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Recall that in the first half of the semester, we covered the following topics:

(i) Methods for root finding: Newton’s method etc.

(ii) Numerical Linear Algebra: LU decomposition, QR algorithm etc.

The following are the new topics we will cover in the second half of the semester:

(i) Interpolation and approximation: how to get the formula of a function using discrete
date.

(ii) Numerical integration: how to integrate a function knowing only its value on a discrete
set.

(iii) Numerical solution for differential equations: numerical solution for ODE and PDE.

The first topic will be the foundation of the second and third topic.
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1 Polynomial interpolation (Chapter 6)

Definition 1.1. The polynomial interpolation of a function 𝑓 at points 𝑥0, . . . 𝑥𝑛, is a
polynomial 𝑝 that shares some properties of 𝑓 at those points, e.g. has the same value or
same derivatives.

We will focus on single variable functions, and discuss two kinds of polynomial interpo-
lation problems:

(i) Lagrange interpolation: find a polynomial 𝑝 of degree at most 𝑛, such that 𝑝(𝑥𝑖) =
𝑓(𝑥𝑖).

(ii) Hermite interpolation: find a polynomial 𝑝 of degree at most 2𝑛+1, such that 𝑝(𝑥𝑖) =
𝑓(𝑥𝑖), 𝑝

′(𝑥𝑖) = 𝑓 ′(𝑥𝑖).

An application for Hermite interpolation is for approximating smooth curves where the
direction of the curve at certain points are also specified.
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1.1 Lagrange interpolation

1.1.1 Existence

Theorem 1.2. (Lemma 6.1 in textbook) The Lagrange interpolation polynomial exists. In
other words, for any 𝑛+1 distinct real numbers 𝑥0, . . . , 𝑥𝑛, and 𝑛+1 real numbers 𝑦0, . . . , 𝑦𝑛,
there is a polynomial 𝑝 of degree at most 𝑛 such that 𝑝(𝑥𝑖) = 𝑦𝑖.

How do we find such a 𝑝?

Firstly, we observe that the map

𝑇 : 𝑝 ↦→ [𝑝(𝑥0), . . . 𝑝(𝑥𝑛)]𝑇 ∈ R𝑛+1

is linear. In other words, (𝑐𝑝 + 𝑑𝑞)(𝑥𝑖) = 𝑐𝑝(𝑥𝑖) + 𝑑𝑞(𝑥𝑖) for all 𝑖. Hence, finding 𝑝 is like
solving a system of non homogenous linear equations. Recall from linear algebra, let 𝑒𝑖 be
the standard basis vector of R𝑛+1 corresponding to 𝑦𝑖 = 1 and 𝑦𝑗 = 0 for all 𝑗 ̸= 𝑖, then,

if we can find some 𝑝𝑖 of degree at most 𝑛 such that 𝑇 (𝑝𝑖) = 𝑒𝑖, (i.e. 𝑝𝑖(𝑥𝑗) =

{︃
1 𝑖 = 𝑗

0 𝑖 ̸= 𝑗
)

then
𝑇 (
∑︁
𝑖

𝑦𝑖𝑝𝑖) =
∑︁
𝑖

𝑦𝑖𝑒𝑖 = [𝑦0, . . . 𝑦𝑛]𝑇 .
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Now we try and find the 𝑝𝑖: 𝑝𝑖(𝑥𝑗) = 0 for all 𝑗 ̸= 𝑖, so (𝑥− 𝑥𝑗) must be a factor of 𝑝𝑖.
So 𝑝𝑖 must be something times ∏︁

𝑗 ̸=𝑖

(𝑥− 𝑥𝑗) .

On the other hand, 𝑝𝑖(𝑥𝑖) = 1, so the “something” should be

1∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)

.

Now we have a proof of Theorem 1:

Proof. Let

𝑝(𝑥) =
∑︁
𝑖

(︃
𝑦𝑖 ·

∏︀
𝑗 ̸=𝑖(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)

)︃

Then 𝑝(𝑥𝑘) =
∑︀

𝑖

(︁
𝑦𝑖 ·

∏︀
𝑗 ̸=𝑖(𝑥𝑘−𝑥𝑗)∏︀
𝑗 ̸=𝑖(𝑥𝑖−𝑥𝑗)

)︁
𝑦𝑖. The 𝑘-th term is 𝑦𝑘 × 1 while all other terms are

zero, hence the answer is 𝑦𝑘.

8



1.1.2 Uniqueness

The problem of finding Lagrange interpolation polynomial is one with 𝑛+ 1 conditions and
𝑛 + 1 unknowns, so intuitively there should be a discrete set of solutions. Actually the
solution can be shown to be unique:

Theorem 1.3. (Theorem 6.1 in textbook) The Lagrange interpolation polynomial is unique.
In other words, given 𝑥0, . . . , 𝑥𝑛 and 𝑦0, . . . , 𝑦𝑛 with 𝑥𝑖 distinct, there is a single polynomial
𝑝 of degree at most 𝑛 such that 𝑝(𝑥𝑖) = 𝑦𝑖

Proof. The first step of the proof is to reduce the problem to the case where 𝑦𝑖 = 0. Suppose
𝑝 and 𝑞 are two such polynomials, then (𝑝− 𝑞)(𝑥𝑖) = 0 for all 𝑖. So, to prove the theorem,
we only need to show that if a polynomial 𝑟 = 𝑝− 𝑞 of degree at most 𝑛 vanishes at 𝑛 + 1
distinct points, then 𝑟 = 0. This fact follows from the “fundamental theorem of algebra”
and can be proved using long division. Here we provide two other alternative proofs:
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(i) Approach I: use the mean value theorem in calculus. Firstly we show the following
fact:

Lemma 1.4. If 𝑓 ∈ 𝐶𝑚−1 (𝑓 is 𝑚− 1-th order differentiable with 𝑚− 1-th derivative
continuous), and 𝑓 = 0 at 𝑚 distinct points, then for any 0 ≤ 𝑘 ≤ 𝑚− 1, 𝑓 (𝑘) = 0 at
at least 𝑚− 𝑘 points.

Proof. By mean value theorem, between two consecutive zeros of 𝑓 there must be a
zero of 𝑓 ′. Hence 𝑓 ′ vanishes at at least 𝑚 − 1 points. Now let 𝑓 ′ take the role of 𝑓
and continue the process, we get 𝑓 ′′ vanishes at at least 𝑚− 2 points, etc.

Suppose 𝑟 vanishes at 𝑥0, . . . , 𝑥𝑛, and 𝑟 is of degree 𝑑 > 0. Then 𝑟(𝑑) is a non zero
constant. Apply Lemma 1.4 with 𝑚 = 𝑛+ 1 and 𝑘 = 𝑑, we see a contradiction. Hence
𝑟 = 𝑐𝑜𝑛𝑠𝑡, which implies 𝑟 = 0.
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(ii) Approach II: Let 𝑟 =
∑︀

𝑗 𝑎𝑗𝑥
𝑗 , then 𝑎𝑗 are solutions of a system of linear equation∑︀

𝑗 𝑎𝑗𝑥
𝑗
𝑖 = 0. However from linear algebra,⃒⃒⃒⃒

⃒⃒⃒⃒ 1 1 . . . 1
𝑥1 𝑥2 . . . 𝑥𝑛+1

. . . . . . . . . . . .
𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑛+1

⃒⃒⃒⃒
⃒⃒⃒⃒ =

∏︁
𝑖<𝑗

(𝑥𝑗 − 𝑥𝑖) ̸= 0

Hence 𝑎𝑗 = 0 for all 𝑗, which implies that 𝑟 = 0.
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1.1.3 Error Estimate

We know that 𝑓 (𝑛+1) = 0 iff 𝑓 is a polynomial of degree at most 𝑛, so one may guess that
if 𝑓 (𝑛+1) is small, 𝑓 should be close to a polynomial of degree at most 𝑛, hence probably
close to its Lagrange interpolation polynomial at 𝑛 + 1 points. To make this more precise,
we have the following theorem on error estimate of Lagrange interpolation:

Theorem 1.5. (Theorem 6.2 in textbook) If 𝑓 ∈ 𝐶𝑛+1, 𝑝 is the Lagrange interpolation of 𝑓
at 𝑛+1 distinct points 𝑥0, . . . 𝑥𝑛. Then for any 𝑥, there is some 𝑠 ∈ [min{𝑥𝑖, 𝑥},max{𝑥𝑖, 𝑥}],
such that

𝑓(𝑥)− 𝑝(𝑥) =
𝑓 (𝑛+1)(𝑠)

∏︀
𝑖(𝑥− 𝑥𝑖)

(𝑛+ 1)!
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Proof. When 𝑥 = 𝑥𝑖 it’s obvious. Now suppose 𝑥 is distinct from all 𝑥𝑖. Consider the
auxiliary function:

𝐺(𝑡) = 𝑓(𝑡)− 𝑝(𝑡)− (𝑓(𝑥)− 𝑝(𝑥)) ·
∏︀

𝑖(𝑡− 𝑥𝑖)∏︀
𝑖(𝑥− 𝑥𝑖)

Then 𝐺 = 0 at 𝑥𝑖 and 𝑥, hence by Lemma 1.4 (let 𝑚 = 𝑛 + 2, 𝑘 = 𝑛 + 1), there must be
some point 𝑠 ∈ [min{𝑥𝑖, 𝑥},max{𝑥𝑖, 𝑥}] where

𝐺(𝑛+1)(𝑠) = 𝑓 (𝑛+1)(𝑠)− (𝑓(𝑥)− 𝑝(𝑥))(𝑛+ 1)!∏︀
𝑖(𝑥− 𝑥𝑖)

= 0

Hence

𝑓(𝑥)− 𝑝(𝑥) =
𝑓 (𝑛+1)(𝑠)

∏︀
𝑖(𝑥− 𝑥𝑖)

(𝑛+ 1)!
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When the set {𝑥𝑖} becomes denser,
∏︀

𝑖(𝑥−𝑥𝑖) decreases, and (𝑛+1)! increases. However,
when 𝑛 → ∞, the Lagrange interpolation polynomial may not converge to 𝑓 even if 𝑓 is
smooth, if 𝑓 (𝑛) increases too fast.

