b = b× a.

• For any a, b, c ∈ F , (a + b) + c = a + (b + c), (a × b) × c = a × (b × c),
a× (b+ c) = a× b+ a× c.

• For any a ∈ F , a+ 0 = a× 1 = a.

• For any a ∈ F , there is some −a ∈ F such that a + (−a) = 0. If a ̸= 0,
there is some a−1 ∈ F such that a× a−1 = 1.

• If a ≤ b then a+ c ≤ b+ c.

• If 0 ≤ a, 0 ≤ b then 0 ≤ a× b.

Remark 2.1.3. If a ≤ b and a ̸= b we write a < b.

Lemma 2.1.4. Let F be an ordered field, a, b ∈ F , then

• a ≤ b =⇒ −a ≥ −b.

• a > b > 0 =⇒ b−1 > a−1 > 0

Proof. • Add −a− b to both sides of the inequality a ≤ b.

• Firstly we show that a > 0 implies a−1 > 0.
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– Suppose a > 0 but a−1 = 0, then 0 = 0a = a−1a = 1, a contradiction.

– Suppose a > 0 but a−1 < 0, then −1 = −a−1 × a > 0, hence
1 = (−1) × (−1) > 0 but also 0 = (−1) + 1 > 0 + 1 = 1, also a
contradiction.

Now we only need to show that a > b > 0 implies b−1 > a−1. This is
because b−1 − a−1 = (a− b)(ab)−1 > 0.

Definition 2.1.5. Let F be an ordered field, a, b ∈ F , a < b. We can define
the concept of intervals:

(a, b) = {r ∈ F : a < r, r < b}

(a, b] = {r ∈ F : a < r, r ≤ b}

[a, b) = {r ∈ F : a ≤ r, r < b}

[a, b] = {r ∈ F : a ≤ r, r ≤ b}

The length of these intervals can be defined as b− a.

2.2 Least Upper Bound Property

Definition 2.2.1. We say that an ordered field F has the least upper bound
property, if for any non-empty subset A ⊆ F , if there is some m ∈ F such
that for all a ∈ A, a ≤ m, then there must be an element sup(A) ∈ F , called
the least upper bound or the supremum of A, that satisfies the following:

• For any a ∈ A, a ≤ sup(A).

• If m ∈ F satisfies that for any a ∈ A, a ≤ m, then sup(A) ≤ m.

Theorem 2.2.2. There is an ordered field with least upper bound property
that contains Q as a subfield (i.e. the 0 and 1 in this field are the 0 and 1 in Q,
+,×,≤ when restricted to Q are the same as those on Q. We call it the field
of real numbers, denoted as R.

The proof can be found in most analysis textbooks.

Remark 2.2.3. The field of real numbers is unique up to isomorphism. In
other words, given any two fields satisfying the Theorem above, there must be
a bijection between them that sends 0 to 0, 1 to 1, and preserves +,×,≤.

Remark 2.2.4. • Smallest upper bound property is equivalent to the “largest
lower bound property”, i.e. the fact that any non-empty subset with a
lower bound has a largest lower bound, denoted as inf(A).

• If the smallest upper bound of a non-empty set A exist, it must be unique.
Similarly for the largest lower bound.
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2.3 Archimedean property

Theorem 2.3.1. (Archimedean property) Let a, b ∈ R, a > 0, b > 0, then there
must be some n ∈ N such that na > b.

Proof. Suppose this is not true, then there are a, b > 0 such that na ≤ b for all
n ∈ N. Now consider the non-empty set S = {na : a ∈ N}, then b is an upper
bound of S, hence S must have a least upper bound m = sup(S). The fact that
m is an upper bound implies that for any n ∈ N, na ≤ m, hence (n+ 1)a ≤ m,
which implies na ≤ m − a. Hence m − a is another upper bound of S and
m− a < m, this is a contradiction.

Remark 2.3.2. Archimedean property is weaker than least upper bound prop-
erty. For example Q has the former but not the latter.

As a consequence, we have

Theorem 2.3.3. Any real number can be uniquely written as the sum of an
integer and a real number in [0, 1).

Proof. Firstly we show the uniqueness of this decomposition. Suppose x =
n + r = n′ + r′, n, n′ ∈ Z, r, r′ ∈ [0, 1), then n − n′ = r′ − r. However
r′ − r ∈ (−1, 1), n− n′ ∈ Z, hence n− n′ = 0, n = n′ and r = r′.

Now we show the existence of such a decomposition.

• Case 1: If x ∈ Z, then x = x+ 0.

• Case 2: If x > 0 and x ̸∈ Z, Theorem 2.3.1 implies that there must
be natural number larger than x. Let n be the smallest such natural
number, then n − 1 < x < n, x = (n − 1) + (x − n + 1), n − 1 ∈ Z,
x− n+ 1 ∈ (0, 1).

• Case 3: If x < 0 and x ̸∈ Z, then −x satisfies Case 2 above, hence
−x = n + r where n ∈ Z and r ∈ (0, 1). So x = (−n − 1) + (1 − r),
−n− 1 ∈ Z and 1− r ∈ [0, 1).

Remark 2.3.4. In the proof above we used the key property of N that any
non-empty subset has a smallest element. This is equivalent to mathematical
induction.

Remark 2.3.5. If x = n+ r, n ∈ Z and r ∈ [0, 1), we denote n as ⌊x⌋.

Theorem 2.3.6. (“Q is dense in R”) For any x ∈ R, any ϵ > 0, there is some
q ∈ Q ∩ (x− ϵ, x+ ϵ).

Proof. • If x = 0, then let q = 0.
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• If x > 0, by Theorem 2.3.1 there is a positive natural number n such that
n > 1/ϵ > 0. Hence 0 < 1/n < ϵ. Let m be the smallest natural number
such that m/n > x (m exists due to Theorem 2.3.1), then (m − 1)/n ≤
x < x + ϵ, and (m − 1)/n = m/n − 1/n > x − 1/n > x − ϵ. Hence
q = (m− 1)/n is in (x− ϵ, x+ ϵ) ∩Q.

• If x < 0, apply the Case above to −x, we can find some q ∈ (−x− ϵ,−x+
ϵ) ∩Q, hence −q ∈ (x− ϵ, x+ ϵ) ∩Q.

Remark 2.3.7. If a, b ∈ R, a < b, then apply the theorem above for x =
(a+ b)/2 and ϵ = (b− a)/2, we know that (a, b) ∩Q ̸= ∅.

Remark 2.3.8. As a consequence, the map from R to P (Q) defined as r 7→
{q ∈ Q : q ≤ r} is an injection. Hence |R| ≤ |P (Q)|.

2.4 Infinite Decimal Expansions

We will show that any real number in [0, 1) has an infinite decimal expansion.
More precisely:

Theorem 2.4.1. There is a bijection F , from real numbers in [0, 1), to the set

S = {a ∈ {0, 1, . . . , 9}N : for any n, there exists m > n, a(m) < 9}

defined as
x 7→ (n 7→ ⌊10(10nx− ⌊10nx⌋)⌋)

Proof. Step 1: Show that F is well defined. In other words, show that

(n 7→ ⌊10(10nx− ⌊10nx⌋)⌋) ∈ S

By construction,
10n − ⌊10n⌋ ∈ [0, 1)

10(10nx− ⌊10nx⌋) ∈ [0, 10)

Hence
⌊10(10nx− ⌊10nx⌋)⌋ ∈ {0, . . . , 9}

Next we need to show that the function (n 7→ ⌊10(10nx − ⌊10nx⌋)⌋) must
take values less than 9 infinite many times. To do so, we need the following
lemma:

Lemma 2.4.2. Let yn = 10nx− ⌊10nx⌋. Then for any n ∈ N,

yn+1 = 10yn − ⌊10yn⌋
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Proof. The definition of ⌊·⌋ implies that for any r ∈ R, any n ∈ Z,

⌊r + n⌋ = ⌊r⌋+ n

Hence
yn+1 = 10(10nx)− ⌊10(10nx)⌋

= 10(⌊10nx⌋+ yn)− ⌊10(⌊10nx⌋+ yn)⌋ = 10yn − ⌊10yn⌋

Now, suppose there is some x ∈ [0, 1), F(x) ̸∈ S. In other words, there is
some n0 ∈ N, such that for any m > n0, (F(x))(m) = 9. Lemma 2.4.2 implies
that if we define yn = 10nx− ⌊10nx⌋, then

ym+1 = 10ym − ⌊10ym⌋ = 10ym − (F(x))(m)

Hence, if (F(x))(m) = 9, then

1− ym+1 = 10(1− ym)

Hence we have 1− yn0+1 ∈ (0, 1] and

10k(1− yn0+1) = 1− yn0+1+k ∈ (0, 1]

for all k ∈ N, which contradicts with Theorem 2.3.1.

Step 2: Injectivity of F . Let x, x′ ∈ [0, 1), x < x′. Suppose F(x) = F(x′),
then if we define

yn = 10nx− ⌊10nx⌋

y′n = 10nx′ − ⌊10nx′⌋

Then Lemma 2.4.2 implies that

y′n+1 − yn+1 = 10(y′n − yn)− (⌊10y′n⌋ − ⌊10yn⌋)

= 10(y′n − yn)− ((F(x′))(n)− (F(x))(n)) = 10(y′n − yn)

Hence y′n − yn = 10n(y′0 − y0) = 10n(x′ − x) for all n ∈ N, while x′ − x > 0 and
y′n − yn ≤ 1. This contradicts with Theorem 2.3.1.

Step 3: Surjectivity of F . Given w ∈ S, let xw be the least upper bound of
the set

Aw =

{
m∑

n=0

w(n)

101+n
: n ∈ N

}
Given any k ∈ N, by assumption on S, there must be some k′ > k such that
w(k′) < 9. The fact that xw is an upper bound implies that

xw ≥
k∑

n=0

w(n)

101+n
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while the fact that xw is the smallest upper bound means that it can be no

larger than another upper bound of Aw which is
∑k

n=0
w(n)
101+n + 1

10k+1 − 1
101+k′ ,

hence

xw <

k∑
n=0

w(n)

101+n
+

1

10k+1

These two inequalities imply that (F(xw))(k) = w(k).

Remark 2.4.3. |S| ≤ |P (N)| because S is a subset of the power set N ×
{0, . . . , 9} which has the same cardinality as N. There is also an injection f :
P (N) → S defined as

(f(A))(n) =

{
1 n ∈ A

0 n ̸∈ A

Hence the cardinality of R, which is the same as the cardinality of [0, 1), is
|P (N)|.

Remark 2.4.4. The Remark above implies that there must be irrational num-
bers. Actually, Fermat’s Little Theorem implies that the infinite decimal ex-
pansion of any rational number must be eventually periodic.

2.5 Other Consequences of the Least Upper Bound Prop-
erty

Theorem 2.5.1. Let Ik = [ak, bk], k ∈ N, bk ≥ ak, be a sequence of finite
closed intervals in R that satisfies Ik+1 ⊆ Ik. Then

⋂
k∈N Ik ̸= ∅. Furthermore,

if for any ϵ > 0, there is some k such that bk − ak < ϵ, then
⋂

k∈N Ik consists of
a unique element.

Proof. Let A = {ak : k ∈ N}. For any j ∈ N, if a natural number k is no more
than j then ak ≤ aj ≤ bj , and if k > j then ak ≤ bk ≤ bj . Hence bj is an
upper bound of A. The smallest upper bound property implies that there must
be some real number m = sup(A). m is an upper bound of A implies m ≥ aj
for all j ∈ N, and the minimality of m among the upper bounds of A implies
m ≤ bj for all j ∈ N, hence m ∈ Ij for all j ∈ N.

Furthermore, suppose x, y ∈
⋂

k∈N Ik, then bj − ak ≥ y − x for all k ∈ N.
This proves the second part of the theorem.

Theorem 2.5.2. Let a < b be two real numbers, I = [a, b]. Let C be a set of
open intervals such that I ⊆

⋃
C. Then there must be a finite subset C ′ ⊆ C

such that I ⊆
⋃
C ′.

Proof. Firstly, by intersecting with (a− 1, b+1), we can assume all intervals in
C are of finite length without loss of generality. In other words, any element in
C is of the form (c, d) where d > c.
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Assume the Theorem is not true, then there is an infinite set of finite open
intervals C, such that I ⊆

⋃
C but any finite subset C ′ of C, I ̸⊆ C ′. We call

an interval J to have property (∗) if J ⊆
⋃
C and J ̸⊆

⋃
C ′ for any finite subset

C ′ of C. Now we define a sequence of closed intervals inductively as below:

• I0 = I.

• Let In = [an, bn]. If [an, (an + bn)/2] satisfies property (∗), then In+1 =
[an, (an + bn)/2]. Otherwise In+1 = [(an + bn)/2, bn]

Now we use induction to show that all In satisfy property (∗). I0 = I
satisfies (∗) is by assumption. If Ik = [ak, bk] satisfies property (∗) and Ik+1

doesn’t, by construction the only possibility can only be that [ak, (ak + bk)/2]
doesn’t satisfy property ∗ and Ik+1 = [(ak + bk)/2, bk]. Let C

′ be a finite subset
of C such that [ak, (ak + bk)/2] ⊆

⋃
C ′, C ′′ a finite subset of C such that

Ik+1 = [(ak + bk)/2, bk] ⊆
⋃
C ′′, then

Ik = [ak, (ak + bk)/2] ∪ Ik+1 =
⋃

(C ′ ∪ C ′′)

and C ′ ∪ C ′′ is a finite subset of C, which contradicts with the inductive hy-
pothesis that Ik satisfies property (∗).

Now apply Theorem 2.5.1 to {In}, we get some x ∈
⋂

n∈N In. Let J =
(c, d) ∈ C be an open interval that contains x, let r = min(d − x, x − c), then
r > 0, hence there must be some N ∈ N such that 2N ϵ > b−a. Because IN is an
interval that contains x and has length 2−N (b− a) < r, In ⊆ (x− r, x+ r) ⊆ J ,
in other words IN ⊆

⋃
{J}, which contradicts with the fact that IN satisfies

property (∗).

Theorem 2.5.3. Let I = [a, b] be a finite closed interval, Y ⊆ I an infinite
subset, then there must be some x ∈ I such that for any ϵ > 0, Y ∩ (x− ϵ, x+ ϵ)
is an infinite set.

Proof. Suppose this is not true, then there is some closed interval I = [a, b],
some infinite set Y ⊆ I, such that for any x ∈ I, there is some rx such that
Y ∩ (x − rx, x + rx) is a finite set. Because I ⊆

⋃
x∈I(x − rx, x + rx), apply

Theorem 2.5.2 we get that there must be finitely many x1, . . . , xn ∈ I such that
[a, b] =

⋃n
i=1(xi − rxi

, xi + rxi
). Hence

Y =

n⋃
i=1

(Y ∩ (xi − rxi
, xi + rxi

))

is the union of finitely many finite set, hence must be a finite set, which is a
contradiction.
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2.6 Extended Real Numbers

Definition 2.6.1. The extended real number system is the set R∪{±∞},
with a linear order where ∞ is defined as the largest and −∞ as the smallest.
We sometimes also use the following conventions for arithmetic involving ±∞.
Here a ∈ R.

• a+ (±∞) = ±∞.

• a
±∞ = 0.

• If a > 0, a× (±∞) = ±∞. If a < 0, a× (±∞) = ∓∞.

Remark 2.6.2. The linear order on R ∪ {±∞} enables us to write infinite
intervals, for example (−∞, a] = {r ∈ R : r ≤ a}.

Remark 2.6.3. The least upper bound property on R implies the least upper
bound property on R ∪ {±∞}. So we can extend the definition of sup and inf
as follows:

• If a subset A doesn’t have an upper bound, we can write sup(A) = ∞.

• If a subset A doesn’t have a lower bound, we can write inf(A) = −∞.

Remark 2.6.4. We can also consider sets like Z ∪ {±∞} or N ∪ {∞}.
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3 Metric Spaces

3.1 Definition and Examples

Definition 3.1.1. A metric space is a pair (X, d), where X is a set and d is
a function d : X ×X → [0,∞), such that for any p, q, r ∈ X,

• d(p, q) = 0 iff p = q.

• (Symmetry) d(p, q) = d(q, p).

• (Triangle Inequality) d(p, q) + d(q, r) ≥ d(p, r).

This function d is called the metric or distance function.

Remark 3.1.2. When (X, d) is a metric space, we can also write “X is a metric
space with metric (or distance function) d”.

Definition 3.1.3. Let (X, d) be a metric space.

• The diameter of X is defined as

diam(X) = sup({d(x, y) : x, y ∈ X})

If the range of d doesn’t have upper bound we say the diameter is ∞. If
diam(X) is finite we also call it bounded.

• A closed ball centered at x ∈ X with radius r > 0 is the set

{y ∈ X : d(x, y) ≤ r}

• An open ball centered at x ∈ X, with radius r > 0, denoted as BX(x, r)
(or B(X,d)(x, r) when we want to specify the metric), is the set

BX(x, r) = {y ∈ X : d(x, y) < r}

Example 3.1.4. 1. Let X be a non-empty set,

d(p, q) =

{
0 p = q

1 p ̸= q

Then (X, d) is a metric space. This d is called the discrete metric.

2. R with Euclidean metric d(x, y) = |x− y| is a metric space.

3. Rn with Euclidean metric

d((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

is a metric space.
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4. Let S be a finite set, (P (S), (A,B) 7→ |A\B|+ |B\A|) is a metric space.

Remark 3.1.5. When we discuss R or Rn as metric spaces and do not explicitly
specify the metric, we always assume the Euclidean metric.

Remark 3.1.6. If (X, d) is a metric space, A ⊆ X, then (A, d|A×A) is also a
metric space, which we call a subspace.

Remark 3.1.7. It is evident, by triangle inequality, that an open ball or a
closed ball with radius r has diameter no more than 2r.

Theorem 3.1.8. If (X, d) is a metric space, g : [0,∞) → [0,∞) satisfies

• g(t) = 0 ⇐⇒ t = 0

• t ≤ t′ =⇒ g(t) ≤ g(t′)

• g(t+ t′) ≤ g(t) + g(t′)

Then (X, g ◦ d) is also a metric space.

Proof. • g(d(x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y

• d(x, y) = d(y, x), hence g(d(x, y)) = g(d(y, x)).

• d(x, z) ≤ d(x, y)+d(y, z), hence g(d(x, z)) ≤ g(d(x, y)+d(y, z)) ≤ g(d(x, y))+
g(d(y, z)).

Example 3.1.9. (R, (x, y) 7→ min(1, |x − y|)) and (R, (x, y) 7→ |x−y|
1+|x−y| ) are

both metric spaces with diameter 1.

Theorem 3.1.10. If (X, d) and (Y, d) are two metric spaces, let dsup : (X ×
Y )× (X × Y ) → [0,∞) be defined as

dsup((x, y), (x
′, y′)) = max(d(x, x′), d′(y, y′))

Then (X × Y, dsup) is a metric space. dsup is called the sup metric.

Proof. • For any x, x′ ∈ X, y, y′ ∈ Y ,

dsup((x, y), (x
′, y′)) = 0 ⇐⇒ max(d(x, x′), d′(y, y′)) = 0

⇐⇒ d(x, x′) = d′(y, y′) = 0 ⇐⇒ x = x′ and y = y′ ⇐⇒ (x, y) = (x′, y′)

• For any x, x′ ∈ X, y, y′ ∈ Y ,

dsup((x, y), (x
′, y′)) = max(d(x, x′), d′(y, y′))

= max(d(x′, x), d′(y′, y)) = dsup((x
′, y′), (x, y))
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• For any x1, x2, x3 ∈ X, y1, y2, y3 ∈ Y , for i = 1, 2,

d(xi, xi+1) ≤ max(d(xi, xi+1), d
′(yi, yi+1)) ≤ dsup((xi, yi), (xi+1, yi+1))

d′(yi, yi+1) ≤ max(d(xi, xi+1), d
′(yi, yi+1)) ≤ dsup((xi, yi), (xi+1, yi+1))

So

d(x1, x2) + d(x2, x3) ≤ dsup((x1, y1), (x2, y2)) + dsup((x2, y2), (x3, y3))

d′(y1, y2) + d′(y2, y3) ≤ dsup((x1, y1), (x2, y2)) + dsup((x2, y2), (x3, y3))

Hence
dsup((x1, y1), (x3, y3)) = max(d(x1, x3), d

′(y1, y3))

≤ max(d(x1, x2) + d(x2, x3), d
′(y1, y2) + d′(y2, y3))

≤ dsup((x1, y1), (x2, y2)) + dsup((x2, y2), (x3, y3))

Example 3.1.11. Repeatedly apply Theorem 3.1.10 to (R, (x, y) 7→ |x − y|),
we have (Rn, dsup) where

dsup((x1, . . . , xn), (y1, . . . , yn)) = max{|xi − yi| : i = 1, . . . , n}

is a metric space.