Example 1.6. 𝑓(𝑥) = cos(𝑥), 𝑥𝑖 = 5𝑖/𝑛, 𝑖 = 0, 1, 2, . . . 𝑛

𝑥

𝑦

Figure 1: Black dashed line: 𝑦 = cos(𝑥). Red line: Lagrange interpolation with 2 points.
Green line: Lagrange interpolation with 3 points. Blue line: Lagrange interpolation with 11
points.
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Example 1.7. 𝑓(𝑥) = 1/(1 + 2(𝑥− 2)2), 𝑥𝑖 = 5𝑖/𝑛, 𝑖 = 0, 1, 2, . . . 𝑛.

𝑥

𝑦

Figure 2: Black dashed line: 𝑦 = 1/(1 + 2(𝑥− 2)2). Red line: Lagrange interpolation with 2
points. Green line: Lagrange interpolation with 3 points. Blue line: Lagrange interpolation
with 11 points.

The reason that the Lagrange interpolation polynomials in Example 1.6 converges but
those in Example 1.7 don’t, is that the higher order derivatives of cos is ± sin, ± cos hence
all bounded, while it is not true for the function in Example 1.7. As a practice, calculate
the 𝑘-th derivative of 1/(1 + 2(𝑥− 2)2) at 𝑥 = 2.
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1.2 Hermite interpolation polynomial

1.2.1 Existence

Similar to the Lagrange case, we can construct the Hermite interpolation polynomial as
follows:

Theorem 1.8. (Existence part of Theorem 6.3 in textbook) There is a polynomial 𝑝 of degree
at most 2𝑛+ 1, such that 𝑝(𝑥𝑖) = 𝑦𝑖, 𝑝

′(𝑥𝑖) = 𝑧𝑖, 𝑖 = 0, . . . 𝑛, where 𝑥𝑖 are distinct.

Use the same strategy as the Lagrange case, possibly via a few trials and errors, one can
find the formula of 𝑝 as below:

Proof. Let

𝑝(𝑥) =
∑︁
𝑖

(︃
𝑧𝑖 ·

(𝑥− 𝑥𝑖)
∏︀

𝑗 ̸=𝑖(𝑥− 𝑥𝑗)2∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)2

+𝑦𝑖 ·

⎛⎝1− (𝑥− 𝑥𝑖)
∑︁
𝑗 ̸=𝑖

2

𝑥𝑖 − 𝑥𝑗

⎞⎠ · ∏︀𝑗 ̸=𝑖(𝑥− 𝑥𝑗)2∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)2

⎞⎠
Then by calculation,

𝑝(𝑥𝑘) =
∑︁
𝑖

(︃
𝑧𝑖 ·

(𝑥𝑘 − 𝑥𝑖)
∏︀

𝑗 ̸=𝑖(𝑥𝑘 − 𝑥𝑗)2∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)2

+𝑦𝑖 ·

⎛⎝1− (𝑥𝑘 − 𝑥𝑖)
∑︁
𝑗 ̸=𝑖

2

𝑥𝑖 − 𝑥𝑗

⎞⎠ · ∏︀𝑗 ̸=𝑖(𝑥𝑘 − 𝑥𝑗)2∏︀
𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)2

⎞⎠
In the first sum, all terms have a factor (𝑥𝑘 − 𝑥𝑘), so it must be zero. In the second sum,
all but the 𝑘-th term is zero, and the 𝑘-th term is 𝑦𝑘. Similarly, by taking derivative and let
𝑥 = 𝑥𝑘, we can show that 𝑝′(𝑥𝑘) = 𝑧𝑘.
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1.2.2 Uniqueness and Error Estimate

The mean value theorem argument (i.e. Lemma 1.4) can also be used to show the uniqueness
and error estimate for Hermite interpolation polynomials:

Theorem 1.9. (Uniqueness part of Theorem 6.3 in textbook) The Hermite interpolation
polynomial is unique. In other words, there is a unique 𝑝 of degree at most 2𝑛+ 1 such that
𝑝(𝑥𝑖) = 𝑦𝑖, 𝑝

′(𝑥𝑖) = 𝑧𝑖, 𝑖 = 0, . . . 𝑛, where 𝑥𝑖 are distinct.

Proof. Similar to the proof of Theorem 1.3, if we have two Hermite interpolation polyno-
mials 𝑝 and 𝑞, then 𝑟 = 𝑝 − 𝑞 satisfies 𝑟(𝑥𝑖) = 𝑟′(𝑥𝑖) = 0 and 𝑟 has degree at most 2𝑛 + 1.
However, if 𝑟 is non zero, it can not have 𝑛+ 1 distincts roots 𝑥𝑖 with multiplicity at least
2 each, hence 𝑟 = 0.

We can also prove 𝑟 = 0 using analysis like in Theorem 1.3. If 𝑟 has degree at most
2𝑛 + 1, 𝑟′ = 𝑟 = 0 at 𝑛 + 1 points, then there must be 𝑛 other points where 𝑟′ = 0. Now
suppose 𝑟 has degree 𝑑 > 0. Apply Lemma 1.4, let 𝑚 = 2𝑛 + 2, 𝑘 = 𝑑, then we get 𝑟(𝑑)

vanishes at 2𝑛+2−𝑑 points, which contradicts with the fact that 𝑟(𝑑) is a non zero constant.
Hence 𝑟 = 𝑐𝑜𝑛𝑠𝑡 which implies that 𝑟 = 0.
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Theorem 1.10. (Theorem 6.4 in textbook) If 𝑓 ∈ 𝐶(2𝑛+2), there is 𝑠 ∈ [min{𝑥𝑖, 𝑥},max{𝑥𝑖, 𝑥}],
such that

𝑓(𝑥)− 𝑝(𝑥) =
𝑓 (2𝑛+2)(𝑠)

∏︀
𝑖(𝑥− 𝑥𝑖)2

(2𝑛+ 2)!

Proof. If 𝑥 = 𝑥𝑖 then it is trivially true. Now assume 𝑥 is not in {𝑥𝑖}. Let

𝐺(𝑡) = 𝑓(𝑡)− 𝑝(𝑡)−
(𝑓(𝑥)− 𝑝(𝑥))

∏︀
𝑖(𝑡− 𝑥𝑖)2∏︀

𝑖(𝑥− 𝑥𝑖)2

Then 𝐺 vanishes at the 𝑛+2 points 𝑥, 𝑥0, . . . 𝑥𝑛, and 𝐺
′ vanishes at 𝑛+1 of them 𝑥0, . . . , 𝑥𝑛.

By the same argument as above, 𝐺′ vanishes at 𝑛 + 1 more points, hence it is zero at at
least 2𝑛+ 2 points. Now use Lemma 1.4 on 𝐺′ for 𝑚 = 2𝑛+ 2, 𝑘 = 2𝑛+ 1.
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1.3 Applications

1.3.1 Numerical Differentiation

Suppose 𝑝 is the Lagrange interpolation of 𝑓 at 𝑛+1 points. By mean value theorem, 𝑓 ′−𝑝′
is zero at 𝑛 points 𝑑1, . . . 𝑑𝑛, so 𝑝

′ can be seen as the Lagrange interpolation polynomial
with condition 𝑝′(𝑑𝑖) = 𝑓 ′(𝑑𝑖) (see Theorem 6.5 in textbook). Now one can get an estimate
for 𝑓 ′(𝑥)− 𝑝′(𝑥) using Theorem 1.5.

Example 1.11. For example, if we know the value of 𝑓 at 𝑥 + 𝑖ℎ for 𝑖 = −1, 0, 1 as 𝑦−1,
𝑦0 and 𝑦1, then the Lagrange interpolation polynomial is:

𝑝(𝑥+ 𝑡) = 𝑦−1𝑡(𝑡− ℎ)/(2ℎ2)− 𝑦0(𝑡+ ℎ)(𝑡− ℎ)/ℎ2 + 𝑦1𝑡(𝑡+ ℎ)/(2ℎ2)

So

𝑝′(0) =
𝑦1 − 𝑦−1

2ℎ
=
𝑓(𝑥+ ℎ)− 𝑓(𝑥− ℎ)

2ℎ

As ℎ→ 0 this indeed converges to 𝑓 ′(𝑥).

However, this approach is generally unstable. If 𝑓 is complex analytic one can use com-
plex analysis to do it which is stable, which we will not cover in this class.

Numerical differentiation is useful in optimization or root finding via Newton’s method.
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1.3.2 Cubic Bézier curves

The cubic Bézier curve is a curve parametrized by cubic functions: 𝛾 : [0, 1] → R2,
𝛾(𝑡) = (𝛾1(𝑡), 𝛾2(𝑡)), where 𝛾1 and 𝛾2 are both of degree at most 3, and 𝛾(0) = 𝑃0, 𝛾

′(0) =
3(𝑃1 − 𝑃0), 𝛾(1) = 𝑃3, 𝛾

′(1) = 3(𝑃3 − 𝑃2), where 𝑃0, 𝑃1, 𝑃2 and 𝑃3 are the four “control
points”.