Theorem 3.1.12. Let S be a non-empty set, (X, d) a metric space. Define

BF (S,X) = {f ∈ Map(S,X) : diam(f(S)) < ∞}

Then BF (S,X) is a metric space under the sup metric

dsup(f, g) = sup({d(f(s), g(s)) : s ∈ S})

Proof. • dsup is well defined, because the non-emptyness of S implies that
{d(f(s), g(s)) : s ∈ S} is non-empty, and if we pick s0 ∈ S, then this set
is bounded from above by

diam(f(S)) + d(f(s0), g(s0)) + diam(g(S)) < ∞

Hence dsup exists due to smallest upper bound property.

• dsup(f, g) = 0 iff for all s ∈ S, d(f(s), g(s)) = 0 iff f = g.

• dsup(f, g) = sup({d(f(s), g(s)) : s ∈ S}) = sup({d(g(s), f(s)) : s ∈ S}) =
dsup(g, f).
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• For any f1, f2, f3 ∈ BF (S,X), for any s ∈ S, i = 1, 2, the definition of
dsup implies that

d(fi(s), fi+1(s)) ≤ dsup(fi, fi+1)

Hence for any s ∈ S,

d(f1(s), f3(s)) ≤ d(f1(s), f2(s))+d(f2(s), f3(s)) ≤ dsup(f1, f2)+dsup(f2, f3)

In other words, dsup(f1, f2)+dsup(f2, f3) is an upper bound of {d(f1(s), f3(s)) :
s ∈ S}, hence dsup(f1, f2)+dsup(f2, f3) ≥ sup({d(f1(s), f3(s)) : s ∈ S}) =
dsup(f1, f3).

Remark 3.1.13. As one can see from the examples above, a set can have many
different metrics. For example Rn can have the discrete metric, the sup metric
(Example 3.1.11), the Euclidean metric. and many more.

3.2 Open Sets and Closed Sets

3.2.1 Definition and Examples

Definition 3.2.1. Let (X, d) be a metric space.

• A subset A ⊆ X is called open, if for any a ∈ A, there is some ra > 0
such that the open ball BX(a, ra) is a subset of A.

• A subset A ⊆ X is called closed, if X\A is open.

Remark 3.2.2. The definition of closed set above can also be rewritten as: A ⊆
X is closed iff for any x ∈ X\A, there is some rx > 0 such that BX(x, rx)∩A = ∅.

Remark 3.2.3. The “openness” or “closedness” of a set depends on the follow-
ing data: the metric space X. the metric d on X, and the subset A ⊆ X. For
example, (0, 1] is not open in R with Euclidean metric but is open in R with dis-
crete metric, and is also open in (−∞, 1] with Euclidean metric (x, y) 7→ |x−y|.

Example 3.2.4. If (X, d) is a metric space, then X and ∅ are both open and
closed.

Example 3.2.5. If (X, ddisc) is a metric space with discrete metric, then any
subset of X is both open and closed.

Theorem 3.2.6. Any open ball is open.

Proof. Let (X, d) be a metric space, x ∈ X, r > 0. For any p ∈ BX(x, r), let
r′ = r − d(x, p) > 0, then for any q ∈ BX(p, r′),

d(q, x) ≤ d(q, p) + d(p, x) < r′ + d(x, p) = r

Hence BX(p, r′) ⊆ BX(x, r).
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Theorem 3.2.7. Any closed ball is closed. The set consisting of a single point
is closed.

Proof. Let x be a point in metric space (X, d), r > 0, let B be the closed
ball centered at x with radius r. For any y ∈ X\B, by definition of closed
balls d(x, y) > r, hence triangle inequality implies BX(y, d(x, y) − r) ∩ B = ∅.
Similarly, for any x ∈ X, any y ∈ X\{x}, BX(y, d(x, y)) ∩ {x} = ∅.

3.2.2 Basic Properties

Theorem 3.2.8. The union of a set of open sets is open.

Proof. Let (X, d) be a metric space, C a set of open sets. For any x ∈
⋃

U ,
there is some U ∈ C such that x ∈ U and U is also open, hence there is some
r > 0 such that BX(x, r) ⊂ U ⊆

⋃
C.

Remark 3.2.9. An immediate consequence of Theorem 3.2.8 is that intersec-
tion of any non-empty set of closed sets is closed.

This enables us to define the following:

Definition 3.2.10. Let (X, d) be a metric space, A ⊆ X. We define

• The closure of A as A =
⋂
{V ⊆ X : V closed, A ⊆ V }.

• The interior of A as A◦ =
⋃
{U ⊆ X : U open, U ⊆ A}.

• The boundary set of A as ∂A = A\A◦.

• A point in the interior is called an interior point, a point in the boundary
set is called a boundary point.

Remark 3.2.11. • A is the smallest closed set that has A as a subset. A◦

is the largest open set that is a subset of A.

• X\A◦ = X\A, ∂A = A ∩X\A.

• One can characterize these sets with open balls as follows:

– p ∈ A iff for any r > 0, BX(p, r) ∩A ̸= ∅.
– p ∈ A◦ iff there is some r > 0, BX(p, r) ⊆ A.

– p ∈ ∂A iff for any r > 0, BX(p, r) ∩A ̸= ∅, BX(p, r) ∩ (X\A) ̸= ∅.

Theorem 3.2.12. The intersection of finitely many open sets is open.

Proof. Let Ui, i = 1, 2, . . . , n be finitely many open subsets of metric space
(X, d). Let U =

⋂n
i=1 Ui. For every p ∈ U , for every i = 1, 2, . . . , n, there

is ri > 0 such that BX(p, ri) ⊆ Ui. Hence if we set r = min(ri) > 0 then
BX(p, r) ⊆ U .
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Remark 3.2.13. As a consequence of Theorem 3.2.12, the union of finitely
many closed sets must be closed. In particular, any finite subset of a metric
space is closed.

Remark 3.2.14. The intersection of infinitely many open sets may not neces-
sarily be open. For example, {x} =

⋂∞
n=1 BX(p, 1/n) but in general {x} is not

always open.

Example 3.2.15. The closure of an open ball of radius r is not necessarily
the closed ball of radius r. For example, consider X = (−∞, 0] ∪ [1,∞) with
Euclidean metric, BX(1, 1) = [1, 2), its closure is [1, 2], but the closed ball
centered at 1 with radius 1 is {0} ∪ [1, 2].

Theorem 3.2.16. A subset of a metric space (X, d) is open iff it is a union of
open balls.

Proof. Theorem 3.2.6 and Theorem 3.2.8 implies that union of open balls is
open. If A ⊆ X is open, for every x ∈ A, there is some rx > 0 such that
BX(x, rx) ⊆ A. Hence A =

⋃
x∈A B(x, rx).

3.2.3 Openness in subspaces

An application of Theorem 3.2.16 is the following:

Theorem 3.2.17. If (X, d) is a metric space, (Y, d|Y×Y ) a subspace, A ⊆ Y is
open in Y iff there is some open set A′ in X such that A = A′ ∩ Y . Similarly,
A ⊆ Y is closed in Y iff there is some closed set A′ in X such that A = A′ ∩ Y .

Proof. For any y ∈ Y , any r > 0

BY (y, r) = {p ∈ Y : d(y, p) < r} = Y ∩ {p ∈ X : d(y, p) < r} = Y ∩BX(y, r)

If A is open in Y , for every a ∈ A there is some ra > 0 such that BY (a, ra) ⊆ A.
Let A′ =

⋃
a∈A BX(a, ra), then A′ is open in X by Theorem 3.2.16 and A′∩Y =⋃

a∈A(BX(a, ra) ∩ Y ) =
⋃

a∈A BY (a, ra) = A. The statement about closed sets
follows from the one about open sets.

3.2.4 Denseness

Definition 3.2.18. A subset A ⊆ X is called dense if any non-empty open
subset of X has non-empty intersection with A.

Remark 3.2.19. If A ⊆ B ⊆ X and A is a dense subset of B under subspace
metric, we can also say “A is dense in B”.

Example 3.2.20. Theorem 2.3.6 shows that Q is dense in R under Euclidean
metric.

Remark 3.2.21. Remark 3.2.11 implies that A is always dense in A. Actually,
we have A =

⋃
{B ⊆ X : A ⊆ B,A is dense in B}.

26



3.2.5 Open sets and closed sets in R

In this section we will only focus on metric space R under Euclidean metric
d(x, y) = |x− y|. It is easy to see that BR(x, r) = (x− r, x+ r). Hence we have:

Lemma 3.2.22. Any finite open interval of the form (a, b), where b > a, or any
infinite open interval of the form (−∞, a), (a,∞) or (−∞,∞), must be open.

Proof. By Theorem 3.2.16 we only need to write them into unions of open balls:

• (a, b) = BR((a+ b)/2, (b− a)/2).

• (−∞, a) =
⋃

n∈N BR(a− n− 1, n+ 1).

• (a,∞) =
⋃

n∈N BR(a+ n+ 1, n+ 1).

• (−∞,∞) =
⋃

n∈N BR(0, n+ 1).

Remark 3.2.23. A consequence of Lemma 3.2.22 is that any (finite or infinite)
closed interval must be closed.

Theorem 3.2.24. If A ⊆ R is non-empty and sup(A) < ∞, then

• If A is open then sup(A) ̸∈ A.

• If A is closed then sup(A) ∈ A.

Proof. • Suppose A is open and sup(A) ∈ A, then there is some r > 0
such that (sup(A) − r, sup(A) + r) ⊆ A, hence sup(A) + r/2 ∈ A and
sup(A) + r/2 > sup(A), a contradiction.

• Suppose A is closed and sup(A) ̸∈ A, then A ⊆ (−∞, sup(A)). The
closedness of A implies that there is some r > 0 such that (sup(A) −
r, sup(A)+r)∩A = ∅, hence (sup(A)−r,∞)∩A = ((sup(A)−r, sup(A)+
r) ∩ [sup(A),∞)) ∩ A = ∅, sup(A) − r is an upper bound of A which is
smaller than sup(A), a contradiction.

Remark 3.2.25. Replacing sup with inf in Theorem 3.2.24 is still true, the
proof is almost identical.

Theorem 3.2.26. A subset A of R is open under Euclidean metric iff it is the
disjoint union of finitely many or countably infinitely many (finite or infinite)
open intervals. More precisely, if A is open then A =

⋃
C, where elements in C

are open intervals, |C| ≤ |N|, and for any two I, I ′ ∈ C, if I ̸= I ′ then I∩I ′ = ∅.

Proof. The “if” part follows from Lemma 3.2.22 and Theorem 3.2.8. We will
now focus on the “only if” part.
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Step 1: Build the set C. For every a ∈ A, consider V = [a,∞)\A and
V ′ = (−∞, a]\A. If V = ∅ set Ma = ∞, otherwise Ma = inf(V ). If V ′ = ∅ set
ma = −∞, otherwise ma = sup(V ′). And let C = {(ma,Ma) : a ∈ A}.

Step 2: Show that A ⊆
⋃

C. Because A is open, for every a ∈ A,
there is some r > 0 such that (a − r, a + r) ⊆ A. Hence V = [a,∞)\A ⊆
[a,∞)\(a− r, a+ r) = [a+ r,∞), which implies that Ma ≥ a+ r > a, Similarly
we can show that ma < a, hence a ∈ (ma,Ma), which implies A ⊆

⋃
C.

Step 3: Show that
⋃
C ⊆ A. To show this we only need to show that for

every a ∈ A, (ma,Ma) ⊆ A. Let y be any element in R\A, because a ∈ A, y < a
or y > a. If y > a then y ∈ V , V ̸= ∅, hence Ma = inf(V ) ≤ y, y ̸∈ (ma,Ma).
The case when y < a is analogous. Hence (ma,Ma)∩ (R\A) = ∅, in other words
(ma,Ma) ⊆ A.

Step 4: Show that ma,Ma ̸∈ A. This follows from Theorem 3.2.24.

Step 5: Show that if I, I ′ ∈ C, I ̸= I ′, then I ∩ I ′ = ∅. Suppose
(ma,Ma) ∩ (mb,Mb) ̸= ∅, let y be an element in their intersection. Suppose
ma < mb, then mb ∈ (ma, y) ⊆ (ma,Ma) ⊆ A, the last ⊆ due to Step 3.
However mb ̸∈ A due to Step 4, which is a contradiction. Similarly mb < ma,
Ma < Mb or Mb < Ma are all impossible, hence (ma,Ma) = (mb,Mb).

Step 6: Show that |C| ≤ |N|. For every I ∈ C we can pick some qi ∈ I ∩Q,
then I 7→ qI is an injection from C to Q.

Remark 3.2.27. Open subsets of R can be complicated, for example, let i be
any bijection from N to Q, then U =

⋃
n∈N(i(n) − 2−n, i(n) + 2−n) is a dense

open set in R but the total length of the disjoint open intervals that form U is
no more than 4.

3.3 Continuity

3.3.1 Definitions and Basic Examples

Definition 3.3.1. Let (X, d) and (Y, d′) be two metric spaces, f : X → Y a
map.

• We call f to be continuous if for any open set U ⊆ Y , its preimage
f−1(U) = {x ∈ X : f(x) ∈ U} is open in X.

• We call f to be continuous at x ∈ X if for any open set U ⊆ Y , if
f(x) ∈ U , then there is an open set V ⊆ X such that x ∈ V and f(V ) ⊆ U .

Remark 3.3.2. The definition of continuity above is equivalent to “preimages
of closed sets are closed”.

Example 3.3.3. • Constant maps are continuous.
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• Any map from a metric space with discrete metric to another metric space
is continuous.

• Identity map is continuous as a map from (X, d) to (X, d). However, if
d ̸= d′, idX is not necessarily continuous as a map from (X, d) to (X, d′).
For example X = R, d is the Euclidean metric and d′ the discrete metric.

• If (X, d) is a metric space, A ⊆ X, the inclusion map is continuous as a
map from (A, d|A×A) to (X, d).

• If (X, d), (Y, d′) are metric spaces, the map (x, y) 7→ x is continuous from
(X × Y, dsup) to (X, d). Here dsup is as defined in Theorem 3.1.10.

• If (X, d) is a metric space, S a non-empty set, s ∈ S, then fs : f 7→ f(s) is
continuous from (BF (S,X), dsup) as defined in Theorem 3.1.12 to (X, d).

Remark 3.3.4. From definition, it is evident that compositions of continuous
maps must be continuous. And if f : X → Y is continuous at x ∈ X, g : Y → Z
continuous at f(x), then g ◦ f is continuous at x. As a consequence, we have

• If f : X → Y is continuous, Z ⊆ X a subspace, then f |Z : Z → Y is
continuous as well.

• Let f : X → Y , f(X) ⊆ Z ⊆ Y , then f seen as a map from X to Y is
continuous iff it is continuous as a map from X to Z. Here the “only if”
part follows from Theorem 3.2.17.

3.3.2 Localness and ϵ− δ

Theorem 3.3.5. f : X → Y is a continuous map from metric space (X, d) to
metric space (Y, d′) iff it is continuous at every x ∈ X.

Proof. Suppose f is continuous, then for every x ∈ X, every U ⊆ Y that
contains f(x), f−1(U) is an open set in X that contains x and f(f−1(U)) ⊆ U .
Hence f is continuous at x. On the other hand, if for every x ∈ X, f is
continuous at x, then for any open set U ⊆ Y , for any x ∈ f−1(U), f(x) ∈ U ,
hence there is an open set Vx in X such that x ∈ Vx and f(Vx) ⊆ U , which
implies Vx ⊆ f−1(U). This implies that f−1(U) =

⋃
x∈f−1(U) Vx, hence f−1(U)

must be open due to Theorem 3.2.8.

Remark 3.3.6. It is evident from definition, that if U ⊆ X is open, x ∈ U ,
then f is continuous at x iff f |U is continuous at x. Hence, if X =

⋃
C and C is

a set of open subsets in X, then f : X → Y is continuous iff f |U is continuous
for all U ∈ C.

Example 3.3.7. A map f : X → Y is called locally constant if for every
x ∈ X, there is an open set U containing x such that f |U is constant. Remark
3.3.6 implies that any locally constant function is continuous.

Definition 3.3.8. Let f : X → Y be a map, A ⊆ X, we say f is continuous
on A iff f is continuous at every a ∈ A.

29



Theorem 3.3.9. f : X → Y is continuous at x ∈ X iff for any ϵ > 0, there is
some δ > 0, such that f(BX(x, δ)) ⊆ BY (f(x), ϵ).

Proof. Firstly we prove the “only if” part. Suppose f is continuous at x,
the open ball BY (f(x), ϵ) is an open set (due to Theorem 3.2.6) that con-
tains f(x), hence there must be an open set V ⊆ X containing x such that
f(V ) ⊆ BY (f(x), ϵ). The openness of V implies that there must be some δ > 0
such that BX(x, δ) ⊆ V , hence f(BX(x, δ)) ⊆ BY (f(x), ϵ).

Now we prove the “if” part. Let U be an open set containing f(x), there is
some ϵ > 0 such that BY (f(x), ϵ) ⊆ U . By assumption there is some δ > 0 such
that f(BX(x, δ)) ⊆ BY (f(x), ϵ) ⊆ U , and BX(x, δ) is open due to Theorem
3.2.6.

An immediate consequence of Theorem 3.3.9 and Theorem 3.3.5 is the fol-
lowing:

Theorem 3.3.10. Amap f from (X, d) to (Y, d′) is continuous iff for any x ∈ X,
for any ϵ > 0, there is some δ > 0 such that for any x′ ∈ X, if d(x, x′) < δ then
d′(f(x), f(x′)) < ϵ.

Remark 3.3.11. A consequence of Theorem 3.3.10 is that if a map from (X, d)
to (Y, d′) is Lipschitz (or L-Lipschitz), i.e. there is some L > 0, such that for
any x, y ∈ X, d′(f(x), f(y)) ≤ Ld(x, y), then it is continuous. In particular, if
d and d′ are two metrics on X, and there is some c > 0 such that d′ ≤ cd, then
idX as a map from (X, d) to (X, d′) is continuous.

Example 3.3.12. The identity map as a map from (Rn, dEuclid) to (Rn, dsup)
is 1-Lipschitz, its inverse is

√
n-Lipschitz, hence both are continuous.

Definition 3.3.13. If a bijection between two metric spaces and its inverse are
both continuous we say it is a homoemorphism.

Example 3.3.14. • Let (X, d) be a metric space, x ∈ X, then the function
dx : X → R defined as dx(y) = d(x, y) is 1-Lipschitz hence continuous.

• Let (X, d) be a metric space, the function (x, y) 7→ d(x, y) from (X ×
X, dsup) to R is 2-Lipschitz, hence continuous.

3.3.3 Real Valued Continuous Functions

The continuity of maps to R can often be established via Theorem 3.3.10, Re-
mark 3.3.11, or the following theorem:

Theorem 3.3.15. A function f from a metric space (X, d) to R is continuous
iff f−1((−∞, a)) and f−1((a,∞)) are both open in X for all a ∈ R.
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Proof. By Theorem 3.2.16, any open subset of R can be written as a union of
open balls of the form (x− r, x+ r) for some x ∈ R, r > 0. Hence the Theorem
follows from the fact that (x− r, x+ r) = (−∞, x+ r)∩ (x− r,∞) and Theorem
3.2.8 and Theorem 3.2.12.