To find the formula for cubic Bézier curve, we can apply the formula for Hermite inter-
polation polynomial for 𝑛 = 1. Bézier curves has many applications in computer graphics
and font design, and you might have already used it in applications that generate or edit
vector graphics. Below is an example (drawn using LaTeX/TikZ):

𝑃0

𝑃1

𝑃2

𝑃3

20



1.3.3 Linear and Hermite splines (Chapter 11)

From the Example 2 above we see that polynomial interpolation with high degree is not
guaranteed to work well. Hence, in practice, we often try to keep the degree of the polynomial
low, which means that we will need to use piecewise functions for interpolation. We will
discuss two kinds of piecewise polynomial interpolation: linear spline and Hermite cubic
spline. The textbook also covered the natural cubic spline.

Linear Spline

Definition 1.12. Let 𝑓 be a single variable function on [𝑎, 𝑏], 𝑎 = 𝑥0 < 𝑥1 · · · < 𝑥𝑛 = 𝑏
𝑛+ 1 distinct points. The Linear Spline 𝑠𝐿 with knots at 𝑥𝑖 is defined as

𝑠𝐿(𝑥) =
𝑥𝑖 − 𝑥

𝑥𝑖 − 𝑥𝑖−1
𝑓(𝑥𝑖−1) +

𝑥− 𝑥𝑖−1

𝑥𝑖 − 𝑥𝑖−1
𝑓(𝑥𝑖), where 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖

In other words, use the 2-point Lagrange interpolation for each interval [𝑥𝑖−1, 𝑥𝑖].
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Theorem 1.13. (Theorem 11.1 in textbook) Let 𝑓 ∈ 𝐶2, ℎ = max{𝑥𝑖 − 𝑥𝑖−1}, 𝑀 =
max |𝑓 ′′|, then for any 𝑥 ∈ [𝑎, 𝑏], |𝑓(𝑥)− 𝑠𝐿(𝑥)| ≤ 1

8ℎ
2𝑀 .

Proof. Suppose 𝑥 is between 𝑥𝑖−1 and 𝑥𝑖. Theorem 1.5 implies that

𝑓(𝑥)− 𝑠𝐿(𝑥) =
𝑓 ′′(𝑐)(𝑥− 𝑥𝑖−1)(𝑥− 𝑥𝑖)

2!

for some 𝑐 ∈ [𝑥𝑖−1, 𝑥𝑖]. From assumption, |𝑓 ′′(𝑐)| < 𝑀 and

|(𝑥− 𝑥𝑖−1)(𝑥− 𝑥𝑖)| ≤ |(𝑥𝑖 − 𝑥𝑖−1)/2|2 ≤ ℎ2/4 .

The linear spline formula can be alternatively written as 𝑠𝐿 =
∑︀

𝑖 𝑓(𝑥𝑖)𝜑𝑖, where 𝜑𝑖 are
the “hat functions”, where, if 𝑖 = 1, . . . , 𝑛− 1,

𝜑𝑖(𝑥) =

⎧⎪⎨⎪⎩
(𝑥− 𝑥𝑖−1)/(𝑥𝑖 − 𝑥𝑖−1) 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

(𝑥− 𝑥𝑖+1)/(𝑥𝑖 − 𝑥𝑖+1) 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜑0 and 𝜑𝑛 can be written down similarly. As a consequence, 𝑠𝐿 lies in the span of 𝜑𝑛.
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Hermite cubic spline

Definition 1.14. Let 𝑓 ∈ 𝐶1[𝑎, 𝑏], 𝑎 = 𝑥0 < 𝑥1 · · · < 𝑥𝑛 = 𝑏 𝑛 + 1 distinct points. The
Hermite Cubic Spline 𝑠𝐻 with knots at 𝑥𝑖 is defined as 𝑠𝐻(𝑥) = 𝑝𝑖(𝑥) for 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖],
where 𝑝𝑖 is the Hermite interpolation polynomial defined using {𝑥𝑖−1, 𝑥𝑖}.

Theorem 1.15. (Theorem 11.4 in textbook) Let 𝑓 ∈ 𝐶2, ℎ = max{𝑥𝑖 − 𝑥𝑖−1}, 𝑀 =
max |𝑓 (4)|, then for any 𝑥 ∈ [𝑎, 𝑏], |𝑓(𝑥)− 𝑠𝐻(𝑥)| ≤ 1

384ℎ
4𝑀 .

The proof is similar to Theorem 1.13. Note that 384 = 4!24.

One can also find a set of basis functions for 𝑠𝐻 .
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1.4 Review

� Definition and formula of Lagrange/Hermite interpolation polynomials.

� Uniqueness.

� Error estimate.

2 Approximation Theory (Chapter 8, 9)

We can see that the Lagrange interpolation polynomial, Hermite interpolation polynomial,
and the splines all lie in a vector space spanned by finitely many functions. In other words,
all these algorithms can be seen as a way to approximate a function using the linear
combination of simpler functions.

Recall that a set of functions form a vector space if it is closed under addition and scalar
multiplication.
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2.1 Approximation in normed vector space

Definition 2.1. Let 𝑉 be a vector space. A norm on 𝑉 is a function: ‖ · ‖ : 𝑉 → R≥0 such
that:

� ‖𝑥‖ = 0 iff 𝑥 = 0

� ‖𝑥+ 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖

� ‖𝑐𝑥‖ = |𝑐|‖𝑥‖.

Example 2.2. (i) 𝑉 = 𝐶([𝑎, 𝑏]) (continuous functions on [𝑎, 𝑏]), ‖𝑓‖∞ = max |𝑓 |. This
is called the 𝐿∞ norm.

(ii) 𝑉 = 𝐿2([𝑎, 𝑏]), ‖𝑓‖2 = (
∫︀ 𝑏

𝑎
|𝑓(𝑥)|2𝑑𝑥)1/2. This is called the 𝐿2 norm.

(iii) Replace 2 with 𝑝 ≥ 1 we get 𝐿𝑝 norm. If 𝑝 < 1, the triangle inequality is no longer
satisfied.
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Definition 2.3. Let 𝐿 = 𝑠𝑝𝑎𝑛{𝑥1, . . . 𝑥𝑚} be a 𝑚-dimensional subspace of 𝑉 , 𝑥 ∈ 𝑉 . The
best approximation of 𝑥 is the element 𝑥′ ∈ 𝐿 that minimizes ‖𝑥− 𝑥′‖.

Theorem 2.4. (Theorem 8.2 in textbook) The best approximation always exists.

The proof has two steps:

(i) ‖ · −𝑥‖ is continuous on 𝐿.

(ii) ‖ · −𝑥‖ goes to infinity at infinity.

Key idea: if a function is defined on a finite dimensional vector space, continuous, and
goes to infinity at infinity, then it has a minimum.
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Please ignore the proof below if you are not interested.

Proof. Let 𝑥1, . . . 𝑥𝑚 be a basis of 𝐿. Consider a function 𝐹𝑥 : R𝑚 → R defined as

𝐹𝑥((𝑡1, . . . , 𝑡𝑚)) = ‖𝑥−
∑︁
𝑖

𝑡𝑖𝑥𝑖‖

The first step of the proof is to show that 𝐹 is continuous:

Lemma 2.5. 𝐹𝑥 is continuous.

Proof. Suppose 𝑡′ ∈ R𝑚 satisfies that |𝑡′𝑖| < 𝜖 for all 𝑖, then by triangle inequality,

|𝐹𝑥(𝑡+ 𝑡′)− 𝐹𝑥(𝑡)| ≤ |
∑︁
𝑖

𝑡′𝑖𝑥𝑖| ≤ 𝜖
∑︁
𝑖

|𝑥𝑖|

This implies that if 𝑡′ is sufficiently small, 𝐹𝑥(𝑡+ 𝑡′) can be arbitrarily close to 𝐹𝑥(𝑡), hence
𝐹𝑥 is continuous.
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Now, let 𝐷𝑅 ⊂ R𝑚 = {𝑡 : |𝑡𝑖| ≤ 𝑅 for all 𝑖}. It is a closed set, hence compact (recall
the definition of compactness in your analysis class), hence a continuous function 𝐹𝑥 takes
minimum at some point 𝑥*𝑅 on 𝐷𝑅. We just need to show that if 𝑅 is large enough, 𝑥*𝑅 is
also the minimum of 𝐹𝑥.

Let 𝑔 > 0 be the minimum of 𝐹0 on the set 𝐷1. Now we set 𝑅0 = (2|𝑥|+ 1)/𝑔. Then for
any 𝑦 outside 𝐷𝑅0 , then 𝐹𝑥(𝑦) = ‖𝑦 − 𝑥‖ ≥ ‖𝑥‖+ 1 > 𝐹𝑥(0) ≥ 𝐹𝑥(𝑥*𝑅0

)
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2.2 Stone-Weiersterass theorem

Theorem 2.6. (Theorem 8.1 in textbook) For continuous function 𝑓 ∈ 𝐶([𝑎, 𝑏]), any 𝜖 > 0,
there is some polynomial 𝑝 such that ‖𝑓 − 𝑝‖∞ < 𝜖.

There are many proofs, some work for more general settings. An easy proof is first
use linear spline to approximate 𝑓 , then use polynomials to approximate the basis function
(which is a linear combination of absolute values, which can be approximated by (𝑥2+𝜖′)1/2,
which can be approximated using Taylor expansion).
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2.3 Approximation in inner product space

Sometimes the norm on a vector space arises from a inner product (a symmetric, positive
definite, bilinear form) (·, ·) : 𝑉 × 𝑉 → R, by ||𝑥|| =

√︀
(𝑥, 𝑥). If so, we call it an inner

product space.

Example 2.7. The 𝐿2 norm on 𝐿2([𝑎, 𝑏]) arises from inner product (𝑓, 𝑔) =
∫︀ 𝑏

𝑎
𝑓𝑔𝑑𝑥. Let 𝑤

be a non negative, continuous and integrable “weight function” on [𝑎, 𝑏], we can also defined

the “weighted 𝐿2 norm” which is from (𝑓, 𝑔)𝑤 =
∫︀ 𝑏

𝑎
𝑤𝑓𝑔𝑑𝑥.

It’s easy to see that the 𝐿2
𝑤 norm satisfies:

‖𝑓‖𝑤 ≤ (

∫︁ 𝑏

𝑎

𝑤𝑑𝑥)1/2‖𝑓‖∞

Example 2.8. On 𝐶1([𝑎, 𝑏]) we can define the (1, 2) Sobolev norm ‖𝑓‖1,2 = (
∫︀ 𝑏

𝑎
|𝑓(𝑥)|2 +

|𝑓 ′(𝑥)|2𝑑𝑥)1/2. This norm also come from an inner product

(𝑓, 𝑔)1,2 =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑔(𝑥) + 𝑓 ′(𝑥)𝑔′(𝑥)𝑑𝑥
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Let 𝐿 = 𝑠𝑝𝑎𝑛{𝑥1, . . . , 𝑥𝑚}, then we can use Gram-Schmidt process to get an orthonormal
basis of 𝐿 under (·, ·), called {𝑒1, . . . , 𝑒𝑚}. Then we have:

Theorem 2.9. The best approximation of 𝑥 ∈ 𝑉 by an element of 𝐿 is unique, and it is

𝑥* =
∑︁
𝑖

(𝑥, 𝑒𝑖)𝑒𝑖

Proof. For any other 𝑥′ =
∑︀

𝑖 𝑡𝑖𝑒𝑖 ∈ 𝐿,

‖𝑥′ − 𝑥‖2 = ((𝑥′ − 𝑥*) + (𝑥* − 𝑥), (𝑥′ − 𝑥*) + (𝑥* − 𝑥))

= ‖𝑥′ − 𝑥*‖2 + ‖𝑥* − 𝑥‖2 + 2(
∑︁
𝑖

(𝑡𝑖 − (𝑥, 𝑒𝑖))𝑒𝑖,
∑︁
𝑖

(𝑥, 𝑒𝑖)𝑒𝑖 − 𝑥)

= ‖𝑥′ − 𝑥*‖2 + ‖𝑥* − 𝑥‖2 + 2
∑︁
𝑗

(𝑡𝑖 − (𝑥, 𝑒𝑗))(𝑒𝑗 ,
∑︁
𝑖

(𝑥, 𝑒𝑖)𝑒𝑖 − 𝑥)

= ‖𝑥′ − 𝑥*‖2 + ‖𝑥* − 𝑥‖2 + 2
∑︁
𝑗

(𝑡𝑖 − (𝑥, 𝑒𝑗))(
∑︁
𝑖

(𝑥, 𝑒𝑗)(𝑒𝑗 , 𝑒𝑗)− (𝑥, 𝑒𝑗))

= ‖𝑥′ − 𝑥*‖2 + ‖𝑥* − 𝑥‖2 ≥ ‖𝑥* − 𝑥‖2

And equality is reached only when 𝑥′ = 𝑥*.

31



When the inner product is the 𝐿2
𝑤 inner product, the integrals in the formula for best

approximation will often be calculated numerically (cf. next Section).

The proof is the same as the finite dimensional case you have seen in linear algebra.

If 𝑥𝑖 are only orthogonal and not orthonormal, the formula becomes

𝑥* =
∑︁
𝑖

(𝑥, 𝑥𝑖)

(𝑥𝑖, 𝑥𝑖)
𝑥𝑖

If 𝑥𝑖 are not known to be orthogonal either, the formula becomes

𝑥* =
∑︁
𝑖

(
∑︁
𝑗

(𝑥, 𝑥𝑗)(𝐴
−1)𝑖,𝑗)𝑥𝑖

Where
𝐴𝑖,𝑗 = (𝑥𝑖, 𝑥𝑗)

32



2.4 Orthogonal polynomials

Definition 2.10. We call 𝜑𝑗, 𝑗 = 0, 1, 2, . . . a system of orthogonal polynomials with
weight 𝑤, if

(i) 𝜑𝑗 is of degree 𝑗.

(ii) 𝜑𝑗 are orthogonal to each other in 𝐿2
𝑤 norm.

Theorem 2.11. If 𝑤 is positive, continuous and integrable on (𝑎, 𝑏) then a system of or-
thogonal polynomials with weight 𝑤 exists.

Proof. This is Gram-Schmidt applied to {1, 𝑥, 𝑥2, 𝑥3, . . . }.

𝜑0 = 1

𝜑𝑗 = 𝑥𝑗 −
𝑗−1∑︁
𝑖=0

∫︀ 𝑏

𝑎
𝑤𝑡𝑗𝜑𝑖(𝑡)𝑑𝑡∫︀ 𝑏

𝑎
𝑤𝜑2𝑖 (𝑡)𝑑𝑡

𝜑𝑖(𝑥)
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From linear algebra, we know that the system of orthogonal polynomials is unique up to
scaling, since 𝜑𝑗 is the basis vector of the orthogonal complement of 𝑠𝑝𝑎𝑛{1, 𝑥, . . . , 𝑥𝑗−1) in
𝑠𝑝𝑎𝑛{1, 𝑥, . . . , 𝑥𝑗}.

Remark 2.12. Stone-Weiersterass theorem implies that as degree increases, optimal ap-
proximation in 𝐿2

𝑤([𝑎, 𝑏]) can become arbitrarily accurate. In other words, the orthogonal
polynomials form an orthonormal basis of 𝐿2

𝑤([𝑎, 𝑏]). (Which is NOT a basis in the sense of
linear algebra. In algebra there is only finite sum.)
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Example 2.13. Let (𝑎, 𝑏) = (−1, 1).

� If 𝑤 = 1, the resulting orthogonal polynomials are called the Legendre polynomials
𝐿𝑗.

� If 𝑤(𝑥) = (1−𝑥2)−1/2, the resulting orthogonal polynomials are called the Chebyshev
polynomials 𝑇𝑗.

Remark 2.14. The Chebyshev polynomials have a particularly nice formula:

𝑇𝑗 = cos(𝑗 cos−1 𝑥) .

They are polynomials because

𝑇0 = 1, 𝑇1 = 𝑥, 𝑇2 = 2𝑥2 − 1

𝑇𝑗 = cos(𝑗 cos−1 𝑥) = 𝑥 cos((𝑗 − 1) cos−1 𝑥)− sin(cos−1 𝑥) sin((𝑗 − 1) cos−1 𝑥)

= 𝑥 cos((𝑗 − 1) cos−1 𝑥)− sin2(cos−1(𝑥)) cos((𝑗 − 2) cos−1 𝑥)

− sin(cos−1 𝑥) sin((𝑗 − 2) cos−1 𝑥) cos(cos−1 𝑥)

= 𝑥𝑇𝑗−1 − (1− 𝑥2)𝑇𝑗−2 − 𝑥(𝑇𝑗−3 − 𝑇𝑗−1)/2 .

35



They are othogonal, because 𝑗 ̸= 𝑗′,∫︁ 1

−1

cos(𝑗 cos−1 𝑥) cos(𝑗′ cos−1 𝑥)(1− 𝑥2)−1/2𝑑𝑥

= −
∫︁ 1

−1

cos(𝑗 cos−1 𝑥) cos(𝑗′ cos−1 𝑥)𝑑 cos−1(𝑥)

=

∫︁ 𝜋

0

cos(𝑗𝑡) cos(𝑗′𝑡)𝑑𝑡 = 0

Remark 2.15. Furthermore, if 𝑇𝑗 = cos(𝑗 cos−1 𝑥), 2−𝑗𝑇𝑗+1 is the degree 𝑗 + 1 monic
(leading coefficient being 1) polynomial with the smallest 𝐿∞ norm. This tells us that the
term

∏︀
𝑖(𝑥 − 𝑥𝑖) in Theorem 1.5 can be minimized (in 𝐿∞) if 𝑥𝑖 are chosen as the roots

of Chebyshev polynomials, or, in other words, if
∏︀

𝑖(𝑥 − 𝑥𝑖) = 2−𝑛𝑇𝑛+1. This is proved in
Chapter 8 of the textbook.
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𝑥

𝑦

𝑥

𝑦

Figure 3: Chebyshev polynomials and Lagrange polynomials

� First Legendre polynomials (which I calculated using Gram-Schmidt, another alterna-
tive calculation can be found in the exercises, and also HW 4)

𝐿0 = 1, 𝐿1 = 𝑥, 𝐿2 = 𝑥2 − 1

3

𝐿3 = 𝑥3 − 3

5
𝑥

� First Chebyshev polynomials:

𝑇0 = 1, 𝑇1 = 𝑥, 𝑇2 = 2𝑥2 − 1, 𝑇3 = 4𝑥3 − 3𝑥
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Theorem 2.16. If the weight function 𝑤 is positive, continuous and integrable on (𝑎, 𝑏),
then 𝜑𝑗 has 𝑗 distinct real roots in (𝑎, 𝑏).