Example 3.3.16. Consider function sin : R → R.

| sin(a)− sin(b)| = |2 sin((a− b)/2) cos((a+ b)/2)| ≤ |a− b|

Hence it is 1-Lipschitz hence continuous.

Example 3.3.17. We can also use these to show that sums, products and
quotients of continuous functions are continuous. For example, if (X, d) is a
metric space and f, g : X → R are both continuous, we will show that so is fg:

• Proof 1: Let x ∈ X, for any ϵ > 0, let ϵ′ = min( ϵ
|f(x)|+|g(x)|+1 , 1). Because

f is continuous, there is some δ1 > 0 such that f(BX(x, δ1)) ⊆ (f(x) −
ϵ′, f(x) + ϵ′). Similarly, there is some δ2 > 0 such that g(BX(x, δ2)) ⊆
(g(x) − ϵ′, g(x) + ϵ′). Let δ = min(δ1, δ2) > 0, then for any x′ ∈ X, if
d(x, x′) < δ, we have

|f(x)g(x)− f(x′)g(x′)|

≤ |f(x)− f(x′)||g(x)|+ |f(x)||g(x)− g(x′)|+ |f(x)− f(x′)||g(x)− g(x′)|

<
ϵ|g(x)|

|f(x)|+ |g(x)|+ 1
+

ϵ|f(x)|
|f(x)|+ |g(x)|+ 1

+
ϵ

|f(x)|+ |g(x)|+ 1
= ϵ

• Proof 2: Let Ua = {x ∈ X : f(x)g(x) > a}, La = {x ∈ X : f(x)g(x) <
a}. We only need to show that for all a ∈ R, Ua and La are both open.

– When a = 0:

U0 = (f−1((0,∞)) ∩ g−1((0,∞))) ∪ (f−1((−∞, 0)) ∩ g−1((−∞, 0)))

L0 = (f−1((0,∞)) ∩ g−1((−∞, 0))) ∪ (f−1((−∞, 0)) ∩ g−1((0,∞)))

– When a > 0:

Ua = (
⋃
s>0

(f−1((s,∞)) ∩ g−1((a/s,∞))))

∪(
⋃
s<0

(f−1((−∞, s)) ∩ g−1((−∞, a/s))))

La = L0 ∪ (
⋃
s>0

(f−1((−s, s)) ∩ g−1((−a/s, a/s))))

– The case when a < 0 is similar.

There is a key property for continuous functions on R:
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Theorem 3.3.18. (Intermediate Value Property) If f : [a, b] → R is a
continuous map, f(a) < m < f(b) or f(b) < m < f(a), then there is some
c ∈ (a, b) where f(c) = m.

Proof. We only prove the case when f(a) < m < f(b) as the other case is
completely analogous. Let g : R → R be defined as

g(x) =


f(a) x ≤ a

f(b) x ≥ b

f(x) a < x < b

Then g is also continuous, which can be shown either with Theorem 3.3.10 or by
writing g as the composition of f and a 1-Lipschitz map x 7→ min(b,max(a, x)).

Let c = sup(g−1((−∞,m])). Then because g−1((−∞,m]) is closed, Theorem
3.2.24 implies that c ∈ g−1((−∞,m]), hence g(c) ≤ m. If g(c) < m, then c ≤
sup(g−1((−∞,m))) ≤ sup(g−1((−∞,m])) = c, hence c = sup(g−1((−∞,m))).
But g−1((−∞,m)) is open, this contradicts with Theorem 3.2.24.

3.4 Compactness

3.4.1 Definition and Basic Properties

Definition 3.4.1. A metric space X is called compact, if for any set C of
open subsets that satisfies

⋃
C = X, there is a finite subset C ′ ⊆ C such that⋃

C ′ = X.

Remark 3.4.2. A set of open sets whose union is X is called an open cover of
X. Hence, the definition above can be stated as “every open cover has a finite
subcover”.

Example 3.4.3. A discrete metric space (X, ddisc) is compact iff X is a finite
set.

Theorem 3.4.4. A metric space (X, d) is compact iff any set C of open balls
whose unions is X has a finite subset C ′ whose union is X.

Proof. The “only if” part is due to the fact that open balls are open. For
the “if” part, let C1 be any open cover of X, for every x ∈ X, there is some
Ux ∈ C1 such that x ∈ Ux, hence there is some rx > 0 such that BX(x, rx) ⊆ Ux,
and {BX(x, rx)} is now a set of open balls whose union is X. By assumption,
there are finitely points x1, . . . , xn ∈ X such that X =

⋃n
i=1 BX(xi, rxi

), hence
{Ux1

, . . . , Uxn
} is a finite subcover of C1.

Example 3.4.5. Theorem 3.4.4 and Theorem 2.5.2 implies that finite closed
intervals are compact.

Theorem 3.4.6. Any compact metric space has finite diameter.
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Proof. Let x be a point in a compact metric space (X, d). Let C = {Bi : i ∈ N},
where Bi = BX(x, i+ 1). Then X =

⋃
C due to Theorem 2.3.1, hence there is

a finite subset C ′ = {Bi1 , . . . , Bin} ⊆ C such that X =
⋃

C ′ = Bmax(i1,...,in),
hence diam(x) ≤ 2 + 2max(i1, . . . , in) due to Remark 3.1.7.

Theorem 3.4.7. If (X, d) is a metric space, A ⊆ X. Then if A under subspace
metric is compact then A is closed in X.

Proof. We only need to show that for any p ∈ X\A, there is some r > 0 such
that A∩BX(p, r) = ∅. If this is not true, let Un = {q ∈ A : d(q, p) > 1

n+1}, then
C = {Un : n ∈ N} is an open cover of A that does not have a finite subcover.

3.4.2 Compactness of images and subsets

Theorem 3.4.8. If f : X → Y is continuous, X is compact, then so is f(X).

Proof. Let C be an open cover of f(X). Because the map f : X → f(X)
is continuous, {f−1(U) : U ∈ C} is an open cover of X. Compactness of X
implies that there are f−1(U1), . . . , f

−1(Un) whose union is X, hence f(X) =⋃n
i=1 Ui.

As an application we have:

Theorem 3.4.9. Let (X, d) be a non-empty compact metric space, f : X → R
a continuous function. Then f reaches its maximum and minimum, i.e. there
are xm, xM ∈ X such that for any x′ ∈ X, f(xm) ≤ f(y) ≤ f(xM ).

Proof. By Theorem 3.4.8, f(X) is compact. By Theorem 3.4.6 it has supre-
mum and infimum. By Theorem 3.4.7 it is closed, hence by Theorem 3.2.24
sup(f(X)) ∈ f(X), inf(f(X)) ∈ f(X).

Theorem 3.4.10. A closed subset of a compact metric space is compact.

Proof. Let V be a closed subset of a compact metric space (X, d), C an open
cover of V . For every U ∈ C, by Theorem 3.2.17, let U ′ be an open set in X
such that U ′ ∩ V = U . Then {U ′ : U ∈ C} ∪ {X\V } is an open cover of X, by
compactness it has a finite subcover. The non-empty intersection of elements
in this finite subcover with V gives us a finite subcover of C.

3.4.3 Compactness of subsets of Rn

Theorem 3.4.11. Let (X, d) and (Y, d′) be two compact metric spaces, then
(X × Y, dsup) as defined in Theorem 3.1.10 is also compact.

Proof. It is easy to see that

BX×Y ((a, b), r) = BX(a, r)×BX(b, r)

Suppose C is an open cover of X × Y . For every (x, y) ∈ X × Y , let Ux,y

be an element in C that contains (x, y), and rx,y > 0 a number such that
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BX×Y ((x, y), rx,y) ⊆ Ux,u ∈ C. Hence, for every x ∈ X, the set {BY (y, rx,y) :
y ∈ Y } is an open cover of Y . Hence there must be finitely many points
yx,1, . . . , yx,nx

such that Y =
⋃nx

i=1 BY (yx,i, rx,yx,i
). Let rx = min{rx,yx,i

: i =
1, . . . , nx}. Then

BX(x, rx)× Y ⊆
nx⋃
i=1

BX×Y ((x, yx,i), rx,yx,i)

Because rx > 0 for all x, X =
⋃

x∈X BX(x, rx). Compactness of X implies that
there must be finitely many x1, . . . , xm ∈ X such that X =

⋃m
j=1 BX(xj , rxj ).

Hence

X × Y =

m⋃
j=1

(

nxj⋃
i=1

BX×Y ((xj , yxj ,i), rxj ,yxj,i
)) ⊆

m⋃
j=1

nxj⋃
i=1

Uxj ,yxj,i

The set {Uxj ,yxj,i
} ⊆ C is a finite cover.

Theorem 3.4.12. Let ai < bi be n pairs of real numbers, the set
∏n

i=1[ai, bi] ⊆
Rn is compact.

Proof. Example 3.4.5 and Theorem 3.4.11 shows that this set as a subspace
of (Rn, dsup) is compact. Example 3.3.12 and Theorem 3.4.8 shows that it is
compact as a subspace of Rn with Euclidean metric.

Combining Theorem 3.4.6, Theorem 3.4.7, Theorem 3.4.12 and Theorem
3.4.10 we have:

Theorem 3.4.13. A subset of Rn is compact iff it is bounded and closed.
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4 Sequential Limit

4.1 Definition and Basic Properties

Definition 4.1.1. Let (X, d) be a metric space.

• A Sequence on X is a function from N to X. We often write the param-
eter in the function in the subscript, and denote a sequence as something
like {an}.

• Let {an} be a sequence. We say that b is the limit of {an}, denoted as
limn→∞ an = b, iff for any ϵ > 0, there is some N ∈ N such that for all
n ∈ N, if n > N then d(an, b) < ϵ.

• If a sequence has a limit we say it converges. Otherwise we say it di-
verges.

Example 4.1.2. • The constant sequence an = c has limit c.

• In R, the sequence an = 2−n has limit 0.

Theorem 4.1.3. Let (X, d) be a metric space. If a sequence {an} on X has a
limit, then the limit must be unique.

Proof. Suppose limn→∞ an = b, limn→∞ an = c. For any ϵ > 0, there is some N
such that if n > N , d(an, b) < ϵ/2, There is also some N ′ such that if n > N ′,
d(an, c) < ϵ/2. Let N ′′ = max(N,N ′)+1, then d(b, c) ≤ d(b, aN ′′)+d(c, aN ′′) <
ϵ, hence d(b, c) = 0 because the only real number in [0, 1) smaller than all
positive real numbers is 0. Hence b = c.

Theorem 4.1.4. If sequences {an} and {bn} on a metric space (X, d) differ
at only finitely many places, then {an} converges iff {bn} converges, and when
they converge they have the same limit.

Proof. LetM be the largest natural number where aM ̸= bM . Suppose limn→∞ an =
c, then for any ϵ > 0, there is some N such that n > N implies d(an, c) < ϵ.
Hence for any n > max(N,M), d(bn, c) < ϵ. Hence limn→∞ bn = c.

4.2 Limit and Continuity

Theorem 4.2.1. Let (X, d) be a metric space, A ⊆ X a non-empty subset.
Then

• A is open iff for any sequence {an} on X, if limn→∞ an ∈ A then an ∈ A
for all but finitely many n. (i.e. there is some N ∈ N such that n > N
implies an ∈ A.)

• A is closed iff for any sequence {an} on X, if an ∈ A for all n, limn→∞ an
exists, then limn→∞ an ∈ A.
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Proof. • Suppose A is open. If limn→∞ an = m ∈ A, there is some ϵ > 0
such that BX(m, ϵ) ⊆ A. Hence the existence of such N follows from the
definition of limit. On the other hand, if A is not open, then there is some
x ∈ A where for any r > 0, BX(x, r) ̸⊆ A. Let an ∈ BX(x, 2−n)\A, then
an ̸∈ A for all n and limn→∞ an ∈ A.

• Suppose A is closed, then X\A is open, hence any sequence with limit in
X\A must be in X\A for infinitely many n. As a consequence, if an ∈ A
for all n then limn→∞ an can not be in X\A. On the other hand, if A is
not closed, then there is some x ̸∈ A where for any r > 0, BX(x, r)∩A ̸= ∅.
Let an ∈ BX(x, 2−n)∩A, then {an} is a sequence in A whose limit is not
in A.

Remark 4.2.2. Let x be a point in a metric space (X, d). If there is some r > 0
such that BX(x, r) = {x}, we call x an isolated point. Theorem 4.2.1 implies
that if x is an isolated point then any sequence {an} convergent to x must have
an = x for all but finitely many n. Also, any function from X to another metric
space Y must be locally constant at x hence continuous at x (Example 3.3.7).
This is an example for the Theorem below.

Theorem 4.2.3. Let (X, d) and (Y, d′) be two metric spaces, f : X → Y a
map, then the followings are equivalent:

1. f is continuous at x ∈ X.

2. {an} is a sequence on X. If limn→∞ an = x, then limn→∞ f(an) = f(x).

3. {an} is a sequence on X. If limn→∞ an = x, then {f(an)} converges.

Proof. 1 implies 2: By Theorem 3.3.9, for any ϵ > 0, there is δ > 0 such that
f(BX(x, δ)) ⊆ BY (f(x), ϵ). Let N ∈ N be such that n > N implies d(an, x) < δ,
the d′(f(an), f(x)) < ϵ, this shows that limn→∞ f(an) = f(x).

2 implies 3: This is obvious.

3 implies 1: Suppose f is not continuous at x, then there is ϵ > 0 such
that for any n ∈ N, f(BX(x, 2−n)) ̸⊆ BY (f(x), ϵ). For every n ∈ N, pick
bn ∈ BX(x, 2−n)\f−1(BY (f(x), ϵ)), and let

an =

{
bn n is odd

x n is even

Then limn→∞ an = x while limn→∞ f(an) does not exist.

Remark 4.2.4. Theorem 3.3.5 and Theorem 4.2.3 imply that f is continuous
iff it sends convergent sequences to convergent sequences.

Remark 4.2.5. The inclusion map is continuous, hence if a sequence {an} on
Y ⊆ X converges and has a limit b ∈ Y , then its limit in X is also b.
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Theorem 4.2.6. Let P = {0} ∪ {2−n : n ∈ N} ⊆ R, metric is the Euclidean
metric. Let (X, d) be a metric space, {an} a sequence on X, b ∈ X. Define
function fa,b : P → X as fa,b(2

−n) = an, fa,b(0) = b. Then the followings are
equivalent:

1. limn→∞ an = b

2. The function fa,b is continuous.

3. The function fa,b is continuous at 0.

Proof. The equivalence of 2 and 3 is due to the fact that 0 is the only non-
isolated point in P (see Remark 4.2.2). 3 implies 1 follows immediately from
Theorem 4.2.3. To show 1 implies 3, for any ϵ > 0, let N ∈ N such that n > N
implies d(an, b) < ϵ, hence fa,b sent BP (0, 2

−N ) = {0} ∪ {2−n : n > N} to
BX(b, ϵ), hence continuous at 0.

Remark 4.2.7. The set P above is compact due to Theorem 3.4.13. Hence,
the range of any convergent sequence is bounded.

Remark 4.2.8. A subsequence is the composition between a sequence {an}
and an increasing injection i : N → N, denoted as {ain}. Theorem 4.2.3 and
Theorem 4.2.6 implies that if a sequence converges so is any of its subsequences,
and the limit of the subsequence is the same as the limit of the original sequence.

Definition 4.2.9. If f is a map from a metric space (X, d) to metric space
(Y, d′), x ∈ X is not an isolated point. We say the limit of f at x is b, denoted
as limt→x f(t) = b, iff the function

g(t) =

{
f(t) t ̸= x

b t = x

is continuous at x.

Remark 4.2.10. When x is a non-isolated point in X, there is a sequence {an}
convergent to x such that an ̸= x for all n. Hence limt→x f(t) is unique when it
exists.

4.3 Cauchy Sequences

Definition 4.3.1. A sequence {an} on a metric space (X, d) is called a Cauchy
sequence if for any ϵ > 0, there is some N ∈ N, such that for any m,n > N ,
d(am, an) < ϵ.

Theorem 4.3.2. Any convergent sequence is a Cauchy sequence.

Proof. Suppose limn→∞ an = b. For any ϵ > 0, there is some N ∈ N such
that n > N implies d(an, b) < ϵ/2. Hence for any m,n > N , d(am, an) ≤
d(am, b) + d(an, b) < ϵ.
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Theorem 4.3.3. A closed subset of a complete metric space is complete.

Proof. Let (X, d) be a complete metric space, V ⊆ X closed. Then for any
Cauchy seqeuence {an} on V , completeness of X implies that it converges to
some b ∈ X, and Theorem 4.2.1 implies that b ∈ V .

Theorem 4.3.4. Let (X, d) be a metric space, if A ⊆ X is complete under
subspace metric, then A is closed.

Proof. Suppose not, Theorem 4.2.1 implies that there will be a sequence {an}
on A which converges to some b ∈ X\A. Theorem 4.3.2 implies that {an} is a
Cauchy sequence, hence A is not complete.

Theorem 4.3.5. Let (X, d) be a metric space. If there is some r > 0 such
that any closed ball with radius r in X is compact, then (X, d) is complete. In
particular, any compact metric space is complete.

To show this we first need the following Lemma:

Lemma 4.3.6. Let {an} be a Cauchy sequence on metric space (X, d), r > 0,
then there is some x ∈ X such that for all but finitely many n, an lies in the
closed ball centered at x with radius r.

Proof. Let N ∈ N satisfies that for all m,n > N , d(am, an) < r, then for all
n > N , an ∈ BX(aN+1, r).

Lemma 4.3.7. Let {an} be a sequence on a compact metric space X, then
there is some x ∈ X such that for any r > 0, any m ∈ N, there is some n > m
such that an ∈ BX(x, r).

Proof. If this is not true, then for every x ∈ X, there is some rx > 0, mx ∈
N, such that if n > mx then an ̸∈ BX(x, rx). X =

⋃
x∈X BX(x, rx), hence

compactness of X implies that there must be x1, . . . , xk ∈ X such that X =⋃k
i=1 BX(xi, rxi). Let n = max{mx1 , . . . ,mxk

}+ 1, then an can not be in X, a
contradiction.

Proof of Theorem 4.3.5. By Lemma 4.3.6 we can assume without loss of gener-
ality that {an} lies on a compact closed ball B ⊆ X. Now apply Lemma 4.3.7
we can get a point x ∈ B that satisfies the conclusion of Lemma 4.3.7. We will
now show that limn→∞ an = x. For any ϵ > 0, let N be such that m,n > N
implies d(am, an) < ϵ/2. Let n′ > N be such that d(an′ , x) < ϵ/2, then for any
n > N , d(an, x) ≤ d(an, an′) + d(an′ , x) < ϵ.

Example 4.3.8. • Theorem 4.3.5 implies that any discrete metric space is
complete.

• Theorem 4.3.5 implies that R is complete.

• Theorem 4.3.4 implies that Q or (0, 1) under Euclidean metric are not
complete.
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Remark 4.3.9. Unlike compactness, completeness is not preserved by home-
omorphisms. For example (0, 1) and R are homeomorphic, the former isn’t
complete while the latter is.

Theorem 4.3.10. Let (X, d) be a complete metric space, S a non-empty set.
Then (BF (S,X), dsup) is also complete.

Proof. Let {an} be a Cauchy sequence in BF (S,X). For any s ∈ X, any
m,n ∈ N, d(am(s), an(s)) ≤ dsup(am, an), hence {an(s)} is a Cauchy sequence
on X. By completeness of X there is some bs ∈ X where limn→∞ an(s) = bs.
Now define b : S → X as s 7→ bs, we need to show b ∈ BF (S,X) and
limn→∞ an = b.

Step 1: We first show that b ∈ BF (S,X). Let s0 ∈ S. Let N ∈ N sat-
isfies that for any m,n > N , dsup(am, an) < 1. aN+1 ∈ BF (S,X) implies
that diam(aN+1(S)) = D < ∞, hence aN+1(S) ⊆ BX(aN+1(s0), D + 1). For
any s ∈ S, any n > N , {an(s)} lies in the closed ball with radius 1 centered
at aN+1(s), hence d(b(s), aN+1(s)) ≤ 1, hence b(S) ⊆ BX(aN+1(s0), D + 2),
diam(b(S)) ≤ 2D + 4 < ∞.