Proof. Suppose not, then 𝜑𝑗 switches sign fewer than 𝑗 times in (𝑎, 𝑏). Suppose 𝑥1, . . . , 𝑥𝑘
are the points in (𝑎, 𝑏) where 𝜑𝑗 changes sign, then (𝜑𝑗 ,

∏︀𝑘
𝑖=1(𝑥− 𝑥𝑖)) is non zero. However∏︀𝑘

𝑖=1(𝑥− 𝑥𝑖) ∈ 𝑠𝑝𝑎𝑛{𝜑0, . . . 𝜑𝑗−1}, hence a contradiction.

This Theorem will be used in the next section when we discuss Gauss’s method for
numerical integration.

2.5 Review

� Normed vector space, inner product space, 𝐿∞, 𝐿2 and 𝐿2
𝑤 norms.

� Existence of optimal approximation. Calculation of optimal approximation for inner
product space.

� Concept of orthogonal polynomials.
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Example 2.17. Consider the function 𝑦 = 𝑒𝑥 on [−1, 1].

� Find the Lagrange interpolation polynomial, interpolating at 0, ±1.

� Find the Hermite interpolation polynomial, interpolating at ±1.

� Find the best approximation via a polynomial of degree at most 2, under the 𝐿2 norm.

Answer:

� Use formula 𝑝𝐿 =
∑︀

𝑖 𝑦𝑖
∏︀

𝑗 ̸=𝑖(𝑥− 𝑥𝑗)/
∏︀

𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗):

𝑝𝐿(𝑥) = 𝑒−1 · 𝑥(𝑥− 1)

−1 · −2
+ 1 · (𝑥+ 1)(𝑥− 1)

1 · −1
+ 𝑒 · 𝑥(𝑥+ 1)

1 · 2

= (𝑒−1/2 + 𝑒/2− 1)𝑥2 + (𝑒/2− 𝑒−1/2)𝑥+ 1

� Use formula 𝑝𝐻 =
∑︀

𝑖 𝑧𝑖(𝑥 − 𝑥𝑖)
∏︀

𝑗 ̸=𝑖(𝑥 − 𝑥𝑗)
2/
∏︀

𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)
2 +

∑︀
𝑖 𝑦𝑖(1 − (𝑥 −

𝑥𝑖)
∑︀

𝑗 ̸=𝑖(2/(𝑥𝑖 − 𝑥𝑗)))
∏︀

𝑗 ̸=𝑖(𝑥− 𝑥𝑗)2/
∏︀

𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)2:

𝑝𝐻(𝑥) = 𝑒−1 · (𝑥+ 1)(𝑥− 1)2

(−1− 1)2
+ 𝑒 · (𝑥− 1)(𝑥+ 1)2

(1 + 1)2

+𝑒−1 · (1 + (𝑥+ 1)) · (𝑥− 1)2

(−1− 1)2
+ 𝑒 · (1− (𝑥− 1)) · (𝑥+ 1)2

(1 + 1)2

= (𝑒−1/2)𝑥3 + (𝑒/4− 𝑒−1/4)𝑥2 + (𝑒/2− 𝑒−1)𝑥+ 𝑒/4 + 3𝑒−1/4
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� Use formula 𝑥* =
∑︀

𝑖((𝑥, 𝑥𝑖)/(𝑥𝑖, 𝑥𝑖))𝑥𝑖:

𝑝2(𝑥) =

∫︀ 1

−1
𝑒𝑡𝑑𝑡∫︀ 1

−1
12𝑑𝑡

· 1 +

∫︀ 1

−1
𝑡𝑒𝑡𝑑𝑡∫︀ 1

−1
𝑡2
· 𝑥+

∫︀ 1

−1
(𝑡2 − 1/3)𝑒𝑡𝑑𝑡∫︀ 1

−1
(𝑡2 − 1/3)2𝑑𝑡

· (𝑥2 − 1/3)

=
(𝑒− 𝑒−1)

2
· 1 +

2𝑒−1

2/3
· 𝑥+

2𝑒/3− 14𝑒−1/3

8/45
(𝑥2 − 1/3)

=
15𝑒− 105𝑒−1

4
𝑥2 + 3𝑒−1𝑥+

−3𝑒+ 33𝑒−1

4
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𝑥

𝑦

Figure 4: Black line: 𝑦 = 𝑒𝑥. Blue line: Lagrange interpolation. Green line: Hermite
interpolation. Red line: 𝐿2 best approximation
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3 Numerical Integration (Chapter 7, 10)

3.1 Quadrature rule

Question: Estimate
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥.

Let 𝑥0 = 𝑎 < 𝑥1 < · · · < 𝑥𝑛 = 𝑏 be 𝑛 + 1 distinct points in [𝑎, 𝑏], then we can use the
Lagrange interpolation polynomial to estimate 𝑓 , and hence∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈
∑︁
𝑘

𝑤𝑘𝑓(𝑥𝑘)

Where

𝑤𝑘 =

∫︁ 𝑏

𝑎

∏︀
𝑗 ̸=𝑘(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)

𝑑𝑥

To estimate the integration.

The points 𝑥𝑖 are called quadrature points, and 𝑤𝑖 called quadrature weights. The
formula still works if some 𝑥𝑖 is outside [𝑎, 𝑏].
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3.2 Newton-Cotes method

Definition 3.1. When 𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑏 are 𝑛 + 1 evenly spaced points, the
formula above is called the Newton-Cotes formula, the evenly spaced 𝑥𝑖 the Newton-
Cotes quadrature.

Example 3.2. When 𝑛 = 1, 𝑤0 = 𝑤1 = 𝑏−𝑎
2 , this is called the Trapezium rule (as it’s

like calculating the area of a collection of trapeziums). When 𝑛 = 2, 𝑤0 = 𝑤2 = 𝑏−𝑎
6 ,

𝑤1 = 2(𝑏−𝑎)
3 . This is called Simpson’s rule.

Example 3.3.
∫︀ 1

0
sin(𝑥)𝑑𝑥. Using Trapezium rule, the estimate is

sin(0) + sin(1)

2
= 0.4207

Using Simpson’s rule, the estimate is

sin(0)/6 + sin(0.5) * 2/3 + sin(1)/6 = 0.4599

The true value is 1− cos(1) = 0.4597.
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Theorem 3.4. (Theorem 7.1 in the textbook) The error for the quadrature is bounded by

max |𝑓 (𝑛+1)|
(𝑛+ 1)!

∫︁ 𝑏

𝑎

∏︁
𝑖

|𝑥− 𝑥𝑖|𝑑𝑥

The proof is follows immediately from the error estimate of Lagrange interpolation.
When 𝑥𝑖 are Newton-Cotes quadrature, the error bound is 𝑂(max |𝑓 (𝑛+1)|(𝑏 − 𝑎)𝑛+2), be-
cause when we scale the interval [𝑎, 𝑏] by 𝐶, the function being integrated is scaled by 𝐶𝑛+1

while the range of the integration is also scaled by 𝐶.
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For Newton-Cotes, when 𝑛 is even (in order words when we have odd number of quadra-
ture points), the error bound can be improved to max |𝑓 (𝑛+2)| · 𝑂((𝑏 − 𝑎)𝑛+3) provided
𝑓 ∈ 𝐶𝑛+2:

Theorem 3.5. Let 𝑛 be an even number, 𝑓 ∈ 𝐶𝑛+2([𝑎, 𝑏]), 𝐼𝑛(𝑓) the Newton-Cotes formula
using 𝑛+ 1 evenly spaced points on [𝑎, 𝑏], then there is some 𝐶𝑛 (depending on 𝑛) such that

|
∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥− 𝐼𝑛(𝑓)| ≤ 𝐶𝑛 max |𝑓 (𝑛+2)|(𝑏− 𝑎)𝑛+3

Proof. The uniqueness of Lagrange interpolation implies that if 𝑓 is a polynomial of degree

at most 𝑛,
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐼𝑛(𝑓). Now consider the polynomial 𝑔 =

∏︀
𝑖(𝑥 − 𝑥𝑖). Because 𝑥𝑖

are evenly spaced, the graph of
∏︀

𝑖(𝑥− 𝑥𝑖) is symmetric with respect to the point (𝑥𝑛/2, 0)

where 𝑥𝑛/2 = (𝑎+ 𝑏)/2. So
∫︀ 𝑏

𝑎
𝑔𝑑𝑥 = 0 = 𝐼𝑛(𝑔). However, any polynomial of degree at most

𝑛+1 can be written in the form 𝑐𝑔+ℎ, where ℎ is a polynomial of degree at most 𝑛. Hence,

if 𝑓 is any polynomial of degree at most 𝑛+ 1,
∫︀ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐼𝑛(𝑓).
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Now suppose 𝑓 ∈ 𝐶𝑛+2. Let 𝑥𝑛+1 be the midpoint of [𝑥0, 𝑥1], let 𝑝′ be the Lagrange
interpolation polynomial of 𝑓 , then 𝑓−𝑝′ vanishes at 𝑥0, . . . , 𝑥𝑛, 𝑥𝑛+1, hence the quadrature
formula using 𝑥0, . . . 𝑥𝑛+1 is 0. Apply Theorem 3.4 we get

|
∫︁ 𝑏

𝑎

(𝑓 − 𝑝′)𝑑𝑥| ≤ 𝐶𝑛 max |𝑓𝑛+2|(𝑏− 𝑎)𝑛+3

However, because 𝑝′(𝑥𝑖) = 𝑓(𝑥𝑖) for 𝑖 = 0, 1, 2, . . . , 𝑛,∫︁ 𝑏

𝑎

𝑝′𝑑𝑥 = 𝐼𝑛(𝑝′) = 𝐼𝑛(𝑓)

Which proves the theorem.
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We can also use mean value theorem to get finer bounds. As an example, when 𝑛 = 2,
we have

Theorem 3.6. (Theorem 7.2 in the textbook) If 𝑓 ∈ 𝐶4, there is some 𝑐 ∈ [𝑎, 𝑏] such that∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥− (𝑏− 𝑎) · (𝑓(𝑎)/6 + 2𝑓((𝑎+ 𝑏)/2)/3 + 𝑓(𝑏)/6) = −𝑓
(4)(𝑐)(𝑏− 𝑎)5

2880

Proof. Let

𝐺1(𝑡) =

∫︁ (𝑎+𝑏)/2+𝑡

(𝑎+𝑏)/2−𝑡

𝑓(𝑠)𝑑𝑠− 2𝑡 · (𝑓((𝑎+ 𝑏)/2− 𝑡)/6

+2𝑓((𝑎+ 𝑏)/2)/3 + 𝑓((𝑎+ 𝑏)/2 + 𝑡)/6)

𝐺(𝑡) = 𝐺1(𝑡)− (
𝑡

(𝑏− 𝑎)/2
)5𝐺1((𝑏− 𝑎)/2)

Then 𝐺(0) = 𝐺((𝑏 − 𝑎)/2) = 𝐺′(0) = 𝐺′′(0) = 0. So there is 0 < 𝑐1 < (𝑏 − 𝑎)/2 such that
𝐺′(𝑐1) = 0, 0 < 𝑐2 < 𝑐1 such that 𝐺′′(𝑐2) = 0, 0 < 𝑐3 < 𝑐2 such that 𝐺′′′(𝑐3) = 0.
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By calculation, 𝐺′′′
1 (𝑐3) = 𝑐3

3 · (𝑓
′′′((𝑎+ 𝑏)/2− 𝑐3)− 𝑓 ′′′((𝑎+ 𝑏)/2 + 𝑐3)), so

𝑐3
3
· (𝑓 ′′′((𝑎+ 𝑏)/2− 𝑐3)− 𝑓 ′′′((𝑎+ 𝑏)/2 + 𝑐3))− 1920

(𝑏− 𝑎)5
𝑐23𝐺1((𝑏− 𝑎)/2) = 0

Hence

·(𝑓 ′′′((𝑎+ 𝑏)/2 + 𝑐3)− 𝑓 ′′′((𝑎+ 𝑏)/2− 𝑐3))

2𝑐3
= − 2880

(𝑏− 𝑎)5
𝐺1((𝑏− 𝑎)/2)

Now apply mean value theorem for 𝑓 ′′′ on [(𝑏+ 𝑎)/2− 𝑐3, (𝑏+ 𝑎)/2 + 𝑐3], we get the 𝑐.

Alternative proof. Following the same argument as Theorem 3.5, we know that if 𝑓 is a

polynomial of degree 3,
∫︀ 𝑏

𝑎
𝑓𝑑𝑥 equals the result of Simpson’s rule.

Now let 𝑝 be the Lagrange interpolation of 𝑓 at four distinct points 𝑎, 𝑏, 𝑎+𝑏
2 and 𝑑.

Then ∫︁ 𝑏

𝑎

𝑝𝑑𝑥 = (𝑏− 𝑎)(
𝑝(𝑎)

6
+

2𝑝((𝑎+ 𝑏)/2)

3
+
𝑝(𝑏)

6
)

= (𝑏− 𝑎)(
𝑓(𝑎)

6
+

2𝑓((𝑎+ 𝑏)/2)

3
+
𝑓(𝑏)

6
)

However, by error bound of Lagrange polynomials,

𝑓(𝑥)− 𝑝(𝑥) =
𝑓 (4)(𝑐)(𝑥− 𝑎)(𝑥− 𝑏)(𝑥− (𝑎+ 𝑏)/2)(𝑥− 𝑑)

4!

Now push 𝑑 towards 𝑐, which makes (𝑥−𝑎)(𝑥−𝑏)(𝑥−(𝑎+𝑏)/2)(𝑥−𝑑) non positive on [𝑎, 𝑏].
Now integrate for 𝑥 ∈ [𝑎, 𝑏] and use integration mean value theorem, we get the theorem.
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3.3 Composite Method

For the same reason as in Example 1.7, when 𝑛 → ∞ the error can not be guaranteed to
decay to 0. So we often evenly decompose the interval [𝑎, 𝑏] into subintervals then carry out
low order Newton-Cotes.

Let 𝑎 = 𝑥0 < · · · < 𝑥𝑛 = 𝑏 be 𝑛+ 1 evenly spaced points on [𝑎, 𝑏]. If 𝑛 = 𝑑𝑚, we can cut
[𝑎, 𝑏] into𝑚 subintervals each with 𝑑+1 quadrature points, and apply Newton-Cotes on each.

For example, if 𝑑 = 1, we cut [𝑎, 𝑏] into 𝑛 subintervals and apply trapezium rule on each
we get

𝑏− 𝑎
𝑛

(𝑓(𝑥0)/2 +

𝑛−1∑︁
𝑖=1

𝑓(𝑥𝑖) + 𝑓(𝑥𝑛)/2)

If 𝑑 = 2, we cut [𝑎, 𝑏] into 𝑛/2 subintervals, and apply simpson’s rule on each, we get

𝑏− 𝑎
3𝑛

(𝑓(𝑥0) + 4

𝑛/2∑︁
𝑖=1

𝑓(𝑥2𝑖−1) + 2

𝑛/2−1∑︁
𝑖=1

𝑓(𝑥2𝑖) + 𝑓(𝑥𝑛))
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When 𝑓 is smooth with bounded higher order derivatives, the error estimate for each
subinterval is 𝑂(𝑛−3) and 𝑂(𝑛−5) using the trapezium and Simpson’s rule. Hence, the
error composite trapezium and composite Simpson’s rules decay like 𝑂(𝑛−2) and 𝑂(𝑛−4)
respectively.

Example 3.7.
∫︀ 1

0
sin(𝑥)𝑑𝑥. For this case, the error for composite trapezium & Simpson’s

rule can be calculated explicitly.

� Composite trapezium rule with 𝑛+ 1 points:

𝐼𝑛 =

∑︀𝑛−1
𝑖=1 sin( 𝑖

𝑛 ) + 𝑠𝑖𝑛(1)/2

𝑛

=

∑︀𝑛−1
𝑖=1 (cos( 𝑖−1/2

𝑛 )− cos( 𝑖+1/2
𝑛 )) + sin( 1

2𝑛 ) sin(1)

2𝑛 sin( 1
2𝑛 )

=
cos( 1

2𝑛 )− cos(1) cos( 1
2𝑛 )

2𝑛 sin( 1
2𝑛 )

= (1− cos(1)) ·
cos( 1

2𝑛 )

2𝑛 sin( 1
2𝑛 )

And it is easy to see that

cos( 1
2𝑛 )

2𝑛 sin( 1
2𝑛 )

= 1− 1

3
(2𝑛)−2 + . . .

So the error decay at 𝑂(𝑛−2).
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� Composite Simpson’s rule with 2𝑚+ 1 points:

𝐼𝑚 =
4
∑︀𝑚

𝑖=1 sin( 2𝑖−1
2𝑚 ) + 2

∑︀𝑚−1
𝑖=1 sin( 𝑖

𝑚 ) + 𝑠𝑖𝑛(1)

6𝑚

=
2(1− cos(1)) + cos( 1

2𝑚 )− cos( 2𝑚−1
2𝑚 ) + sin(1) sin( 1

2𝑚 )

6𝑚 sin( 1
2𝑚 )

= (1− cos(1)) ·
2 + cos( 1

2𝑚 )

6𝑚 sin( 1
2𝑚 )

= (1− cos(1)) · 3− (2𝑚)−2/2 + (2𝑚)−4/24 +𝑂((2𝑚)−6)

3− (2𝑚)−2/2 + (2𝑚)−4/40 +𝑂((2𝑚)−6)

= (1− cos(1)) +𝑂(𝑚−4)
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Example 3.8.
∫︀ 0.5

−0.5

√
1− 𝑥2𝑑𝑥. The right answer should be

√
3/4 + 𝜋/6 = 0.9566114774905181

(i) Trapezium rule:

(
√︀

3/4 +
√︀

3/4)/2 = 0.8660254037844386

(ii) Simpson’s rule: √︀
3/4/6 + 1× 2/3 +

√︀
3/4/6 = 0.9553418012614795
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Algorithm 1: Composite Trapezium rule

1 𝑟 ← 𝑓(𝑎) + 𝑓(𝑏);
2 for 𝑖 = 1, . . . 𝑛− 1 do

3 𝑟 ← 𝑟 + 2× 𝑓( (𝑛−𝑖)𝑎+𝑖𝑏
𝑛 );

4 end

5 The answer is (𝑏−𝑎)𝑟
2𝑛 ;

Algorithm 2: Composite Simpson’s rule

1 𝑟 ← 𝑓(𝑎) + 𝑓(𝑏);
2 for 𝑖 = 1, . . . 𝑛− 1 do
3 if 𝑖 is odd then

4 𝑟 ← 𝑟 + 4× 𝑓( (𝑛−𝑖)𝑎+𝑖𝑏
𝑛 );

5 else

6 𝑟 ← 𝑟 + 2× 𝑓( (𝑛−𝑖)𝑎+𝑖𝑏
𝑛 );