Step 2: We now show that limn→∞ an = b. Let ϵ > 0, pick N ∈ N such that
when n,m > N , dsup(am, an) < ϵ/3. Now for any s ∈ S, when n > N , an(s) lies
in the closed ball centered at aN+1(s) with radius ϵ/3, hence by Theorem 4.2.1,
b(s) = limn→∞ an(s) is in this closed ball with radius ϵ/3 centered at aN+1(s) as
well. Hence any n > N , d(an(s), b(s)) ≤ d(an(s), aN+1(s)) + d(aN+1(s), b(s)) <
2ϵ/3, hence dsup(an, b) ≤ 2ϵ/3 < ϵ. This means that limn→∞ an = b.

Remark 4.3.11. When S is an infinite set and X = R, BF (S,X) is complete
but does not satisfy the assumption of Theorem 4.3.5. In particular, for any
r > 0, the closed ball Br centered at 0 with radius r is not compact.

To show this, suppose Br is compact, let i : N → S be an injection, consider
sequence {fn} on Br defined as

fn(s) =

{
r s = i(n)

0 s ̸= i(n)

Then Lemma 4.3.7 implies that there must be some g ∈ Br such that for all but
finitely many n, dsup(g, fn) < r/3, which is impossible.

4.4 Uniform Convergence

Theorem 4.4.1. Let (X, d), (Y, d′) be two metric spaces, BF (X,Y ) be the
set of bounded functions (i.e. functions with bounded image). For any x ∈
X, let Cx = {f ∈ BF (X,Y ) : f is continuous at x}, then Cx is closed in
(BF (X,Y ), dsup).
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Proof. Suppose f ∈ BF (X,Y )\Cx, then there is some ϵ > 0, such that for
any r > 0, there is some x′

r ∈ (BX(x, r)) such that d′(f(x′
r), f(x)) ≥ ϵ. Let

g ∈ BBF (X,Y )(f, ϵ/3), then d′(g(x′
r), g(x)) ≥ ϵ/3, hence BBF (X,Y )(f, ϵ/3)∩Cx =

∅.

Remark 4.4.2. Let BC(X,Y ) be the set of bounded continuous functions from
X to Y , then BC(X,Y ) =

⋃
x∈X Cx hence is closed in BF (X,Y ).

Remark 4.4.3. By Theorem 4.4.1 and Remark 4.4.2, as well as Theorem 4.3.10
and Theorem 4.3.3, Cx and BC(X,Y ) are both complete under dsup.

Definition 4.4.4. Let (X, d) be a metric space, S ̸= ∅. A sequence of maps
fn : S → X are said to converges uniformly to a map f : S → X, if for any
ϵ > 0, there is some N ∈ N, such that for any natural number n > N , any s ∈ S,
d(fn(s), f(s)) < ϵ. It is said to be uniformly Cauchy, if for any ϵ > 0, there
is some N ∈ N, such that for any s ∈ S, any m,n > N , d(fn(s), fm(s)) < ϵ.

Lemma 4.4.5. Let (X, d) be a metric space, d1 = min(d, 1), S a non-empty
set, {xn} a sequence in X, and {fn} a sequence of functions from S to X. Then:

1. The sequence {xn} is Cauchy in (X, d) iff it is Cauchy in (X, d1).

2. The sequence {xn} converges to b ∈ X under metric d iff it converges to
b under metric d1.

3. The sequence {fn} is uniformly Cauchy in (X, d) iff it is Cauchy in (X, d1).

4. The sequence {fn} converges to f ∈ Map(S,X) under metric d iff it
converges to f under metric d1.

Proof. To prove 1, if {xn} is Cauchy in (X, d), for any ϵ > 0, there is some
N ∈ N such that m,n > N implies d(xn, xm) < ϵ. Hence, as long as m,n > N ,
d1(xm, xn) ≤ d(xm, xn) < ϵ. On the other hand, if {an} is Cauchy under (X, d1),
for any ϵ > 0, let N ∈ N such that when m,n > N , d1(xm, xn) < min(1, ϵ).
Then d(xm, xn) < min(1, ϵ) ≤ ϵ.

The proofs of the other statements are all analogous.

Remark 4.4.6. Part 2 of Lemma 4.4.5 implies that the identity map is an
homeomorphism from (X, d) to (X,min(d, 1)).

Theorem 4.4.7. If (X, d) is a complete metric space, fn : S → X a sequence
of functions, then if {fn} is uniformly Cauchy then it converges uniformly to
some f : S → X.

Proof. If {fn} is uniformly Cauchy, it is uniformly Cauchy as a sequence of
maps from S to (X,min(d, 1)), hence by Lemma 4.4.5 a Cauchy sequence in
BF (S,X) where the metric on X is min(d, 1). By Theorem 4.3.10 it converges
uniformly to some function f from S to X. Apply Lemma 4.4.5 again we get
the conclusion of this theorem.
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Theorem 4.4.8. (Uniform Convergence Theorem) If (X, d) and (Y, d′) are two
metric spaces, fn : X → Y converges uniformly to some f : X → Y .

1. If fn are all continuous at some x ∈ X, then so is f .

2. If fn are all continuous, then f is continuous as well.

Proof. By Lemma 4.4.5, {fn} converges to f under dsup as bounded functions
from X to (Y,min(1, d′)). To prove the first statement, suppose all fn are
continuous at x as maps from (X, d) to (Y, d′), then by Remark 4.4.6, they are
continuous at x as maps from (X, d) to (Y,min(1, d′)). By Theorem 4.4.1 and
Theorem 4.2.1, f is continuous at x as a map from (X, d) to (Y,min(1, d′)). By
Remark 4.4.6 it is continuous at x as a map from (X, d) to (Y,min(1, d′)). The
proof of the second statement is similar, just replace Theorem 4.4.1 above with
Remark 4.4.2.

Example 4.4.9. Consider real-valued functions on [0, 1] fn : x 7→ xn. Here

we set x0 = 1 for all x, and g(x) =

{
0 x < 1

1 x = 1
. Then for any x ∈ [0, 1],

limn→∞ fn(x) = g(x), but fn does not converge uniformly to g on [0, 1]. How-
ever, for any 0 < r < 1, fn|[0,r] does converge uniformly to g|[0,r].

Example 4.4.10. As an example of Theorem 4.4.8, let {am,n} be a map from
N×N to R. If limn→∞ am,n = am, and for any ϵ > 0, there is some N ∈ N such
that for m,m′ > N , for any n, |am,n − am′,n| < ϵ, then

lim
m→∞

lim
n→∞

am,n = lim
n→∞

lim
m→∞

am,n
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5 Sequences and Series in R
Now we will apply techniques developed in previous lectures to study the con-
vergence of sequences and series on R.

5.1 Monotone convergence, upper and lower limit

Theorem 5.1.1. (Monotone Convergence Theorem) Let {xn} be a sequence
on R.

1. If xn+1 ≥ xn for all n, and there is some M ∈ R such that xn ≤ M for all
n, then {xn} converges, and limn→∞ xn ≥ xn for all n ∈ N.

2. If xn+1 ≤ xn for all n, and there is some m ∈ R such that m ≤ xn for all
n, then {xn} converges, and limn→∞ xn ≤ xn for all n ∈ N.

Proof. We only need to prove Part 1, and Part 2 follows from Part 1 if one
replaces {xn} with {−xn}.

By assumption, the set X = {xn : n ∈ N} has an upper bound hence has the
smallest upper bound, denote it as x. Now for any ϵ > 0, if X ∩ (x− ϵ, x] = ∅,
then x − ϵ is another upper bound of X, which contradicts the minimality of
x. Hence X ∩ (x − ϵ, x] ̸= ∅, in other words, there is some N ∈ N such that
x− ϵ < xN ≤ x. Hence for any n > N , x− ϵ < xN ≤ xn ≤ x, |xn−x| < ϵ. This
shows that limn→∞ xn = x.

Definition 5.1.2. Let {xn} be a sequence on R. Suppose {xn : n ∈ N} has
upper and lower bound in R. Then:

• The sequence yn = sup({xj : j ∈ N, j ≥ n}) is decreasing and has a lower
bound, hence has a limit, denoted as lim supn→∞ xn, called the upper
limit.

• The sequence zn = inf({xj : j ∈ N, j ≥ n}) is increasing and has an upper
bound, hence has a limit, denoted as lim infn→∞ xn, called the lower
limit.

Example 5.1.3. Let xn = (−1)n, then

lim sup
n→∞

xn = 1

lim inf
n→∞

xn = −1

Example 5.1.4. Let xn = sin(n). Then we can show that sup{sin(j) : j ≥
n} = 1 for all n ∈ N, which implies that lim supn→∞ sin(n) = 1.

Because sin(n) ≤ 1, for all n, sup{sin(j) : j ≥ n} ≤ 1. To show that
this supremum equals 1, we only need to show that for any ϵ > 0, there is
some k ∈ N, some j ≥ n, such that |j − (2kπ + 1

2 )π| < ϵ. Pick M ∈ N
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such that ϵ > 1/M . Now consider the sequence {2lπ − ⌊2lπ⌋}. Because π
is irrational, the terms of these sequence are all distinct, and they all lie in
a finite interval [0, 1), hence pigeon hole principle implies that there must be
l < l′ such that |(2lπ − ⌊2lπ⌋) − (2l′π − ⌊2l′π⌋)| < 1

M , which implies that
2π(l′ − l) − ⌊2π(l′ − l)⌋ < 1

M . Now consider the sequence {(2n + 2k(l′ − l) +
1
2 )π−⌊(2n+2k(l′− l)+ 1

2 )π⌋}, there must be some natural number k ≤ M such
that (2n+ 2k(l′ − l) + 1

2 )π− ⌊(2n+ 2k(l′ − l) + 1
2 )π⌋ ≤

1
M , and we can then let

j = ⌊(2n+ 2k(l′ − l) + 1
2 )π⌋.

Remark 5.1.5. A bounded sequence {xn} in R converges iff lim supn→∞ xn =
lim infn→∞ xn.

5.2 Series

Definition 5.2.1. Let {an} be a sequence in R.

• The sequence sn =
∑n

i=0 an is called the partial sum.

• If {sn} converges, we denote the limit as the sum of infinite series∑∞
i=0 ai, and say the series converges. Otherwise we say the series di-

verges.

The fact that R is complete implies the following:

Theorem 5.2.2. A sequence {xn} converges iff it is a Cauchy sequence, i.e.
for any ϵ > 0, there is N ∈ N such that for any m,n > N , |xm − xn| < ϵ.

Apply Theorem 5.2.2 to the sequence of partial sums sn, we get:

Theorem 5.2.3. A series
∑∞

n=0 an converges iff for any ϵ > 0, there is N ∈ N,
such that for any m,m′ > N , m ≤ m′, |

∑m′

i=m ai| < ϵ.

Remark 5.2.4. As a consequence of Theorem 5.2.3, if
∑

n=0 ∞an converges
then limn→∞ an = 0.

5.2.1 Comparison test

Another consequence of Theorem 5.2.3 is the following comparison test for
convergence of series:

Theorem 5.2.5. Suppose |an| ≤ bn,
∑∞

n=0 bn converges, then so is
∑∞

n=0 an,
and |

∑∞
n=0 an| ≤

∑∞
n=0 bn.

Proof. Because |an| ≤ bn, bn ≥ 0 for all n. By Theorem 5.2.3, the fact that∑∞
n=0 bn converges implies that for any ϵ > 0, for any m′ ≥ m > N ,

∑m′

i=m bi =

|
∑m′

i=m bi| < ϵ, hence for any m′ ≥ m > N , |
∑m′

i=m ai| ≤
∑m′

i=m |ai| ≤
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∑m′

i=m bi < ϵ, hence
∑∞

n=0 an converges by Theorem 5.2.3.

For any n ∈ N, any m > n,
∑m

i=0 bi ≥
∑n

i=0 bi. Because the interval
[
∑n

i=0 bi,∞) is closed and the sequence {
∑m

i=0 bi}m∈N is on [
∑n

i=0 bi,∞) for all
but finitely many m, its limit

∑∞
m=0 bm = limm→∞

∑m
i=0 bm ≥

∑n
i=0 bi. Be-

cause |
∑m

i=0 ai| ≤
∑m

i=0 bi ≤
∑∞

m=0 bm, the convergent sequence {
∑m

i=0 ai}m∈N
lies on closed set [−

∑∞
n=0 bn,

∑∞
n=0 bn], hence its limit

∑∞
n=0 an also lies in this

closed set.

As an application, we have:

Theorem 5.2.6. If
∑∞

n=0 |an| converges then so does
∑∞

n=0 an. In this case
we call the series converges absolutely.

A property of absolute convergent series is that the order of summation can
be changed arbitrarily. More precisely,

Theorem 5.2.7. Let σ : N → N be a bijection, suppose
∑∞

n=0 |an| converges,
then so is

∑∞
n=0 aσ(n), and

∞∑
n=0

an =

∞∑
n=0

aσ(n)

Proof. For any ϵ > 0, by Theorem 5.2.3, pick N ′ such that for any m ≥ n > N ′,∑n
i=n |ai| < ϵ/3. Let

N = max{σ−1(0), . . . , σ−1(N ′)}

Then for any m ≥ n > N ,∣∣∣∣∣
m∑
i=n

aσ(i)

∣∣∣∣∣ ≤
m∑
i=n

|aσ(i)| ≤
max{σ(n),...,σ(m)}∑

i=min{σ(n),...,σ(m)}

|ai| < ϵ/3

The last < is because when i > N , σ(i) > N ′. This shows that
∑∞

n=0 aσ(n)
converges.

Now we show that these two series have the same value. Let S =
∑∞

n=0 an.
For any n > max(N,N ′),∣∣∣∣∣∣

n∑
i=0

aσ(i) −
N ′∑
i=0

ai

∣∣∣∣∣∣ ≤
∑

i>N ′,σ−1(i)≤n

|ai| < ϵ/3

On the other hand, for all n > N ,∣∣∣∣∣∣
n∑

i=0

ai −
N ′∑
i=0

ai

∣∣∣∣∣∣ < ϵ/3
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So the limit of {
∑n

i=0 ai} must also be in the closed ball centered at
∑N

i=0 ai
with radius ϵ/3, in other words∣∣∣∣∣∣

N ′∑
i=0

ai − S

∣∣∣∣∣∣ ≤ ϵ/3

Hence by triangle inequality, ∣∣∣∣∣
n∑

i=0

aσ(i) − S

∣∣∣∣∣ < ϵ

This shows that
∑∞

n=0 aσ(n) = S.

Remark 5.2.8. If
∑∞

n=0 an converges while
∑∞

n=0 |an| diverges,
∑∞

n=0 aσ(n)
can take any real value, or diverges to infinity or negative infinity.

5.2.2 Power Series

As another application of Theorem 5.2.5, we have:

Theorem 5.2.9. Let {an} be a sequence on R. SupposeM = lim supn→∞ |an|1/n.
Then:

1. If |x|M > 1 then
∑∞

n=0 anx
n diverges.

2. If |x|M < 1 then
∑∞

n=0 anx
n converges absolutely.

3. If r > 0 and rM < 1, then
∑∞

n=0 anx
n converges on [−r, r] uniformly.

Proof. 1. For any N ∈ N, by definition of lim sup, sup{|aj |1/j : j > N} ≥
M > 1

|x| , hence there is some n > N such that |an|1/n > 1
|x| , hence

|anxn| = (|an|1/n|x|)n > 1

This shows that anx
n does not converge to 0. By Remark 5.2.4 this implies∑∞

n=0 anx
n diverges.

2. The case when x = 0 is obvious, so we now assume x ̸= 0. By definiton of
lim sup, there is some N ∈ N such that

sup{|an|1/n : n ≥ N} <
1

2
(M +

1

|x|
)

Let

bn =

{
|anxn| n ≤ N

( 12 (M |x|+ 1))n n > N
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Then |anxn| ≤ bn for all n.

∞∑
n=0

bn =

N∑
n=0

|an||x|n + lim
l→∞

l∑
n=N+1

(
1

2
(M |x|+ 1))n

=

N∑
n=0

|an||x|n + lim
l→∞

(
(
1

2
(M |x|+ 1))N+1

(
1− ( 12 (M |x|+ 1))l−N

1− ( 12 (M |x|+ 1))

))

=

N∑
n=0

|an||x|n +

(
(
1

2
(M |x|+ 1))N+1

(
1

1− ( 12 (M |x|+ 1))

))
Hence by comparison test

∑∞
n=0 |anxn| converges.

3. Similar to part 2 above, we can find N ∈ N such that for all n > N ,
|an|1/n < 1

2 (M+1/r). For any ϵ > 0, let N ′ ∈ N satisfies ( 12 (rM+1))N
′
<

1
2 (1− rM)ϵ, and let Nϵ = max(N,N ′). Then for any m > n > Nϵ, then

sup{|
m∑
i=0

aix
i −

n∑
i=0

aix
i| : |x| ≤ r} ≤

m∑
i=n+1

|ai|ri

≤
m∑

i=n+1

(Mr/2 + 1/2)i = (Mr/2 + 1/2)n+1 · 1− (Mr/2 + 1/2)m−n

1/2−Mr/2

<
(Mr/2 + 1/2)n+1

1/2− rM/2
< ϵ

Example 5.2.10.
∑∞

n=0
x2n+1

(2n+1)! converges uniformly on any finite interval.

This is because

an =

{
0 n even
1
n! n odd

So for any natural number k, any n > k,

|an| ≤
1

n!
≤ 1

kn−k

lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

1

k(n−k)/n
=

1

k

Because k can be arbitrarily large, lim supn→∞ |an|1/n = 0

Example 5.2.11.
∑∞

n=0 n
2xn2

converges when |x| < 1.
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5.2.3 Summation by Parts

A trick we often use to show convergence of series is the following:

Lemma 5.2.12. Let {an}, {bn} be sequences of real numbers, 0 ≤ m < n,

sj =
∑j

i=0 ai. Then
∑n

i=m aibi = snbn − sm−1bm +
∑n−1

i=m si(bi − bi+1).

Proof.

n∑
i=m

aibi =

n∑
i=m

(si − si−1)bi = snbn − sm−1bm +

n−1∑
i=m

si(bi − bi+1)

As a consequence, we have:

Theorem 5.2.13. Let {an}, {bn} be sequences of real numbers, let sj =∑j
i=0 ai. If there is some M such that |sj | ≤ M for all j, and if bn+1 ≤ bn

for all n, limn→∞ bn = 0, then
∑∞

n=0 anbn converges.

Proof. By Theorem 5.2.3, we only need to show that for any ϵ, there is some N
such that for any N < m ≤ n, |

∑n
i=m aibi| < ϵ. Because {bn} is non-decreasing

and limn→∞ bn = 0, bn ≥ 0 for all n, and there is some N such that when
n > N , 0 ≤ bn < ϵ

10M . Because an = sn − sn−1, and all sj has absolute value
no more than M , |an| ≤ 2M for all n.

If N < m = n,

|
n∑

i=m

aibi| = |am||bm| ≤ 2M · ϵ

10M
< ϵ

If N < m < n, by Lemma 5.2.12,

|
n∑

i=m

aibi| = |snbn − sm−1bm +

n−1∑
i=m

si(bi − bi+1)|

≤ |sn||bn|+ |sm−1||bm|+
n−1∑
i=m

|si|(bi − bi+1)

≤ M · ϵ

10M
+M · ϵ

10M
+M

n−1∑
i=m

(bi − bi+1)

=
ϵ

5
+M(bm − bn) ≤

ϵ

5
+Mbm ≤ ϵ

5
+

ϵ

10
< ϵ
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Example 5.2.14. When an = (−1)n, bn ≥ 0, Theorem 5.2.13 gives the con-
vergence criteria for alternating series.

Example 5.2.15.∣∣∣∣∣
n∑

i=0

sin(i)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=0

cos(i− 1/2)− cos(i+ 1/2)

2 sin(1/2)

∣∣∣∣∣
=

∣∣∣∣cos(−1/2)− cos(n+ 1/2)

2 sin(1/2)

∣∣∣∣ ≤ 1

sin(1/2)

Now Theorem 5.2.13 shows that
∑∞

n=0
sin(n)

log(n+2) converges.

5.3 Discrete L’Hospital’s Rule

Theorem 5.3.1. Let {an}, {bn} be two sequences of real numbers, bn+1 >
bn > 0 for all n, and {bn} has no upper bound. Then if limn→∞

an+1−an

bn+1−bn
= L,

then limn→∞
an

bn
= L.

Proof. For any ϵ > 0, let N1 be such that when n ≥ N1, |an+1−an

bn+1−bn
− L| < ϵ/3,

let N be such that N > N1 and bN >
3|aN1

−LbN1
|

ϵ . Then for any n > N ,∣∣∣∣anbn − L

∣∣∣∣ =
∣∣∣∣∣ (aN1

− LbN1
) +

∑n−1
i=N1

((ai+1 − ai)− L(bi+1 − bi))

bn

∣∣∣∣∣
∣∣∣∣aN1

− LbN1

bn

∣∣∣∣+ n−1∑
i=N1

∣∣∣∣ (ai+1 − ai)− L(bi+1 − bi)

bn

∣∣∣∣
<

ϵ

3
· bN
bn

+
ϵ

3
· bn − bN1

bn
< ϵ

Example 5.3.2. If limn→∞ an = L, then limn→∞

∑n
i=0 ai

n+1 = L.
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6 Differentiation and integration

6.1 Definition of differentiation

Definition 6.1.1. Let f be a real-valued function defined on an open set U ⊆ R.
We say that the derivative of f at x ∈ U is L, denoted as f ′(x) = L or
d
dxf |x = L, iff the function

g(h) =

{
L h = 0
1
h (f(x+ h)− f(x)) h ̸= 0

is continuous at 0.

Remark 6.1.2. By Definition 4.2.9, we can also state this as limh→0
1
h (f(x+

h) − f(x)) = L. If f has derivative on every point in a set A ⊆ R we say f is
differentiable on A.

Theorem 6.1.3. (Linear Approximation) f ′(x) = L iff for any ϵ > 0, there is
some r > 0, such that when t ∈ (x− r, x+ r),

|f(t)− f(x)− L(t− x)| ≤ ϵ|t− x|

Proof. By Definition 6.1.1, f ′(x) = L iff for any ϵ > 0, there is some r > 0 such
that 0 < |h| < r implies | 1h (f(x+ h)− f(x))−L| ≤ ϵ. Replace x+ h with t and
multiply both sides by |t − x| one can see that it is identical to the inequality
in the Theorem.

Remark 6.1.4. An immediate consequence is that if f is differentiable at x
then it is also continuous at x.

Remark 6.1.5. The condition in Theorem 6.1.3 can also be written as f(t) =
f(x) + L(t− x) + o(|t− x|).

One can use Theorem 6.1.3 to prove the various properties of derivatives
that we have seen in Calculus. For example the chain rule:

Theorem 6.1.6. Let f , g be two real valued functions on R, f ′(x) = L,
g′(f(x)) = L′, then (g ◦ f)′(x) = L′L.

Proof. Let r1(t) = f(t)− f(x)−L(t− x), r2(t) = g(t)− g(f(x))−L′(t− f(x)),
r(t) = g(f(t))− g(f(x))− L′L(t− x). Then

r(t) = g(f(x)) + L′(f(t)− f(x)) + r2(f(t))− g(f(x))− L′L(t− x)

= g(f(x))+L′(L(t−x)+r1(t))+r2(f(x)+L(t−x)+r1(t))−g(f(x))−L′L(t−x)

= L′r1(t) + r2(f(x) + L(t− x) + r1(t))

For any ϵ > 0, pick δ > 0 such that when t ∈ (x− δ, x+ δ),

r1(t) ≤
ϵ

3|L′|
|t− x|

49



Find δ′ > 0 such that when t ∈ (f(x)− δ′, f(x) + δ′),

r2(t) ≤
ϵ

3(|L|+ ϵ
3|L′| )

|t− f(x)|

Find δ′′ > 0 such that when |t− x| < δ′′ then |f(t)− f(x)| < δ′. Then for any
t ∈ (x−min(δ, δ′′), x+min(δ, δ′′)), we have

r(t) ≤ ϵ/3 + ϵ/3 ≤ ϵ

6.2 Mean Value Theorem

Theorem 6.2.1. Let f be a real valued function defined on some open set
U ⊆ R, x ∈ U .

1. If f ′(x) > 0, there is r > 0 such that for any x′ ∈ (x, x+ r), f(x′) > f(x),
for any x′ ∈ (x− r, x), f(x′) < f(x).

2. If f ′(x) < 0, there is r > 0 such that for any x′ ∈ (x, x+ r), f(x′) < f(x),
for any x′ ∈ (x− r, x), f(x′) > f(x).

3. If f takes maximum or minimum at x (i.e. f(x) = sup f(I) or f(x) =
inf f(I)), then f ′(x) = 0.

Proof. Suppose f ′(x) > 0, by Theorem 6.1.3, there is r > 0 such that t ∈
(x− r, x+ r) implies

|f(t)− f(x)− f ′(x)(t− x)| ≤ f ′(x)

2
(t− x)

Hence f(t) lies in between f ′(x) + f ′(x)
2 (t− x) and f ′(x) + 3f ′(x)

2 (t− x), which
implies that when x + r > t > x, f(t) > f(x), and when x − r < t < x,
f(t) < f(x). The case when f ′(x) < 0 is analogous. Part 3 of the theorem
follows from parts 1 and 2.

Theorem 6.2.2. (Intermediate Value Theorem for derivatives) If f is differen-
tiable on an open interval I, a < b two elements of I, such that f ′(a) < m <
f ′(b), then there is some c ∈ (a, b) where f ′(c) = m.

Proof. Consider g(x) = f(x)−mx. g is continuous on compact set [a, b] hence
takes minimum somewhere on [a, b]. It can not take minimum at a or b because
of Theorem 6.2.1 g′(a) < 0 and g′(b) > 0, hence the minimum has to be taken
at some c ∈ (a, b), hence by Theorem 6.2.1, 0 = g′(c) = f ′(c)−m.

Remark 6.2.3. The Theorem is also true if f ′(a) > m > f ′(b), with an almost
identical proof.
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Remark 6.2.4. The derivative of a function may not be continuous. For ex-
ample

f(x) =

{
0 x = 0

x2 sin(1/x3) x ̸= 0

The following theorems are usually called “Mean Value Theorem”:

Theorem 6.2.5. If f is a real-valued continuous function that is continuous
on [a, b], differentiable on (a, b), f(a) = f(b), then there is c ∈ (a, b) such that
f ′(c) = 0.

Proof. The function f is continuous on compact set [a, b], hence by Theorem
3.4.9, there are xM , xm ∈ [a, b] where f(xm) = inf(f([a, b])) and f(xM ) =
sup(f([a, b])).

Suppose both xm and xM are in {a, b}, then f is constant and f ′(c) = 0 for
all c ∈ (a, b). If either xm or xM is in (a, b), by Theorem 6.2.1, f ′ is 0 at that
point.

Theorem 6.2.6. Let f be a real valued function, continuous on [a, b] and
differentiable on (a, b). Then there is some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Proof. Apply Theorem 6.2.5 to F (x) = f(x)− f(b)−f(a)
b−a x

Theorem 6.2.7. Let f, g be two real valued functions that are continuous on
[a, b] and differentiable on (a, b). Then there is some c ∈ (a, b) such that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c)

Proof. Apply Theorem 6.2.5 to the function

F (x) = (f(b)− f(a))g(x)− (g(b)− g(a))f(x)

Remark 6.2.8. As a consequence, if on some open interval I we have g′ > 0
and ag′(x) ≤ f ′(x) ≤ bg′(x), then for any c ∈ I, any x ∈ I we have

|f(x)− f(c)− a+ b

2
(g(x)− g(c))| ≤ b− a

2
|g(x)− g(c)|

6.2.1 L’Hospital’s Rule

Definition 6.2.9. • Let f be a real-valued function defined on (c,∞). We
say that limx→∞ f(x) = L iff for any ϵ > 0, there is some M ∈ R such
that x > M implies |f(x)− L| < ϵ.
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• Let f be a real valued function defined on (0, c). We say that limx→0+ f(x) =
L if for any ϵ > 0, there is δ > 0, such that 0 < x < δ implies |f(x)−L| < ϵ.

Theorem 6.2.10. (L’Hospital’s Rules)

1. Let f, g be differentiable functions on (c,∞). Suppose g > 0, g′ > 0 and

g is unbounded, and also limx→∞
f ′(x)
g′(x) = L, then limx→∞

f(x)
g(x) = L.

2. Let f, g be differentiable functions on (c,∞). Suppose g > 0, g′ < 0,

limx→∞ g(x) = limx→∞ f(x) = 0, and limx→∞
f ′(x)
g′(x) = L, then limx→∞

f(x)
g(x) =

L.

3. Let f, g be differentiable functions on (0, c). Suppose g > 0, g′ < 0 and g

is unbounded, and also limx→0+
f ′(x)
g′(x) = L, then limx→0+

f(x)
g(x) = L.

4. Let f, g be differentiable functions on (0, c). Suppose g > 0, g′ > 0

and limx→0+ f(x) = limx→0+ g(x) = 0, and also limx→0+
f ′(x)
g′(x) = L, then

limx→0+
f(x)
g(x) = L.

Proof. The proof for all 4 states are similar and also all similar to the proof of
Theorem 5.3.1. We will only do 2 as an example.

For any ϵ > 0, find M such that when x > M , | f
′(x)

g′(x) − L| < ϵ/10. Now for

any x > M , let M ′ > x be large enough such that |f(M ′)−Lg(M ′)|
g(x) < ϵ

10 . Then

|f(x)
g(x)

− L| = |f(x)− f(M ′)− L(g(x)− g(M ′))|+ |f(M ′)− Lg(M ′)|
g(x)

<
ϵ

5

The last < is due to Remark 6.2.8.

6.3 Definition of integration

Definition 6.3.1. Let I = [a, b] be a finite closed interval. For any finite
subset S of (a, b), the partition induced by S is as follows: suppose S has n−1
elements, ordered from smallest to largest as x1, . . . , xn−1, then P (S) = (x0 =
a, x1, . . . , xn−1, xn = b).

Definition 6.3.2. Let f be a bounded real valued function on [a, b], the upper
sum of f with respect to partition P = (x0, . . . , xn) is

U(f, P ) =

n−1∑
i=0

(xi+1 − xi) sup(f([xi, xi+1]))

The lower sum of f with respect to partition P = {x0, . . . , xn} is

L(f, P ) =

n−1∑
i=0

(xi+1 − xi) inf(f([xi, xi+1]))
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Lemma 6.3.3. If S ⊆ S′ ⊆ (a, b) are two finite sets, then U(f, P (S′)) ≤
U(f, P (S)).

Proof. By induction on the size of S′\S, we only need to show the inequality
for when S′ has one more element than S. Suppose P (S) = (x0, . . . , xn), and
this extra element x′ is between xj and xj+1, then

U(f, P (S′)) =

j−1∑
i=0

(xi+1−xi) sup(f([xi, xi+1]))+

n−1∑
i=j+1

(xi+1−xi) sup(f([xi, xi+1]))

+(x′ − xj) sup(f([xj , x
′])) + (xj+1 − x′) sup(f([x′, xj+1]))

Because
sup(f([xj , x

′])) ≤ sup(f([xj , xj+1]))

sup(f([x′, xj+1])) ≤ sup(f([xj , xj+1]))

The sum of the last two terms in the summation formula above is no more than
(xj+1 − xj) sup(f([xj , xj+1])), hence

U(f, P (S′)) ≤ U(f, P (S))

Remark 6.3.4. The same argument can be used to show that if S ⊆ S′ ⊆ (a, b)
be two finite sets, then L(f, P (S′)) ≥ L(f, P (S)).

Theorem 6.3.5. Suppose P and P ′ are two partitions of I = [a, b], then
L(f, P ) ≤ U(f, P ′).

Proof. Suppose P = P (S), P ′ = P (S′), then Lemma 6.3.3 and Remark 6.3.4
implies that

L(f, P ) = L(f, P (S)) ≤ L(f, P (S ∪ S′)) ≤ U(f, P (S ∪ S′))

≤ U(f, P (S′)) = U(f, P ′)

Remark 6.3.6. Theorem 6.3.5 implies that

sup{L(f, P ) : P partition of I} ≤ inf{U(f, P ) : P partition of I}

Definition 6.3.7. Let f be a bounded real-valued function on finite closed
interval I = [a, b]. If

sup{L(f, P ) : P partition of I} = inf{U(f, P ) : P partition of I} = C

We call f Riemann integrable on I, and define C as the Riemann integral
of f on I, denoted as

C =

∫
I

f(x)dx =

∫ b

a

f(x)dx
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It is easy to see that

Theorem 6.3.8. f is Riemann integrable on I = [a, b], iff for any ϵ > 0, there
is a partition P = (x0, . . . , xn) of I, such that

U(f, P )− L(f, P ) =

n−1∑
i=0

(xi+1 − xi)(sup([xi, xi+1])− inf([xi, xi+1])) < ϵ

And

L(f, P ) ≤
∫ b

a

f(x)dx ≤ U(P, f)

Example 6.3.9. The function f : [0, 1] → R defined by

f(x) =

{
1 x ∈ Q
0 x ̸∈ Q

is not Riemann integrable, because U(f, P ) = 1, L(f, P ) = 0 for any partition
P .

6.3.1 Integrability of continuous functions

Definition 6.3.10. Let (X, d), (Y, d′) be two metric spaces. We say a function
f : X → Y is uniformly continuous if for any ϵ > 0, there is δ > 0, such that
for any p, q ∈ X, if d(p, q) < δ then d′(f(p), f(q)) < ϵ.

Example 6.3.11. Any Lipschitz function is uniformly continuous. f : (0, 1] →
R defined by f(x) = 1/x is continuous but not uniformly continuous.

Theorem 6.3.12. If f : [a, b] → R is uniformly continuous then it is Riemann
integrable.

Proof. For any ϵ > 0, pick natural number N sufficiently large such that when
|x − y| < b−a

N , |f(x) − f(y)| < ϵ
3(b−a) . Now apply Theorem 6.3.8 using the

partition

P =

(
a, a+

b− a

N + 1
, a+

2(b− a)

N + 1
, . . . , b

)
we get U(f, P )− L(f, P ) < ϵ.

Theorem 6.3.13. Let (X, d) and (Y, d′) be two metric spaces, if X is compact
and f : X → Y is continuous then it is uniformly continuous.

Proof 1. For any ϵ > 0, consider the subset Vϵ ⊆ X ×X defined as

Vϵ = {(a, b ∈ X ×X : d′(f(a), f(b)) ≥ ϵ}
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We shall show that Vϵ is closed in (X × X, dsup): for any (p, q) ̸∈ Vϵ, by con-
struction d′(f(p), f(q)) < ϵ. Let

ϵ′ =
ϵ− d′(f(p), f(q))

3

Let δ1 > 0 satisfies d(x, p) < δ1 implies d′(f(x), f(p)) < ϵ′, δ2 > 0 satisfies
d(x, q) < δ2 implies d′(f(x), f(q)) < ϵ′. Then, as long as d(x, p) < min(δ1, δ2),
d(x′, p) < min(δ1, δ2),

d′(f(x), f(x′)) ≤ d′(f(x), f(p)) + d′(f(p), f(q)) + d′(f(q), f(x′))

< d′(f(p), f(q)) + 2ϵ′ < ϵ

In other words, B(X×X,dsup)((p, q),min(δ1, δ2)) ∩ Vϵ = ∅.

By Theorem 3.4.11, (X × X, dsup) is compact, hence by Theorem 3.4.10,
so is Vϵ. The function (x, y) 7→ d(x, y) is a positive continuous function on Vϵ

(because it is 2-Lipschitz), hence by Theorem 3.4.9 it has a positive minimum
δ = d(xm, ym), where (xm, ym) ∈ Vϵ. In other words, if d(x, y) < δ then
(x, y) ̸∈ Vϵ, hence d′(f(x), f(y)) < ϵ. This shows the uniform continuity of
f .

Proof 2. For any ϵ > 0, any x ∈ X, let rx > 0 satisfies d(x′, x) < rx implies
d′(f(x′), f(x)) < ϵ/2. Then X =

⋃
x∈X BX(x, rx/2). By compactness, there

are finitely many x1, . . . , xn ∈ X such that
⋃n

i=1 Bx(xi, rxi
/2) = X. Let δ =

min{rx1
, . . . , rxn

} > 0. For any x, x′ ∈ X, if d(x, x′) < δ, let xi ∈ {x1, . . . , xn}
such that x ∈ BX(xi, rxi/2), then

d(x, xi) < rxi
/2 < rxi

d(x′, xi) < d(x, xi) + d(x′, x) < rxi/2 + δ ≤ rxi

Hence
d′(f(x), f(xi)) < ϵ/2

d′(f(x′), f(xi)) < ϵ/2

By triangle inequality d′(f(x), f(x′)) < ϵ.

Theorem 6.3.14. If f : [a, b] → R is continuous then it is Riemann integrable.

Proof. This follows from Theorem 6.3.13 and Theorem 6.3.12.

Remark 6.3.15. (Please don’t use this fact in HW and exam) One can also
show that a bounded function on a finite closed interval [a, b] is Riemann in-
tegrable iff it is “almost everywhere continuous”, i.e. for any ϵ > 0, there are
countably infinitely many intervals I1, I2, . . . , such that

∑∞
i=1 |Ii| < ϵ and f is

continuous at [a, b]\
⋃∞

i=1 Ii. For example, the function defined on [0, 1]:

f(x) =

{
0 x ̸∈ Q
|q|−1/2 x = p/q, gcd(p, q) = 1

is Riemann integrable.
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6.4 Fundamental Theorem of Calculus

Theorem 6.4.1. If f : [a, b] → R is Riemann integrable, c ∈ (a, b), then f |[a,c]
and f |[c,b] are both Riemann integrable on [a, c] and [c, b] respectively, and∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

Proof. By Theorem 6.3.8, for any ϵ > 0 there is a partition P = P (S) such that

U(f, P )− L(f, P ) < ϵ

By Lemma 6.3.3 and Remark 6.3.4, if P ′ = P (S ∪ {c}) then

U(f, P ′)− L(f, P ′) ≤ U(f, P )− L(f, P ) < ϵ

In particular, if P ′ = (x0 = a, . . . , xk = c, . . . , xn = b), let P ′
1 = (x0 = a, · · ·xk =

c) and P ′
2 = (xk = c, . . . , xn = b), then P ′

1 and P ′
2 are partitions of [a, c] and

[c, b] respectively, and

U(f, P ′)− L(f, P ′) = (U(f, P ′
1)− L(f, P ′

1))− (U(f, P ′
2)− L(f, P ′

2))

Hence
U(f, P ′

1)− L(f, P ′
1) < ϵ

U(f, P ′
2)− L(f, P ′

2) < ϵ

These implies that f |[a,c] and f |[c,b] are Riemann integrable on [a, c] and [c, b]
respectively.

Furthermore, because

L(f, P ′) ≤
∫ b

a

f(x)dx ≤ U(f, P ′)

L(f, P ′
1) ≤

∫ c

a

f(x)dx ≤ U(f, P ′
1)

L(f, P ′
2) ≤

∫ b

c

f(x)dx ≤ U(f, P ′
2)

We have

|
∫ b

a

f(x)dx−
∫ c

a

f(x)dx−
∫ b

c

f(x)dx| ≤ ϵ

Because ϵ can be any positive real number,∫ b

a

f(x)dx−
∫ c

a

f(x)dx−
∫ b

c

f(x)dx = 0
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Furthermore, from the definition of Riemann integrals we can show:

Theorem 6.4.2. If f, g : [a, b] → R are two Riemann integrable functions. If
for any x ∈ [a, b], f(x) ≤ g(x), then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx

Proof. For any ϵ > 0, pick partition P such that U(f, P ) − L(f, P ) < ϵ. By
definition, L(f, P ) ≤ L(g, P ), hence∫ b

a

f(x)dx−
∫ b

a

g(x)dx ≤ U(f, P )− L(g, P )

≤ (U(f, P )− L(f, P )) + (L(f, P )− L(g, P )) ≤ ϵ

Because ϵ can be any positive number,∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx

Remark 6.4.3. Actually if f(x) < g(x) for all x ∈ [a, b] then
∫ b

a
f(x)dx <∫ b

a
g(x)dx, but the proof is far more complicated.