7 end

8 end

9 The answer is (𝑏−𝑎)𝑟
3𝑛 ;
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from math import *

f=lambda x : (1=x*x )**0 . 5
def composite_trapezium (n , a , b , f ) :

r=0
r+=0.5*( f ( a)+ f (b ) )
for i in range (1 , n ) :

r+=f ( ( ( n=i )* a+i *b)/n)
return r *(b=a )/n

def composite_simpsons (n , a , b , f ) :
r=0
r+=f ( a)+ f (b)
for i in range (1 , n , 2 ) :

r+=4* f ( ( ( n=i )* a+i *b)/n)
for i in range (2 , n , 2 ) :

r+=2* f ( ( ( n=i )* a+i *b)/n)
return r *(b=a )/3/n
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0.5 1 1.5 2 2.5 3 3.5

5

10

15

𝑙𝑜𝑔(𝑛)

−
𝑙𝑜
𝑔
(𝐸
𝑟𝑟
𝑜𝑟

)
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If we do [𝑎, 𝑏] = [−1, 1], with the same function as above, we get:

0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

6

𝑙𝑜𝑔(𝑛)

−
𝑙𝑜
𝑔
(𝐸
𝑟𝑟
𝑜𝑟

)

Because the derivatives go to infinity at 𝑥 close to ±1, both methods only have 𝑂(𝑛−1)
error bound.
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3.4 Friday Review And Examples

� Interpolation

– Lagrange interpolation

– Hermite interpolation

– Uniqueness and error estimate

� Approximation theory

– Normed vector space and inner product space

– Gram-Schmidt

– Orthogonal projection

� Numerical integration

– Quadrature rule: 𝐼 =
∑︀𝑛

𝑖=0 𝑤𝑖𝑓(𝑥𝑖)

– Newton-Cotes quadrature, 𝑛 = 1, 2

– Error estimate via error estimate of Lagrange interpolation

– Composite methods
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Example: 𝑓(𝑥) = sin(𝑥), 𝑥 ∈ [0, 𝜋], 𝑥0 = 0, 𝑥1 = 𝜋/2, 𝑥2 = 𝜋.

� The Lagrange interpolation polynomial is

𝑝(𝑥) = 0 · (𝑥− 𝜋/2)(𝑥− 𝜋)

𝜋2/2
+ 1 · 𝑥(𝑥− 𝜋)

−𝜋2/4
+ 0 · (𝑥− 𝜋/2)𝑥

𝜋2/2

� The numerical integration using Simpson’s rule is

𝐼(𝑓) =

∫︁ 𝜋

0

𝑝(𝑥)𝑑𝑥 = 0 · 𝜋
6

+ 1 · 2𝜋

3
+ 0 · 𝜋

6
=

2𝜋

3

� The error estimate for Lagrange interpolation:

|𝑓(𝑥)− 𝑝(𝑥)| =
⃒⃒⃒⃒
𝑓 ′′′(𝑠)𝑥(𝑥− 𝜋/2)(𝑥− 𝜋)

3!

⃒⃒⃒⃒
≤ 1

6
|𝑥(𝑥− 𝜋/2)(𝑥− 𝜋)|

� Integrate the error estimate above, we get

|
∫︁ 𝜋

0

𝑓(𝑥)𝑑𝑥− 𝐼(𝑓)| ≤ 1

6

∫︁ 𝜋

0

|𝑥(𝑥− 𝜋/2)(𝑥− 𝜋)| = 1

6
· 𝜋4 · 1

32
=

𝜋4

192
≈ 0.507

� We can find an alternative error estimate via the following procedure

(i) We see that if 𝑔 is a polynomial of degree 2, 𝑔 equals its Lagrange interpolation
at 𝑥0, 𝑥1, 𝑥2, hence 𝐼(𝑔) =

∫︀ 𝜋

0
𝑔𝑑𝑥.

(ii) Furthermore, if 𝑓3 = 𝑥(𝑥− 𝜋/2)(𝑥− 𝜋), 𝐼(𝑓3) = 0 =
∫︀ 𝜋

0
𝑓3𝑑𝑥.

(iii) Hence, if 𝑔3 is a polynomial of degree 3, then 𝑔3 = 𝑎𝑓3 + 𝑔 for some 𝑎 ∈ R, and 𝑔
is a polynomial of degree 2. Hence

𝐼(𝑔3) = 𝑎𝐼(𝑓3) + 𝐼(𝑔) =

∫︁ 𝜋

0

𝑔(𝑥)𝑑𝑥 =

∫︁ 𝜋

0

(𝑎𝑓3 + 𝑔)𝑑𝑥 =

∫︁ 𝜋

0

𝑔3𝑑𝑥

(iv) Now Let 𝑝 be the Lagrange interpolation polynomial of 𝑓 at 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝑐,
then

∫︀ 𝜋

0
𝑝𝑑𝑥 = 𝐼(𝑝) = 𝐼(𝑓).
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(v) The error estimate for Lagrange interpolation gives us

|𝑓(𝑥)− 𝑝(𝑥)| =
⃒⃒⃒⃒
𝑓 ′′′′(𝑠)𝑥(𝑥− 𝑐)(𝑥− 𝜋/2)(𝑥− 𝜋)

4!

⃒⃒⃒⃒

≤ 1

24
|𝑥(𝑥− 𝑐)(𝑥− 𝜋/2)(𝑥− 𝜋)|

(vi) Integrate the error estimate, let 𝑐→ 𝜋/2, we get

|
∫︁ 𝜋

0

𝑓(𝑥)𝑑𝑥− 𝐼(𝑓)| ≤ 1

24

∫︁ 𝜋

0

|𝑥(𝑥− 𝜋/2)2(𝑥− 𝜋)|𝑑𝑥 =
𝜋5

2880
≈ 0.106

This is the bound in Theorem 7.2 in the textbook.

� The actual error is 2𝜋/3− 2 = 0.094.
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Exercises 1: Let 𝑓(𝑥) = 𝑥3(1− 𝑥), 𝑥 ∈ [0, 1]. 𝑥0 = 0, 𝑥1 = 𝑐, 𝑥2 = 1, 𝑐 ∈ (0, 1).

� Find the Lagrange interpolation of 𝑓 at 𝑥0, 𝑥1, 𝑥2.

� Integrate the Lagrange interpolation on [0, 1] to get an estimate of
∫︀ 1

0
𝑓(𝑥)𝑑𝑥.

� Find 𝑐 such that the estimate you found above is optimal.

Exercise 2: Let [𝑎, 𝑏] = [0, 1], 𝑥0 = 0, 𝑥1 = 0.5, 𝑥2 = 1.

� Write down the formula for Simpson’s rule and the composite trapezium rule using 𝑥𝑖.

� Find a continuous function on [𝑎, 𝑏] where the Simpson’s rule works better than the
composite trapezium rule, and vice versa.

Answer:

Exercises 1:

� 𝑝 = 𝑐3(1− 𝑐) · 𝑥(𝑥−1))
𝑐(𝑐−1) = −𝑐2𝑥(𝑥− 1).

� 𝐼 = 𝑐2/6.

�

∫︀ 1

0
𝑓(𝑥)𝑑𝑥 = 1/20, so 𝑐 should be

√
0.3.

Exercise 2:

� Simpson’s rule: 𝑓(0)/6 + 2𝑓(0.5)/3 + 𝑓(1)/6. Composite trapezium rule: 𝑓(0)/4 +
𝑓(0.5)/2 + 𝑓(1)/4.

� 𝑓(𝑥) = 𝑥2. 𝑓(𝑥) = |𝑥− 0.5|.
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Correction for the lecture on 11/6: We can also estimate the integral by decomposing
the interval into 𝑛 subintervals with the same length, and calculate the sum of the areas of
rectangles with those subintervals as base. If the height is taken as the value of the function
at end points (i.e. 𝐼 = 𝑏−𝑎

𝑛

∑︀𝑛−1
𝑖=0 𝑓(𝑥𝑖)), or use the maximum or minimum on the interval as

in the definition of Riemann integration, then the error grows as 𝑂(1/𝑛) if 𝑓 is smooth, where
𝑛 is the number of subintervals, which is worse than composite trapezium rule. However, if
the height is taken as the value of the function at midpoints (i.e. 𝐼 = 𝑏−𝑎

𝑛

∑︀𝑛−1
𝑖=0 𝑓(𝑥𝑖+𝑥𝑖+1

2 ))
the error grows as 𝑂(1/𝑛2) if 𝑓 is smooth (so it’s about as accurate as the trapezium rule).
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3.5 Gauss quadrature (Also see Sections 10.2-10.4 in the textbook)

Motivation:

(i) From the error bound of composite rules, we know that if the quadrature has error
bound 𝑂(|𝑏− 𝑎|𝑘), the composite rule will have an error bound of 𝑂(𝑛−𝑘+1).

(ii) So suppose 𝑓 is sufficiently smooth, it might be good to try and make the number 𝑘
as large as possible.

(iii) From the proof of Theorem 3.5, we see that if a quadrature rule gives accurate answer
to polynomials of degree 𝑑, then the error bound is 𝑂(|𝑏 − 𝑎|𝑑+2). For example, for
Simpson’s rule 𝑑 = 3.

(iv) So, it may be good to strategically choose the quadrature points such that the
quadrature rule works for polynomials of high degrees.