Theorem 6.4.4. If f is a real valued continuous function on [a, b], then

F : x 7→
∫ x

a

f(t)dt

is continuous on [a, b], differentiable on (a, b), and F ′(x) = f(x) for any x ∈
(a, b).

Proof. f is continuous on compact set hence bounded. Let M be an upper
bound of |f |. For any x, x′ ∈ [a, b], if x < x′ then

|F (x′)− F (x)| = |
∫ x′

x

f(t)dt| ≤ M |x′ − x|

in other words F is M -Lipschitz hence continuous.

For any c ∈ (a, b), any ϵ > 0, let r > 0 satisfies f((c − r, c + r)) ⊆ (f(c) −
ϵ/2, f(c) + ϵ/2), hence for any 0 < h < r,

F (c+ h)− F (c) =

∫ c+h

c

f(t)dt ≤
∫ c+h

c

(f(c) + ϵ)dt = hf(c) + ϵh/2

Similarly, F (c+ h)− F (c) ≥ f(c)h− ϵh/2. Hence∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ ≤ ϵ/2 < ϵ

We can similarly prove that the inequality above is true when −r < h < 0,
hence F is differentiable at c and F ′(c) = f(c).
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Theorem 6.4.5. If F is continuous on [a, b], differentiable on (a, b), f is a
Riemann integrable function on [a, b] and F ′(x) = f(x) for any x ∈ (a, b), then∫ b

a

f(x)dx = F (b)− F (a)

Proof. For any ϵ > 0, let P = (x0 = a, x1, . . . , xn = b) be a partition of [a, b]
such that U(f, P )− L(f, P ) < ϵ, then by Mean Value Theorem,

F (b)−F (a) =

n∑
i=1

(F (xi)−F (xi−1)) ≤
n∑

i=1

(xn−xn−1) sup(F
′([xn−1, xn])) = U(f, P )

Similarly F (b) − F (a) ≥ L(f, P ), hence |
∫ b

a
f(x)dx − (F (b) − F (a))| < ϵ. This

proved the theorem.

Remark 6.4.6. F1(x) =

{
0 x = 0

x2 sin(1/x) x ̸= 0
is differentiable on [−1, 1], the

derivative is Riemann integrable but not continuous. F2(x) =

{
0 x = 0

x2 sin(1/x2) x ̸= 0

is differentiable on [−1, 1] and the derivative is unbounded hence not Riemann
integrable on [−1, 1].

6.5 Relationship with uniform convergence

Theorem 6.5.1. Let {fn} be a sequence of real valued functions on I = [a, b]
that converges uniformly to g, fn are all Riemann integrable, then so is g.

Proof. g is bounded because all fn are bounded. For any ϵ > 0, find N such
that dsup(fN , g) < ϵ

4(b−a) , find partition P of I = [a, b] such that U(fN , P ) −
L(fN , P ) < ϵ/2, then

U(g, P )− L(g, P ) ≤ |U(g, P )− U(fN , P )|+ |L(g, P )− L(fN , P )|

+|U(fN , P )− L(fN , P )| < ϵ

Hence by Theorem 6.3.8, g is Riemann integrable.

Theorem 6.5.2. LetR be the set of Riemann integrable functions inBF ([a, b],R)
(by Theorem 6.5.1 R is closed under dsup). The function I : R → R defined as

I(f) =
∫ b

a
f(x)dx is (b− a)-Lipschitz under dsup on R and Euclidean metric on

R.

Proof. If dsup(f, g) = r, then f(x)−r ≤ g(x) ≤ f(x)+r, hence this follows from

Theorem 6.4.2 and the fact that
∫ b

a
(f(x) + c)dx =

∫ b

a
f(x)dx+ c(b− a).

An immediate consequence of Theorem 6.5.1 and Theorem 6.5.2 is the fol-
lowing:
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Theorem 6.5.3. If {fn} is a sequence of Riemann integrable functions on [a, b],

fn converges to g uniformly, then g is also Riemann integrable and
∫ b

a
g(x)dx =

limn→∞
∫ b

a
f(x)dx.

Example 6.5.4. Let I = [0, 1], consider functions g, fn on I defined as

g(x) =

{
1
q x = p

q , gcd(p, q) = 1, q > 0

0 x ̸∈ Q

fn(x) =

{
1
q x = p

q , gcd(p, q) = 1, 0 < q < n

0 otherwise

Then fn are all Riemann integrable (because they are continuous except for

finitely many points),
∫ 1

0
fn = 0, and fn converges to g uniformly. Hence g is

Riemann integrable and
∫ 1

0
g(x)dx = 0.

Example 6.5.5. The functions

fn =

{
nxn x < 1

0 x = 1

defined on [0, 1] converges to the 0 function pointwise as n → ∞, but the
convergence is not uniform. And

lim
n→∞

∫ 1

0

fn(x)dx = 1 ̸=
∫ 1

0

0dx

Example 6.5.6. LetR be the set of Riemann integrable functions inBF ([a, b],R),
the function J : R → R defined as

J(f) =

∫ x

a

f(t)dt

is also (b − a)-Lipschitz under dsup. Hence if fn converges to g uniformly over
[a, b], and fn are all Riemann integrable, then {

∫ x

a
fn(t)dt} converges to

∫ x

a
g(t)dt

uniformly.

Theorem 6.5.7. Let I = [a, b] be a finite closed interval, c ∈ I, fn and g
continuous on I and differentiable on its interior. Suppose limn→∞ fn(c) = g(c),
and f ′

n converges to g′ uniformly on the interior of I, then fn converges to g
uniformly on I.

Proof. For any ϵ > 0, let N satisfies n > N implies |fn(c) − g(c)| < ϵ/2, N ′

satisfies n > N ′ implies |f ′
n(x)− g′(x)| < ϵ

2(b−a) for any x ∈ (a, b), then for any

n > max(N,N ′), by Theorem 6.2.6, for any x ̸= c,

(fn − g)(x)− (fn − g)(c) = (x− c)(f ′
n − g′n)(d)
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where d lies in between x and c, hence is in (a, b). Hence

|fn(x)− g(x)| ≤ |fn(c)− g(c)|+ |x− c||f ′
n(d)− g′n(d)| < ϵ

6.5.1 Application to power series

Consider power series f(x) =
∑∞

n=0 anx
n. Theorem 5.2.9 implies that if M =

lim supn→∞ |an|1/n < ∞, then for any r > 0, if Mr < 1, then the partial sums
pn(x) =

∑n
i=0 aix

i converges uniformly on [−r, r] to f(x). Apply Example 6.5.6
to {pn} and f , we get:

Theorem 6.5.8. Let f(x) =
∑∞

n=0 anx
n, r > 0 and r lim supn→∞ |an|1/n < 1,

then for any x ∈ [0, r], ∫ x

0

f(t)dt =

∞∑
n=0

an
n+ 1

xn+1

For any x ∈ [−r, 0], ∫ 0

x

f(t)dt = −
∞∑

n=0

an
n+ 1

xn+1

Remark 6.5.9. When a > b, we often denote −
∫ a

b
f(x)dx as

∫ b

a
f(x)dx. Hence

the above theorem can be stated as∫ x

0

f(t)dt =

∞∑
n=0

an
n+ 1

xn+1

Furthermore, one can verify using definition of lim sup that

lim sup
n→∞

|an|1/n = M

iff for any ϵ > 0, there is some N such that for any n > N , |an|1/n < M + ϵ, and
there is some m > n such that |am|1/m > M−ϵ. Because limn→∞(n+1)1/n = 1,

lim sup
n→∞

|(n+ 1)an+1|1/n = M

Hence p′n(x) also converges uniformly on [−r, r] to
∑∞

n=0(n+ 1)an+1x
n.

Because
∑∞

n=0(n+ 1)an+1x
n is continuous, by Theorem 6.4.4 there is some

function g continuous on [−r, r] such that g′(x) =
∑∞

n=0(n + 1)an+1x
n for

x ∈ (−r, r) and g(0) = a0. By Theorem 6.5.7, pn converges to g uniformly on
[−r, r], hence g =

∑∞
n=0 anx

n = f . This shows that
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Theorem 6.5.10. Let f(x) =
∑∞

n=0 anx
n, r > 0 and r lim supn→∞ |an|1/n < 1,

then for any x ∈ (−r, r)

f ′(x) =

∞∑
n=0

(n+ 1)an+1x
n

Example 6.5.11. When |x| < 1,

1

1 + x
=

∞∑
n=0

(−1)nxn

By Theorem 6.5.8, for any 0 < r < 1,

log(1 + r) =

∞∑
n=1

(−1)n−1

n
rn

Given any ϵ > 0, if 1
N < ϵ/3, then by alternating series test (from what you

might have seen in Calc 2, or you can also deduce this by using summation by
parts) ∣∣∣∣∣

∞∑
n=1

(−1)n−1

n
−

N∑
n=1

(−1)n−1

n

∣∣∣∣∣ < ϵ/3

and for all 0 < r < 1,∣∣∣∣∣
∞∑

n=1

(−1)n−1rn

n
−

N∑
n=1

(−1)n−1rn

n

∣∣∣∣∣ < ϵ/3

Furthermore, there is some δ > 0 such that when r ∈ (1− δ, 1),∣∣∣∣∣
N∑

n=1

(−1)n−1

n
−

N∑
n=1

(−1)n−1rn

n

∣∣∣∣∣ < ϵ/3

This shows that for all r ∈ (1− δ, 1),∣∣∣∣∣
∞∑

n=1

(−1)n−1

n
− log(1 + r)

∣∣∣∣∣ < ϵ

This is only possible when

∞∑
n=1

(−1)n−1

n
= log(2)
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6.6 Taylor’s Theorem

Definition 6.6.1. The n-th order derivative of a function f is defined as

f (0) = f

f (n+1) = (f (n))′

Let f be a function with n-th order derivatives on (−r, r), then

f(x)−
n∑

i=0

f (n)(0)

n!
xn

has n-th order derivatives on (−r, r), and all of its higher order derivatives up
to order n are 0 at 0. This is called the n-th Taylor remainder of f , denoted
as Rn, and Taylor’s Theorems are different ways of estimating this Rn.

Theorem 6.6.2. If f has n + 1-th order derivative on (0, x), then there is
c ∈ (0, x) such that

Rn(x) =
f (n+1)(c)xn+1

(n+ 1)!

When n = 0 one can see that this just reduces to Theorem 6.2.6.

Proof. Apply Theorem 6.2.7 to f(x) = Rn(x) and g(x) = xn+1, then we get c1
between 0 and x such that

(n+ 1)cn1 (Rn(x)− 0) = R′
n(c1)(x

n+1 − 0)

So
Rn(x)

xn+1
= (n+ 1)

R′
n(c1)

cn1
Apply Theorem 6.2.7 to f(x) = R′

n(x) and g(x) = xn, we get c2 between 0 and
c1 such that

R′
n(c1)

cn1
= n

R′′
n(c2)

cn−1
2

Repeat this process, we get

Rn(x)

xn+1
= (n+ 1)

R′
n(c1)

cn1
= (n+ 1)n

R′′
n(c2)

cn−1
2

= . . .

= (n+ 1)!R(n+1)(cn+1) = (n+ 1)!f (n+1)(cn+1)

Now let c = cn+1.

By Fundamental Theorem of Calculus and Integration by Parts, we also
have:

Theorem 6.6.3. If f has n + 1-th order derivative and the n + 1-th order
derivative is continuous on (−r, r), then

Rn =

∫ x

0

f (n+1)(t)(x− t)n

n!
dt
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6.7 Further Topics in Analysis

• Arzela-Ascoli, Stone-Weierstrass etc.

• Measure Theory: Lebesgue integration, Rietz representation, probabil-
ity

• Complex analysis

• Harmonic analysis

• Functional Analysis: Gelfand’s spectral theory, C∗ algebra, von-Neumann
algebra etc.

• Ergodic Theory

• PDE

• . . .
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Appendix A Midterm Review

Topics that will be covered in Midterm:

• R

– Smallest Upper Bound Property

– Denseness of Q in R, and related results.

– Compactness of finite closed intervals, and related results.

• Metric Spaces

– Open sets, closed sets

– Continuity

– Compactness

– Open and closed sets in R, intermediate value theorem

Exercises:

1: Let (X, d) be a metric space, f, g : X → R continuous, show that
h : X → R defined by h(x) = max(f(x), g(x)) is also continuous.

Answer: Can use ϵ-δ, or just by definition: any open subset of R is a union
of finite open intervals of the form (a, b), a < b, and

h−1((a, b)) = f−1((−∞, b)) ∩ g−1((−∞, b)) ∩ (f−1((a,∞)) ∪ g−1((a,∞))

hence must be open in X.

2: Let (X, d) be a compact metric space, then for any r > 0, there is a
finite subset Ar ⊆ X such that for any x ∈ X, there is some a ∈ Ar such that
d(x, a) < r.

Answer: X =
⋃

x∈X BX(x, r), hence compactness implies that there are
finitely many x1, . . . , xn such that X =

⋃n
i=1 BX(xi, r). Ar = {x1, . . . , xn}.

3: Let (X, d) be a metric space, Vn, n ∈ N non-empty compact subsets of
X, Vn+1 ⊆ Vn for all n. Show that

⋂
n∈N Vn is non-empty.

Answer: For any n > 0, because Vn is compact, V0\Vn is an open subset
of V0. If

⋂
n∈N Vn = ∅, then V0 =

⋃∞
n=1(V0\Vn), hence compactness of V0 im-

plies that there must be finite many n1, . . . nm such that V0 =
⋃m

j=1(V0\Vnj
) =

V0\Vmax(n1,...,nm). Hence Vmax(n1,...,nm) = ∅, a contradiction.

4: Let (X, d) be a compact metric space, f : R → X a continuous map.
Show that for any ϵ > 0, for any T > 0, there are x, y ∈ R, y − x > T , and
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d(f(x), f(y)) < ϵ.

Answer: Suppose not, then there is some ϵ > 0, T > 0, such that for any
x, y ∈ R, if d(f(x), f(y)) < ϵ then |x− y| ≤ T . Let Y = f(R), then Y is closed
hence compact. The set {BY (f(t), ϵ) : t ∈ R} is an open cover of Y , hence has
a finite subcover, i.e. Y =

⋃n
i=1 BY (f(ti), ϵ). Let t′ = max{ti} + T + 1, then

d(f(t′), f(ti)) < ϵ for some ti yet |t′ − ti| ≥ T + 1 > T , a contradiction.
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Appendix B Practice Problems for Midterm

1. Let A be a non-empty closed subset of R. Define function g : R → R as

g(x) = sup{r ∈ R : r ≤ 0 or (x− 2r, x+ r) ∩A = ∅}

• Show that g(x) = 0 iff x ∈ A.

• Show that g is continuous.

Answer:

• If x ∈ A, for any r > 0, A ∩ (x− 2r, x+ r) ̸= ∅, hence g(x) = 0.

If x ̸∈ A, closedness of A implies that there is ϵ > 0 such that (x− ϵ, x+
ϵ) ∩A = ∅, hence g(x) ≥ ϵ/2 > 0.

• We only need to show that x is continuous at every point. If x ∈ A, for
any ϵ > 0, let δ = ϵ, then for any x′ within δ-distance to x, the interval
(x′−2r, x′+r) must have non-empty intersection with A for all r ≥ |x−x′|,
and |x− x′| < ϵ. Hence 0 ≤ g(x′) < ϵ.

If x ̸∈ A, suppose g(x) = y > 0, then (x−2y, x+y)∩A = ∅. Furthermore,
if (a, b) ∩A = ∅ and a < x− 2y, b > x+ y, let y′ = min(b− x, (x− a)/2),
then y′ > y and (x − 2y′, x + y) ∩ A = ∅, which contradicts with the
definition of g. Hence there can not be a < x − 2y, b > x + y such that
(a, b) ∩A = ∅.

Given ϵ > 0, let δ = min(y/2, ϵ/2). Then for any x′ ∈ (x−δ, x+δ), the ar-
gument in the previous paragraph implies that g(x)−ϵ < max(y/2, g(x)−
ϵ/2) ≤ g(x′) ≤ g(x) + ϵ/2 < g(x) + ϵ.

2.

• Let (X, d) be a compact metric space, show that if A ⊂ X is the inter-
section of an open set and a closed set in X, then for any p ∈ A, there
is some r > 0 such that the intersection between A and the closed ball
centered at p is compact.

• Find a subset of R which is not the intersection of an open set and a closed
set.

Answer:

• Suppose A = U ∩ V , U is open and V is closed. For any p ∈ A, let r′ > 0
be such that BX(p, r′) ⊆ U , and let r = r′/2, then the closed ball B
centered at p with radius r is a subset of U , hence A∩B = V ∩B is closed
hence compact.
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• The previous argument shows that for example Q is not the intersection
of an open set and a closed set.

3. Let f be a function from [0, 1] to [0, 1], such that for any c ∈ [0, 1],
f−1([0, c]) is closed.

• Show that the set {(x, y) : 0 ≤ x ≤ 1, f(x) ≤ y ≤ 1} is compact as a
subspace of R2.

• Show that there is some x ∈ [0, 1] such that for any x′ ∈ [0, 1], f(x) ≤
f(x′).

Answer:

• Because f−1([0, c]) is closed, its complement in [0, 1], f−1((c, 1]), is an
open subset of [0, 1]. Hence the set U =

⋃
c∈(0,1){(x, y) ∈ [0, 1] × [0, 1] :

y < c, x ∈ f−1((c, 1])} is open. The set in question is [0, 1]× [0, 1]\U hence
closed hence compact.

• The map (x, y) 7→ y is continuous, hence there must be some point
(xm, ym) in the set {(x, y) : 0 ≤ x ≤ 1, f(x) ≤ y ≤ 1} where the value of
this function is minimized. It is evident that ym has to be f(xm).

67



Appendix C Final Review

Topics that will be covered in final exam:

• R

– Smallest Upper Bound Property

– Denseness of Q in R, and related results.

– Compactness of finite closed intervals, and related results.

• Metric Spaces

– Open sets, closed sets

– Continuity

– Compactness

– Open and closed sets in R, intermediate value theorem.

• Sequential Limit in metric space

– Relationship between sequential limit and open set, closed sets and
continuity

– Cauchy sequences

– Completeness, compact sets are complete.

– Uniform convergence theorems

• Sequences and series

– Monotone convergence, upper and lower limits

– Comparison test, convergence of power series

– Summation by parts

• Differentiation and integration

– Definition of differentiation and Riemann integrals

– Integrability of continuous functions, continuity implies uniform con-
tinuity on compact sets

– Intermediate value theorem for derivatives, mean value theorem

– Fundamental Theorem of Calculus

– Uniform convergence, differentiation and integration

• L’Hospital’s Rule and discrete L’Hospital’s Rule.

Exercises:

1. Are the following numbers greater than 1, equals 1 or less than 1?
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• limN→∞

∑N
n=1 sin( 1

n2 )∑N
n=1

1
n2

• limN→∞

∑N
n=1 sin( 1

n )∑N
n=1

1
n

Answer: Because when x > 0, sin(x) < x, we have

∞∑
n=1

sin(
1

n2
) <

∞∑
n=1

1

n2

hence

lim
N→∞

∑N
n=1 sin(

1
n2 )∑N

n=1
1
n2

< 1

By discrete L’Hospital’s Law,

lim
N→∞

∑N
n=1 sin(

1
n )∑N

n=1
1
n

= lim
N→∞

sin( 1
N )

1
N

= 1

2. Let X be a metric space, show that limn→∞ xn = x iff the function
fn : X → R defined by y 7→ d(y, xn) converges uniformly to g : X → R defined
by y 7→ d(y, x).

Answer: For any ϵ > 0, let N ∈ N such that n > N implies d(xn, x) < ϵ,
then for any y ∈ X,

|fn(y)− g(y)| = |d(y, xn)− d(y, x)| ≤ d(xn, x) < ϵ

This shows that fn converges to g uniformly.

3. Show that the function f(x) =

{
x2 x ≥ 0

0 x < 0
is differentiable at 0.

Answer: For any ϵ > 0, let δ = ϵ, then for any x ∈ (0− δ, 0 + δ),

|f(x)− f(0)− 0(x− 0)| ≤ |x2| < ϵ|x|

This shows that f ′(0) = 0.

4. Let {an} be a sequence of real numbers. Suppose limn→∞ a2n = 1 and
limn→∞ a2n+1 = 0.

• Show that limn→∞ an does not exist.

• Calculate lim supn→∞ an.

• Calculate limn→∞ |an − an+1|.

• Show that the set {an : n ∈ N} ∪ {0, 1} is compact.
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Answer:

• This is because if a sequence converges then any subsequence must con-
verge to the same limit.

• The answer is 1. To show that, for any ϵ > 0, find N1 such that n > N1

implies a2n ∈ (1 − ϵ, 1 + ϵ), and N2 such that n > N2 implies a2n+1 ∈
(−ϵ, ϵ). Now for any n > max(2N1, 2N2 + 1), for any k ≥ n, ak < 1 + ϵ,
so lim supn→∞ an ≤ 1+ ϵ. On the other hand, if k ≥ n and k is even then
ak > 1− ϵ, so lim supn→∞ an > 1− ϵ. Because ϵ can be any positive real
number, lim supn→∞ = 1.

• This is 1, argument similar to the calculation of lim sup above.

• Denote this set as X, let C be an open cover, then there must be two
elements U0, U1 ∈ C which covers 0 and 1 respectively. By assumption
X\(U0 ∪ U1) consists of finitely many points hence can be covered by
finitely many elements of C.

5. Suppose lim supn→∞ an = A and lim supn→∞ bn = B, show that lim supn→∞(an+
bn) ≤ A+B.

Answer: For any ϵ > 0, let N1 satisfies that n > N1 implies sup{ak :
k ≥ n} < A + ϵ, N2 satisfies that n > N2 implies sup{bk : k ≥ n} < B + ϵ,
then when n > N = max(N1, N2), the set {ak + bk : k ≥ n} has an upper
bound sup{ak : k ≥ n} + sup{bk : k ≥ n} < A + B + 2ϵ. This shows that
lim supn→∞(an+ bn) < A+B+2ϵ. Because ϵ can be any positive real number,
lim supn→∞(an + bn) ≤ A+B.

6. Show that any monotone increasing function on [0, 1] is Riemann inte-
grable on [0, 1].

Answer: For any ϵ > 0, let n ∈ N satisfies (f(1) − f(0))/n < ϵ, let P be
the partition (0, 1/n, . . . , (n− 1)/n, 1), then

U(f, P )−L(f, P ) =

n∑
i=1

1

n
sup(f([(i−1)/n, i/n]))−

n∑
i=1

1

n
inf(f([(i−1)/n, i/n]))

=
1

n
(

n∑
i=1

f(i/n)−
n∑

i=1

f((i− 1)/n) = (f(1)− f(0))/n < ϵ

7. Show that if
∑∞

n=0 an converges then
∑∞

n=0 anx
n converges uniformly on

[0, 1]. (Hint: using summation by parts)

Answer: We just need to show this sequence is uniformly Cauchy. Because
the sequence of partial sums of an converges, it is Cauchy, in other words, for
any ϵ > 0, there is N ∈ N, such that for any q > p > N , |

∑q
n=p+1 an| < ϵ/2.
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Now for any q > p > N , x ∈ [0, 1]

|
q∑

n=p+1

anx
n| = |

q−1∑
n=p+1

(

n∑
k=p+1

ak)(x
n − xn+1) + (

q∑
n=p+1

an)x
q|

≤ ϵ/2(

q−1∑
n=p+1

|xn − xn+1|+ xq) ≤ ϵ/2 < ϵ

This shows that the partial sum sequence of anx
n is uniformly Cauchy. Due to

completeness of R this shows that the series converge uniformly.

8. Show that if f is bounded on [a, b] and continuous on (a, b) then f is
Riemann integrable on [a, b].

Answer: Let M be an upper bound of |f |. For any ϵ > 0, let 0 < r <
min((b− a)/4, ϵ/(8M)), and let P = (x0, . . . , xn) be a partition of [a+ r, b− r]
such that U(f, P ) − L(f, P ) < ϵ/2. Let P ′ be the partition (a, x0, . . . , xn, b),
then

U(f, P ′)− L(f, P ′) ≤ U(f, P )− L(f, P ) + 2r · 2M < ϵ
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Appendix D Review Problems for Final Exam

1. Let A and B be two non-empty subsets of R, both A and B has upper
bounds. Show that sup(A) ≤ sup(B) iff for any ϵ > 0, for any a ∈ A, there is
some b ∈ B such that b > a− ϵ.

Answer: =⇒ : because sup(B) is the smallest upper bound of B, and
sup(B)−ϵ < sup(B), there is some b ∈ B such that b > sup(B)−ϵ ≥ sup(A)−ϵ ≥
a− ϵ.

⇐= : if sup(B) < sup(A), then let ϵ = (sup(A) − sup(B))/3, a ∈ A such
that a > sup(A)− ϵ, then there can not be any b ∈ B such that b > a− ϵ.

2. Let (X, d) be a compact metric space with infinitely many elements,
r > 0, show that there is some natural number N , such that any subset of X
with N elements would have two element with distance less than r.

Answer: By compactness, X can be covered by finitely many open r/3-balls.
Let M be the number of these r/3 balls and N = M + 1, then any N points in
X must have at least 2 in the same r/3 ball, hence within distance 2r/3 < r of
one another.

3. Let {an} be a sequence of real numbers. Suppose
∑∞

n=0 an converges,
show that fn(x) =

∑∞
n=0 anx

n converges uniformly on [−r, r] for any 0 < r < 1.

Answer: This is because
∑∞

n=0 an converges implies |an| is bounded, hence
lim supn→∞ |an|1/n ≤ 1.

4. Let g be a Riemann integrable function on [−2, 2]. Show that the sequence
of functions: fn : [−1, 1] → R defined by

fn(x) = 2n
∫ x+2−n−1

x−2−n−1

g(t)dt

are all continuous, and when g is continuous, fn converges uniformly to g|[−1,1].

Answer: Let M be the upper bound of |g|, then for any x < x′,

|fn(x)−fn(x
′)| ≤ 2n(|

∫ x′−2−n−1

x−2−n−1

g(t)dt|+ |
∫ x′+2−n−1

x+2−n−1

g(t)dt|) ≤ 2n+1M |x′−x|

So fn are all Lispchitz hence continuous.

If g is continuous it is also absolutely continuous. For any ϵ > 0, let δ be such
that |x− y| < δ implies |g(x)− g(y)| < ϵ/2, and let N be such that 2−N−1 < δ.
Then for n > N , for any x ∈ [−1, 1],
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|fn(x)− g(x)| ≤ 2n
∫ x+2−n−1

x−2−n−1

|g(t)− g(x)|dt ≤ ϵ/2 < ϵ

5. Show that the set of functions that are differentiable at 0 is not closed
under dsup as a subset of the set of real valued continuous functions on [−1, 1].

Answer: fn(x) = |x|(n+2)/(n+1) are all differentiable at 0 but this sequence
converges uniformly to |x| which is not differentiable at 0.
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Appendix E HW Solutions

E.1 HW 1

1. Let ≤ be a linear order on a set A. Let B = A×A, define a relation ≤′ from
B to itself as (a, b) ≤′ (c, d) if and only if either of the following two cases is
true:

1. a < c

2. a = c and b ≤ d

Here, by a < c, we mean a ≤ c and a ̸= c. Show that ≤′ is also a linear order.

Answer: Recall that a relation ⪯ between a set and itself is called a linear
order if it satisfies:

1. a ⪯ a

2. a ⪯ b, b ⪯ a =⇒ a = b

3. a ⪯ b, b ⪯ c =⇒ a ⪯ c

4. a ⪯ b or b ⪯ a

Now we check these four conditions for ≤′:

• Condition 1: For any (a, b) ∈ B, we have a = a. Also, because ≤ satisfies
Condition 1, b ≤ b. Hence by the definition of ≤′ we have (a, b) ≤′ (a, b).

• Condition 2: Suppose (a, b) ≤′ (c, d) and (c, d) ≤′ (a, b), by definition of
≤′ we have a ≤ c and c ≤ a, hence a = c, which implies that b ≤ d and
d ≤ b, which implies b = d.

• Condition 3: Suppose (a, b) ≤′ (c, d) and (c, d) ≤′ (e, f). Then by defini-
tion of ≤′ we must be in one of the following four cases:

– Case 1: a = c = e. In this case the definition of ≤′ implies that b ≤ d
and d ≤ f , hence b ≤ f , we have (a, b) ≤′ (e, f).

– Case 2: a < c and c < e. This implies that a ≤ c and c ≤ e, apply
Condition 3 to ≤ we get a ≤ e. On the other hand, if a = e then
a ≤ c and c ≤ a which implies a = c, which contradicts with the
assumption that a < c. Hence a ̸= e, which together with a ≤ e
implies a < e. Hence by the definition of ≤′ we have (a, b) ≤′ (e, f).

– Case 3: a = c, c < e. This implies a < e, hence (a, b) ≤′ (e, f).

– Case 4: a < c, c = e. This implies a < e, hence (a, b) ≤′ (e, f).

• Condition 4: Suppose (a, b) ̸≤′ (c, d), we need to show that (c, d) ≤′ (a, b).
By definition of ≤′, if (a, b) ̸≤′ (c, d), then a ̸< c, which implies c ≤ a. If
c < a then (c, d) ≤′ (a, b). If c = a, then (a, b) ̸≤′ (c, d) implies b ̸≤ d,
hence d < b, which implies (c, d) ≤′ (a, b).
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2. Write down an injection from Q to N. Let F be the set of injections from
Q to N, show that F has the same cardinality as the power set of N. (Hint:
You only need to show |F | ≤ |P (N)| and |P (N| ≤ |F |, by constructing injections
between these two sets.)

Answer: An injection i from Q to N can be defined as follows: any element
in Q can be uniquely written as ±p/q where p, q ∈ N, gcd(p, q) = 1. Let

i(p/q) = 2p+13q+1

i(−p/q) = 5p+13q+1

The injectivity of i is due to unique factorization of integers.

An injection from F to P (N) can be defined as follows:

f 7→ {2i(q)+13f(q)+1 : q ∈ Q}

And an injection from P (N) to F can be defined as follows:

A 7→ fA

where

fA(q) =

{
i(q) q ̸∈ A

7i(q) q ∈ A

The well definedness and injectivity of these maps also follows from unique
factorization.

E.2 HW 2

1. Find a non-empty subset A of R that has an upper bound, and sup(A) ̸∈ A.

Answer: If A = (0, 1) then sup(A) = 1 ̸∈ A.

2. Let A ⊆ R, A ̸= ∅. Show that a real number m is sup(A), if and only if
it satisfies both of the following two conditions:

(1) For any a ∈ A, a ≤ m

(2) For any n ∈ N, n > 0, there is some number b ∈ A, such that b > m−1/n.

Answer: Suppose m = sup(A), then m is an upper bound of A, hence (1) is
true. Now we prove that (2) is true also. Suppose (2) is not true, then there is
some positive natural number n such that for all b ∈ A, b ≤ m − 1/n. Hence
m− 1/n is an upper bound of A that is less than m, a contradiction.

Suppose m satisfies both (1) and (2). (1) implies that m is an upper bound
of A. Suppose there is another upper bound of A which is m′ < m, let n be
a natural number larger than 1

m−m′ , then m − 1/n is an upper bound of A as
well, which contradicts with (2). Hence m is also minimal among upper bounds
of A.
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E.3 HW 3

1. For any function g : [0,∞)× [0,∞) → [0,∞), let

dg : R2 × R2 → [0,∞)

be defined as
dg((x, y), (x

′, y′)) = g(|x− x′|, |y − y′|)

(1) Show that when g(s, t) = s+
√
t, dg is a metric on R2.

(2) Write down a function g such that (R2, dg) is not a metric space. Justify
your answer.

Answer:

(1)
dg((x, y), (x

′, y′)) = g(|x− x′|, |y − y′|)
= g(|x′ − x|, |y′ − y|) = dg((x

′, y′), (x, y))

dg((x, y), (x
′, y′)) = 0 ⇐⇒ |x− x′|+

√
|y − y′| = 0 ⇐⇒ x = x′, y = y′

Lastly,
dg((x, y), (x

′, y′)) + dg((x
′, y′), (x′′, y′′))

= (|x− x′|+ |x′ − x′′|) + (
√
|y − y′|+

√
|y′ − y′′|)

≥ |x− x′′|+
√
|y − y′′| = dg((x, y), (x

′′, y′′))

Here the ≥ is due to

√
a+

√
b =

√
(
√
a+

√
b)2 =

√
a+ b+ 2

√
a
√
b ≥

√
a+ b

(2) Let g = 0, then dg((0, 0), (1, 1)), hence dg is not a metric.

2. Let p : [0, 1] → (0, 1) be a function.

(1) Show that there is a finite set A ⊂ [0, 1], such that for any x ∈ [0, 1], there
is some a ∈ A such that |x− a| < p(a).

(2) Show that there is some ϵ > 0, such that for any x ∈ [0, 1], there is some
y ∈ [0, 1] such that |x− y|+ ϵ < p(y).

Answer:

(1)

[0, 1] ⊆
⋃

a∈[0,1]

(a− p(a), a+ p(a))

Hence there must be finitely many elements a1, . . . , an where

[0, 1] ⊆
n⋃

i=1

(ai − p(ai), ai + p(ai))

We can now let A = {a1, . . . , ai}.
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(2) Let A be as above, consider the finite set B = {ai±p(ai) : i ∈ {1, . . . , n}}.
Let r′ be the shortest distance between two successive elements in B, r =
min(r′, 0−min(B),max(B)− 1), then for any x ∈ [0, 1], (x− r/2, x+ r/2)
contains at most one element in B. Suppose it doesn’t contain any element
in B, then let y be an element ai ∈ A such that x ∈ (ai−p(ai), ai+p(ai)),
we have

(x− r/2, x+ r/2) ⊆ (ai − p(ai), ai + p(ai))

|x− ai|+ r/3 < p(ai)

Suppose it does contain an element in B, this element must also be in
[0, 1] hence must be in some (ai − p(ai), ai + p(ai)), and the end points of
this open interval (ai − p(ai), ai + p(ai)) can not be in (x− r/2, x+ r/2).
Hence we also have

(x− r/2, x+ r/2) ⊆ (ai − p(ai), ai + p(ai))

|x− ai|+ r/3 < p(ai)

Alternative solution for 2(2): Because [0, 1] ⊆
⋃

x∈[0,1](x − p(x)/2, x +

p(x)/2), by compactness there must be finitely many elements x1, . . . xk in [0, 1]
such that for any y ∈ [0, 1], there is some xi such that |y−xi| < p(xi)/2. Hence
we can let ϵ = min(p(x1)/3, . . . , p(xk)/3).

3. Let X = {[a, b] : a, b ∈ R, a < b} be the set of all finite closed intervals in
R. Define d : X ×X → [0,∞) as

d([a, b], [a′, b′]) = inf({t ∈ R : t ≥ 0, [a, b] ⊆ [a′ − t, b′ + t], [a′, b′] ⊆ [a− t, b+ t]})

Show that (X, d) is a metric space. You need to check that d is well defined
first.

Answer:

• First check that d is well defined: the set {t ∈ R : t ≥ 0, [a, b] ⊆ [a′− t, b′+
t], [a′, b′] ⊆ [a − t, b + t]} is non-empty because |a| + |b| + |a′| + |b′| + 1 is
always in it, and has a lower bound 0, hence must always have an infimum.

• The symmetry is obvious from the definition of d.

• It is evident that 0 ∈ {t ∈ R : t ≥ 0, [a, b] ⊆ [a − t, b + t], [a, b] ⊆ [a −
t, b + t]}, hence d([a, b], [a, b]) = 0. On the other hand, if [a, b] ̸= [a′, b′],
then one of the endpoints of one of these two closed intervals can not be
in the other. Without loss of generality assume that a ̸∈ [a′, b′], then
min(|a − a′|, |a − b′|) > 0 is a lower bound of elements in {t ∈ R : t ≥
0, [a, b] ⊆ [a′ − t, b′ + t], [a′, b′] ⊆ [a− t, b+ t]}, hence d([a, b], [a′, b′]) ̸= 0.

• Suppose d([a, b], [a′, b′]) = d1, d([a
′, b′], [a′′, b′′]) = d2. Then, for any ϵ > 0,

there is some d′1 < d1 + ϵ such that

[a, b] ⊆ [a′ − d′1, b
′ + d′1]
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[a′, b′] ⊆ [a− d′1, b+ d′1]

Similarly, there is some d′2 < d2 + ϵ such that

[a′, b′] ⊆ [a′′ − d′2, b
′′ + d′2]

[a′′, b′′] ⊆ [a′ − d′2, b
′ + d′2]

Hence
[a, b] ⊆ [a′′ − d′1 − d′2, b

′′ + d′1 + d′2]

[a′′, b′′] ⊆ [a− d′1 − d′2, b+ d′1 + d′2]

In other words
d([a, b], [a′′, b′′]) ≤ d1 + d2 + 2ϵ

Because ϵ can be arbitrarily small we have

d([a, b], [a′′, b′′]) ≤ d1 + d2

which is the triangle inequality.

E.4 HW 4

1. Let (X, d) be a metric space. For any subset A ⊆ X, we define A as the
intersection of all closed sets in X that have A as a subset, and A◦ as the union
of all subsets of A which are also open subsets of X.

(1) Show that a point p ∈ X is in A◦, if and only if there is some r > 0, such
that the open ball centered at p with radius r, BX(p, r), is a subset of A.

(2) Show that a point p ∈ X is in A, if and only if for any r > 0, BX(p, r)∩A ̸=
∅.

(3) Show that

A◦ ⊆ ((A◦))◦ ⊆ ((A)◦) ⊆ A

(4) In the case when X is R with Euclidean metric, find an A ⊆ R such that

A◦ ⊊ ((A◦))◦ ⊊ ((A)◦) ⊊ A

Answer:

(1) p ∈ A◦ iff there is some open set U , p ∈ U and U ⊆ A. If there is such a
U , let r > 0 satisfies BX(p, r) ⊆ U , then BX(p, r) ⊆ A; if there is some
r > 0 such that BX(p, r) ⊆ A, we can let U = BX(p, r), then U is open,
p ∈ U and U ⊆ A.

(2) p ∈ A iff for any closed set V , iff for any open set U ⊆ X\A, p ̸∈ U iff
p ̸∈ (X\A)◦, which by the previous question, is equivalent to the fact that
for any r > 0, BX(p, r) ̸⊆ X\A, or in other words, BX(p, r) ∩A ̸= ∅.
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(3) A◦ is an open set and A◦ ⊆ A◦, hence A◦ ⊆ (A◦)◦. Because A ⊆ A, any
subset of A which is open must also be a subset of A, hence A◦ ⊆ (A)◦,

similarly we have A◦ ⊆ (A)◦, hence (A◦)◦ ⊆ A◦ ⊆ (A)◦. Lastly, A is

closed and (A)◦ ⊆ A, hence (A)◦ ⊆ A

(4) A = (0, 1)∪ (1, 2)∪ ([2, 3]∩Q)∪{4}. Then the four sets are (0, 1)∪ (1, 2),
(0, 2), [0, 3] and [0, 3] ∪ {4} respectively.

2. Let (X, d) be a metric space, d′ : X ×X → [0,∞) is defined as

d′(p, q) = min(1, d(p, q))

Show that the identity map idX is a continuous function from (X, d′) to (X, d).

Answer: For any ϵ > 0, let δ = min(ϵ, 1/2), then d′(x, y) < δ implies
d(x, y) < ϵ, hence idX as a function from (X, d′) to (X, d) is continuous.

E.5 HW 5

Unless specified otherwise, the metric on R or any of its subset are assumed to
be the Euclidean metric d(x, y) = |x− y|.

1. Suppose f : R → R is continuous, and the range f(R) is a subset of
Q. Show that f must be a constant function. (Hint: use intermediate value
theorem).

Answer: Suppose not, there are two real numbers a < b such that f(a) ̸=
f(b), hence by intermediate value theorem there is some c ∈ (a, b) such that
f(c) = f(a) + (f(b)− f(a))/

√
2 ̸∈ Q, which is a contradiction.

2. Suppose f and g are two continuous functions from R to R. f(q) = g(q)
for all q ∈ Q. Show that f = g.

Answer: Because both f and g are continuous, so is f−g. Suppose f−g ̸= 0,
there must be some x ∈ R where f(x) ̸= 0, hence by continuity there must be
some r > 0 such that f(x′) ̸= 0 for all x′ ∈ (x− r, x+ r). However denseness of
Q in R implies that (x−r, x+r) must contain rational numbers, a contradiction.

3. Let f : (−∞, 0] → R and g : [0,∞) → R be two continuous functions,
and f(0) = g(0). Show that the function f : R → R

h(x) =

{
f(x) x ≤ 0

g(x) x > 0

is continuous.
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Answer: For any ϵ > 0, because f is continuous, there is δ1 > 0 such that
for any x′ ∈ B(−∞,0](0, δ1) = (−δ1, 0], |f(x′) − f(x)| < ϵ. Similarly, there is
some δ2 > 0 such that for any x′ ∈ [0, δ2), |g(x′) − g(0)| < ϵ. Hence, if we let
δ = min(δ1, δ2) > 0, then as long as |x′ − x| < δ, |h(x′)− h(x)| < ϵ. Hence h is
continuous at 0. Continuity of f also implies continuity of h on (−∞, 0), while
continuity of g implies continuity of h on (0,∞), hence h is continuous.

4. Let (X, d) be a metric space, A ⊆ X, A ̸= ∅.

(1) Show that the function hA : X → R defined by hA(x) = inf({d(x, a) : a ∈
A}) is continuous.

(2) Show that A = {x ∈ X : hA(x) = 0}.

(3) If A is compact under the subspace metric, then for any x ∈ X there is
some a ∈ A such that d(a, x) = hA(x).

Answer:

(1) hA is a 1-Lipschitz function, because for any x, x′ ∈ X,

hA(x)− hA(x
′) = inf({d(x, a) : a ∈ A})− inf({d(x′, a) : a ∈ A})

≤ inf({d(x′, a) + d(x′, x) : a ∈ A})− inf({d(x′, a) : a ∈ A}) = d(x′, x)

Switching x and x′, we know that |hA(x)− hA(x
′)| ≤ d(x, x′).

(2) It is evident that A ⊆ h−1
A ({0}), and continuity of fA implies that h−1

A ({0})
is closed, hence A ⊆ h−1

A ({0}). On the other hand, if x ̸∈ A, because
X\A is open, there is some r > 0 such that A ∩ BX(x, r) = ∅, hence
hA(x) ≥ r > 0. This shows h−1

A ({0}) ⊆ A.

(3) The function d(·, x) restricted to a compact set A is continuous, hence
must reach its minimum at some a ∈ A.

5. Suppose (X, d) is a compact metric space, A ⊆ X, and A is an infinite
set. Show that there is some x ∈ X, such that for any ϵ > 0, the intersection
between A and the open ball in X centered at x with radius ϵ is an infinite set.

Answer: Suppose not, for every x ∈ X, there is some ϵx > 0 such that
A ∩ BX(x, ϵx) is a finite set. X =

⋃
x∈X BX(x, ϵx), hence by compactness of

X, there are finitely many x1, . . . , xn such that X =
⋃n

i=1 BX(xi, ϵxi
), hence

A =
⋃n

i=1(A∩BX(xi, ϵxi
)) which is a finite union of finite sets, a contradiction.

E.6 HW 6

Let (X, d) be a metric space of diameter 1. Let Z = Map(N, X) be the set of
sequences on X. Let dsup : Z × Z → [0,∞) be defined as

dsup(a, b) = sup{d(a(n), b(n)) : n ∈ N}
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1. Prove that (Z, dsup) is a metric space.

Answer: Because X is bounded, any function from N to X is a bounded
function, hence (Z, dsup) is a metric space.

2. For any x ∈ X, show that the set Lx consisting of all sequences whose
limit is x, is closed in Z.

Answer: For any a ̸∈ Lx, there is ϵ such that for any N ∈ N, there is some
nN > N such that d(a(nN ), x) ≥ ϵ. Consider the open ball centered at a with
radius ϵ/2 under metric dsup, then for any b in this open ball, for any N ∈ N,
we have nN > N and

d(b(nN ), x) ≥ d(a(nN ), x)− d(a(nN ), b(nN )) > ϵ/2

hence b ̸∈ Lx. This shows that the compliment of Lx is open, hence Lx is closed.

3. Show the set C consisting of all Cauchy sequences on X is closed in Z.

Answer: For any a ̸∈ C, there is some ϵ > 0 such that for any N ∈ N,
there is mN > nN > N such that d(a(mN ), a(nN )) ≥ ϵ. Now for any b ∈
B(Z,dsup)(a, ϵ/3), for any N ∈ N,

d(b(mN ), b(nN )) ≥ d(a(mN ), a(nN ))−d(a(mN ), b(mN ))−d(a(nN ), b(nN )) ≥ ϵ/3

hence b ̸∈ C. This shows that the compliment of C is open, hence C is closed.

4. Show via an counter example, that the set L consisting of convergent
sequences on X is not necessarily closed.

Let X = Q and d be the Euclidean metric restricted to Q. Let q = {qn} be
a sequence of rational numbers convergent to

√
2 in R, then q ̸∈ L. Let pj be

defined as

pj(n) =

{
qn n ≤ j

pj n > j

Then the limit of pj is qj ∈ Q, hence pj ∈ L. On the other hand limj→∞ pj = q,
which implies that L is not closed.

E.7 HW 7

1. Let {an} be a sequence of real numbers, |an| ≤ 1 for all n. Show that

• lim supn→∞ an ≥ lim infn→∞ an.

• {an} converges in R iff lim supn→∞ an = lim infn→∞ an.

Answer:
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• By definition of lim sup and lim inf, For any ϵ > 0, there is N ∈ N such
that when n > N ,

sup{aj : j ≥ n} < lim sup
n→∞

an + ϵ

And there is N ′ ∈ N such that when n > N ′,

inf{aj : j ≥ n} > lim inf
n→∞

an − ϵ

Let N ′′ = max{N,N ′}+ 1, then

lim inf
n→∞

an−ϵ < inf{aj : j ≥ n} ≤ aN ′′ ≤ sup{aj : j ≥ N ′′} < lim sup
n→∞

an+ϵ

Hence
lim sup
n→∞

an − lim inf
n→∞

an > −2ϵ

Because ϵ can be any positive real number,

lim sup
n→∞

an − lim inf
n→∞

an ≥ 0

• Suppose limn→∞ an = b, then given any ϵ > 0, there is N ∈ N such that
when n > N , b− ϵ < an < b+ ϵ. Hence

lim sup
n→∞

an − lim inf
n→∞

an ≤ sup{aj : j ≥ N + 1} − inf{aj : j ≥ N + 1}

≤ (b+ ϵ)− (b− ϵ) = 2ϵ

Because ϵ can be any positive real number, this is only possible when
lim supn→∞ an − lim infn→∞ an = 0.

On the other hand, if

lim sup
n→∞

an = lim inf
n→∞

an = b

then for any ϵ > 0, there is N ∈ N such that n > N implies

sup{aj : j ≥ n} < b+ ϵ

And there is N ′ ∈ N such that when n > N ′,

inf{aj : j ≥ n} > b− ϵ

Hence for any n > max{N,N ′},

b− ϵ < inf{aj : j ≥ n} ≤ an ≤ sup{aj : j ≥ n} < b+ ϵ

which implies limn→∞ an = b.
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2. Let fn be a sequence of functions from [0, 1] to R, that converges uni-
formly to g : [0, 1] → R. Show that if for all n, fn is a polynomial of degree
at most 1 (i.e. of the form x 7→ ax + b for some a, b ∈ R), then g is also a
polynomial of degree at most 1.

Answer: Because fn is a polynomial of degree at most 1,

fn(x) = (1− x)fn(0) + xfn(1)

Because {fn} converges uniformly to g, for any ϵ > 0, there is N ∈ N such that
n > N implies

|fn(0)− g(0)| < ϵ

and there is N ′ ∈ N such that n > N ′ implies

|fn(1)− g(1)| < ϵ

Hence for any n > max{N,N ′}, any x ∈ [0, 1]

|fn(x)− (g(0)(1− x) + g(1)x)| ≤ |fn(0)− g(0)|(1− x) + |fn(1)− g(1)|x < ϵ

Hence fn uniformly converges to g(0)(1 − x) + g(1)x which is a polynomial of
degree no more than 1.

3. Let (X, d) be a compact metric space. F : X×X → X a continuous map
from (X ×X, dsup) to (X, d). Suppose {an} is a sequence in X that converges
to b, show that the sequence of functions fn : X → X defined as x 7→ F (x, an)
converges uniformly to fb : X → X defined as x 7→ F (x, b). (Hint: use an
argument similar to the proof that the product of two compact metric spaces
are compact under dsup.)

Answer: For any x ∈ X, continuity of F implies that for any ϵ > 0, there is
rx,ϵ > 0 such that F (BX×X((x, b), rx,ϵ)) ⊆ BX(F (x, b), ϵ/2). As a consequence,
if d(a, b) < rx,ϵ and d(x′, x) < rx,ϵ, then d(F (x′, a), F (x′, b)) < ϵ. By compact-
ness of X, there is a finite set {x1, . . . , xn} ⊆ X such that

⋃n
i=1 BX(xi, rxi,ϵ) =

X. Let rϵ = min{rxi,ϵ} > 0, then as long as d(a, b) < rϵ we always have
d(F (x, a), F (x, b)) < ϵ for all x ∈ X. Let N ∈ N such that for any n > N ,
d(an, b) < rϵ, then for any n > N , any x ∈ X, d(fn(x), fb(x)) < ϵ, which proved
that fn uniformly converges to fb.

E.8 HW 8

1. Let {an} be a sequence of real numbers, {|an|
1
n } is unbounded. Show that

for any x ̸= 0, the series
∑∞

n=0 anx
n diverges.

Answer: For any x ̸= 0, suppose
∑∞

n=0 anx
n converges, then limn→∞ |anxn| =

0, hence there is some N ∈ N such that for any n > N , |anxn| < 1, hence

|an|
1
n < 1

|x| when n > N . This implies that the set {|an|
1
n } has an upper bound
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max(max{|an|
1
n : n ≤ N}, 1

|x| ), a contradiction.

2. Suppose {an} and {bn} are two sequences of positive real numbers,
limn→∞ an = limn→∞ bn = 0, bn+1 < bn for all n, and limn→∞

an+1−an

bn+1−bn
= 1. Is

it true that limn→∞
an

bn
= 1 as well? Prove it or find a counter example.

Answer: This is true. For any ϵ > 0, pick N ∈ N such that when n > N ,∣∣∣∣an+1 − an
bn+1 − bn

− 1

∣∣∣∣ < ϵ

2

In other words

|an+1 − an − (bn+1 − bn)| <
ϵ

2
(bn − bn+1)

For any n > N , pick n′ > n such that |an′ − bn′ | < ϵbn
2 , then

∣∣∣∣anbn − 1

∣∣∣∣ ≤
∣∣∣∣∣
∑n′−1

j=n aj − aj+1 − (bj − bj+1)

bn

∣∣∣∣∣+
∣∣∣∣an′ − bn′

bn

∣∣∣∣ < ϵ

3. Find a real number A such that A ≤
∑∞

n=0
sin(n)
n+1 ≤ A + 1. You can use

calculator but need to justify your answer mathematically.

Answer: Let an = sin(n), bn = 1
n+1 , then

sn =

n∑
i=0

an =

n∑
i=0

cos(n− 1/2)− cos(n+ 1/2)

2 sin(1/2)

So |sn| ≤ 1
sin(1/2) .

For any natural number m, if n >> m then

|
n∑

i=0

aibi −
m∑
i=0

aibi| = |
n∑

i=m+1

aibi| = |
n∑

i=m+1

(si − si−1)bi|

= |−smbm+1+

n−1∑
i=m+1

si(bi−bi+1)+snbn| ≤
1

sin(1/2)
|bm+1| =

1

(m+ 2) sin(1/2)

So

|
n∑

i=0

aibi −
3∑

i=0

aibi| < 1/2

We can let A =
∑3

i=0
sin(i)
i+1 − 1

2 ≈ 0.2591
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E.9 HW 9

1. Write down a function from R to R which is differentiable on [0,∞) but not
differentiable on (−∞, 0).

Answer: f(x) =

{
x2 x ≥ 0 or x ∈ Q
0 otherwise

.

2. Show that if a function f from R to R is differentiable on R and a bijec-
tion, then either f ′(x) ≥ 0 for all x ∈ R or f ′(x) ≤ 0 for all x ∈ R.

Answer: If otherwise, there are two real numbers a ̸= b where f ′(a) < 0
and f ′(b) > 0. Suppose a < b, then there is some ϵ > 0, ϵ < b − a such that
f(a+ ϵ) < f(a), f(b+ ϵ) > f(b). If f(a) > f(b), then apply intermediate value
theorem to [a, b] and [b, b+ ϵ] for some m that satisfies

f(b) < m < min(f(a), f(b) + ϵ)

we get that f can not be injective. If f(a) < f(b), apply intermediate value
theorem to [a, a+ ϵ] and [a+ ϵ, b] for some m that satisfies

f(a+ ϵ) < m < f(a)

we get that f can not be injective. The case when a > b is analogous.

3. Let f : R → R be a function that is differentiable on R, and f ′ is
1-Lipschitz as a function from R to R. Show that the sequence of functions

gn(x) = n(f(x+ 1/n)− f(x))

converges uniformly to f ′ as n → ∞.

Answer: By mean value theorem, gn(x) = f ′(cx) where cx ∈ (x, x + 1/n).
Because f ′ is 1-Lipschitz,

|gn(x)− f ′(x)| = |f ′(cx)− f ′(x)| ≤ |cx − x| < 1

n

4. Let f : [0, 1] → R be defined as

f(x) =

{
1 x = 2−n, n ∈ N
0 otherwise

Show that f is Riemann integrable on [0, 1].

Answer: For any ϵ > 0, pick N such that 2−N < ϵ, consider the partition

PN = (0, 2−N−1, 2−N− 2−N−1

2N + 4
, 2−N+

2−N−1

2N + 4
, 2−N+1− 2−N−1

2N + 4
, 2−N+1+

2−N−1

2N + 4
, . . . ,
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1− 2−N−1

2N + 4
, 1)

Then L(f, PN ) = 0 and

U(f, PN ) = 2−N−1 +
2−N−1

2N + 4
+

N∑
i=1

2−N−1

N + 2
< 2N < ϵ

E.10 HW 10

1. f is a real valued differentiable function on (0, 1). Show that if f is un-
bounded then f ′ is also unbounded.

Answer: For any M > 0, there is some x ∈ (0, 1) such that |f(x)−f(1/2)| >
M . Hence by mean value theorem, there is some c between 1/2 and x such that
|f ′(c)| > 2M .

2. f is a bounded real valued function on [−1, 1], and is continuous on both
[−1, 0) and (0, 1]. Show that f is Riemann integrable on [−1, 1].

Answer: Let M be an upper bound of |f |. For any ϵ > 0, find partition
P = (x0, . . . , xn) of [−1,− ϵ

8M ] such that U(f, P )−L(f, P ) < ϵ/4, and partition
P ′ = (x′

0, . . . , x
′
n′) of [ ϵ

8M , 1] such that U(f, P ′) − L(f, P ′) < ϵ/4, then under
partition P ′′ = (x0, . . . , xn, x

′
0, . . . , x

′
n′) of [−1, 1],

U(f, P ′′)− L(f, P ′′) = (U(f, P )− L(f, P )) + (U(f, P ′)− L(f, P ′))

+
ϵ

4M
(sup(f([− ϵ

8M
,

ϵ

8M
]))− inf(f([− ϵ

8M
,

ϵ

8M
])))

< ϵ/4 + ϵ/4 + ϵ/2 = ϵ

This shows that f is Riemann integrable on [−1, 1].

3. Write down a sequence of real valued functions {fn} on [0, 1] which con-
verges uniformly to another function g, such that fn are all differentiable at 1/2
but g is not differentiable at 1/2.

Answer: For example, fn(x) = max(|x−1/2|−2−n, 0), and g(x) = |x−1/2|.

E.11 Honors HW

1. Let (X, d) be a metric space. Show that X is compact iff any sequence has
a convergent subsequence.

Answer: =⇒ is covered in class. To show ⇐= , suppose any sequence on
X has a convergent subsequence, we shall prove that X is compact.
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Firstly, for any r > 0, X can be covered by finitely many closed r-balls.
If that’s not true, pick a0 as an arbitrary point on X, for each positive natu-
ral number n let an be a point not in the union of closed r-balls centered at
a0, . . . , an−1, then this produces a sequence with no convergent subsequence, a
contradiction.

Now suppose C is an open cover of X without a finite subcover. For any
natural number n, let Bn be a finite collection of closed 2−n balls that cover
X, then at least one of them can not be covered by any finite subset of C. Let
bn be the center of this closed 2−n-ball. Suppose {bn} has a subsequence with
limit b ∈ X, then there must be some U ∈ C that contains b, hence some ϵ-ball
centered at b for some ϵ > 0 can be covered by a single element in C. Pick
N >> 1 such that d(bN , b) < ϵ/2, 2−N < ϵ/2, then the closed 2−N -ball centered
at bN can be covered this single element, a contradiction.

2. Consider the set Map([0, 1], [0, 1]) under dsup, let p be a function from
(0,∞) to (0,∞).

(1) Let

Cp = {f ∈ Map([0, 1], [0, 1]) : for all ϵ > 0, for all x, x′ ∈ [0, 1],

if |x− x′| < p(ϵ) then |f(x)− f(x′)| ≤ ϵ}

Show that Cp is closed in Map([0, 1], [0, 1]) under dsup metric.

(2) Let {fn} be a sequence in Cp. Show that if for any q ∈ Q ∩ [0, 1],
limn→∞ fn(q) exists, then {fn} converges uniformly.

(3) Show that any sequence in Cp has a uniformly convergent subsequence.
In other words, Cp is compact.

Remark: The third part of problem 2 is called theArzela-Ascoli Theorem.

Answer:

(1) Suppose f ̸∈ Cp, there is some ϵ > 0 such that there are two x, x′ ∈ [0, 1]

such that |x−x′| < p(ϵ) and |f(x)−f(x′)| > ϵ. Let ϵ′ = |f(x)−f(x′)|−ϵ
3 > 0

then the ϵ′-ball centered at f would be disjoint from Cp.

(2) For any ϵ > 0, let M be a natural number large enough such that 1/M <
p(ϵ/3). Now for any j = 0, 1, . . . ,M , pick natural numberNj large enough,
such that for any m,n > Nj , |fn(j/M) − fm(j/M)| < ϵ/3, and let N =
max(N0, . . . , NM ).Then for any m,n > N , any x ∈ [0, 1], there is some
natural number j such that |x− j/M | < p(ϵ/3), hence

|fm(x)−fn(x)| ≤ |fm(x)−fm(j/M)|+|fm(j/M)−fn(j/M)|+|fn(x)−fn(j/M)| < ϵ

This shows that {fn} is uniformly Cauchy hence it converges uniformly.
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(3) For any sequence {fn} on Cp, let i : N → Q ∩ [0, 1] be a bijection, pick a
subsequence {fn0,i} that converges at i(0), then pick another subsequence
of the first subsequence, denoted as {fn1,i

}, which converges at i(1), and
continue for all natural numbers. Now {fni,i

} is a subsequence that con-
verges at all points in Q ∩ [0, 1], hence converges uniformly on [0, 1].
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