Recall from the definition of Legendre polynomial, if 𝐿𝑗 are the Legendre polynomials,
then

𝐿𝑗 ⊥ 𝑠𝑝𝑎𝑛{𝐿0, 𝐿1, . . . 𝐿𝑗−1}

Under 𝐿2([−1, 1]) norm.
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Theorem 3.9. Let 𝐼(𝑓) be the result of quadrature rule on [−1, 1], using quadrature points
𝑥𝑖, 𝑖 = 0, . . . , 𝑛, which the roots of 𝐿𝑛+1. For any polynomial 𝑔 of degree no more than

2𝑛+ 1, 𝐼(𝑔) =
∫︀ 1

−1
𝑔𝑑𝑥.

Proof. It’s easy to see that

𝑠𝑝𝑎𝑛{1, 𝑥, . . . 𝑥2𝑛+1} = 𝑠𝑝𝑎𝑛{𝐿0, . . . 𝐿𝑛+1, 𝐿𝑛+1𝐿1, . . . , 𝐿𝑛+1𝐿𝑛}

(A way to see it is by first recognizing that 𝑠𝑝𝑎𝑛{1, 𝑥, . . . 𝑥2𝑛+1} has dimension 2𝑛+ 2, and
show, from definition, that

{𝐿0, . . . 𝐿𝑛+1, 𝐿𝑛+1𝐿1, . . . , 𝐿𝑛+1𝐿𝑛}

is a linearly independent set of 2𝑛 + 2 elements (because they all have different degrees)
hence must be a basis.)
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Because both 𝐼 and
∫︀ 1

−1
are linear on the vector space consisting of polynomials of degree

no more than 2𝑛 + 1, and two linear transformations are the same if and only if they are
identical on the basis vectors, we only need to prove it when 𝑔 is 𝐿𝑗 , 0 ≤ 𝑗 ≤ 𝑛, as well as
when 𝑔 is 𝐿𝑗𝐿𝑛+1, 0 ≤ 𝑗 ≤ 𝑛.

� Case 1: 𝑔 = 𝐿𝑗 for some 𝑗 ≤ 𝑛. In this case, 𝑝 is of degree no more than 𝑛, hence 𝑝 is

identical to its Lagrange interpolation at 𝑛+ 1 points. Hence 𝐼(𝑔) =
∫︀ 1

−1
𝑔𝑑𝑥.

� Case 2: 𝑔 = 𝐿𝑗𝐿𝑛+1, 𝑗 ≤ 𝑛. Note that 𝐿𝑛+1 is proportional to 𝐿𝑛+1𝐿0 as 𝐿0 is of
degree 0 hence a constant. Because 𝑔 has a factor 𝐿𝑛+1, 𝑔(𝑥𝑖) = 0 for all 𝑖, hence
𝐼(𝑔) = 0. On the other hand, because 𝐿𝑛+1 and 𝐿𝑗 are orthogonal on 𝐿2([−1, 1]),∫︀ 1

−1
𝑔𝑑𝑥 = 0
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Definition 3.10. The Gauss-Legendre quadrature points 𝑥0, . . . , 𝑥𝑛 on [𝑎, 𝑏] is defined as
𝑥𝑗 = 𝑎+𝑏

2 + 𝑐𝑗
𝑏−𝑎
2 , where 𝑐𝑗 is the 𝑗+ 1-th root of the 𝑛+ 1-th Legendre polynomial. In other

words, 𝑥𝑗 is the 𝑗+1-th root of the weight-1 orthogonal polynomial on [𝑎, 𝑏] with index 𝑛+1,
𝜓𝑛+1.

Now we can use Theorem 3.9 to prove an error bound for Gauss-Legendre quadrature:

Theorem 3.11. (Theorem 10.1 in textbook) Let 𝑓 ∈ 𝐶2𝑛+2, then there is some 𝑐 ∈ [𝑎, 𝑏]
such that ∫︁ 𝑏

𝑎

𝑓𝑑𝑥− 𝐼(𝑓) =
𝑓 (2𝑛+2)(𝑐)

(2𝑛+ 2)!

∫︁ 𝑏

𝑎

∏︁
𝑖

(𝑥− 𝑥𝑖)2𝑑𝑥

Proof. Let 𝐻 be the Hermite interpolation polynomial of 𝑓 at 𝑥𝑖, then Theorem 3.9 implies

that
∫︀ 𝑏

𝑎
𝐻𝑑𝑥 = 𝐼(𝐻) = 𝐼(𝑓). Hence the result follows from the error bound of Hermite

interpolation (Theorem 1.10).
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More precisely, if𝑀 and𝑚 are the upper and lower bound of 𝑓 (2𝑛+2) on [𝑎, 𝑏] respectively,
we have

𝑚
∏︀

𝑖(𝑥− 𝑥𝑖)2

(2𝑛+ 1)!
≤ 𝑓(𝑥)−𝐻(𝑥) ≤

𝑀
∏︀

𝑖(𝑥− 𝑥𝑖)2

(2𝑛+ 1)!

Hence

𝑚

(2𝑛+ 2)!

∫︁ 𝑏

𝑎

∏︁
𝑖

(𝑥− 𝑥𝑖)2𝑑𝑥 ≤
∫︁ 𝑏

𝑎

𝑓𝑑𝑥− 𝐼(𝑓) ≤ 𝑀

(2𝑛+ 2)!

∫︁ 𝑏

𝑎

∏︁
𝑖

(𝑥− 𝑥𝑖)2

And the existence of 𝑐 follows from intermediate value theorem in analysis.

Remark 3.12. As |𝑏 − 𝑎| → 0 the error decay at |𝑏 − 𝑎|2𝑛+3, which is better than the
|𝑏− 𝑎|𝑛+2 or |𝑏− 𝑎|𝑛+3 in Newton-Cotes.
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Example 3.13. Use 𝑛 = 1 Gauss-Legendre quadrature to estimate
∫︀ 𝜋

0
sin(𝑥)𝑑𝑥.

Firstly find the quadrature points. The first method is by using the formula of Legendre
polynomials in HW4 problem 4, which is (1− 𝑥2)2

′′
= 12𝑥2 − 4, so roots are ± 1√

3
, so

𝑥0 = 𝜋/2(1− 1/
√

3) = 0.6639, 𝑥1 = 𝜋/2(1 + 1/
√

3) = 2.4777.
The second method is by finding a monic quadratic polynomial orthogonal to both 1 and

𝑥 under 𝐿2([0, 𝜋]). In other words, we need 𝑎 and 𝑏 such that∫︁ 𝜋

0

(𝑥2 + 𝑎𝑥+ 𝑏)𝑑𝑥 =
𝜋3

3
+
𝑎𝜋2

2
+ 𝑏𝜋 = 0

∫︁ 𝜋

0

(𝑥2 + 𝑎𝑥+ 𝑏)𝑥𝑑𝑥 =
𝜋4

4
+
𝑎𝜋3

3
+
𝑏𝜋2

2
= 0

Solve for 𝑎 and 𝑏 then find the roots.
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The quadrature weights are

𝑤0 =

∫︁ 𝜋

0

𝑥− 𝑥1
𝑥0 − 𝑥1

𝑑𝑥 =
𝑥1𝜋 − 𝜋2/2

𝑥1 − 𝑥0
= 𝜋/2 = 1.5708

𝑤1 =

∫︁ 𝜋

0

𝑥− 𝑥0
𝑥1 − 𝑥0

𝑑𝑥 =
𝜋2/2− 𝑥0𝜋
𝑥1 − 𝑥0

= 𝜋/2 = 1.5708

So
𝐼1(sin) = 𝑤0 sin(𝑥0) + 𝑤1 sin(𝑥1) = 1.9358

Error is 0.064.
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Another key property of the Gauss-Legendre quadrature is that all its weights are posi-
tive, because we have

Theorem 3.14. The weight for Gauss-Legendre quadrature is

𝑤𝑘 =

∫︁ 𝑏

𝑎

∏︀
𝑗 ̸=𝑘(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)

𝑑𝑥 =

∫︁ 𝑏

𝑎

(︃ ∏︀
𝑗 ̸=𝑘(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)

)︃2

𝑑𝑥

Proof. Suppose 𝜓𝑛+1 = 𝑐
∏︀

𝑖(𝑥 − 𝑥𝑖) is the weight 1 orthogonal polynomial on [𝑎, 𝑏] with
index 𝑛+ 1, then ∫︁ 𝑏

𝑎

∏︀
𝑗 ̸=𝑘(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)

−

(︃ ∏︀
𝑗 ̸=𝑘(𝑥− 𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)

)︃2

𝑑𝑥

=
1

(
∏︀

𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗)2

∫︁ 𝑏

𝑎

∏︁
𝑗 ̸=𝑘

(𝑥− 𝑥𝑗)(
∏︁
𝑗 ̸=𝑘

(𝑥𝑘 − 𝑥𝑗)−
∏︁
𝑗 ̸=𝑘

(𝑥− 𝑥𝑗))𝑑𝑥

Let ℎ(𝑥) =
∏︀

𝑗 ̸=𝑘(𝑥𝑘 − 𝑥𝑗) −
∏︀

𝑗 ̸=𝑘(𝑥 − 𝑥𝑗), then deg(ℎ) = 𝑛, and ℎ(𝑥𝑘) = 0, hence ℎ =
(𝑥− 𝑥𝑘)ℎ1 where deg(ℎ1) = 𝑛− 1. Now we have∫︁ 𝑏

𝑎

∏︁
𝑗 ̸=𝑘

(𝑥− 𝑥𝑗)(
∏︁
𝑗 ̸=𝑘

(𝑥𝑘 − 𝑥𝑗)−
∏︁
𝑗 ̸=𝑘

(𝑥− 𝑥𝑗))𝑑𝑥 =

∫︁ 𝑏

𝑎

(𝜓𝑛+1 ·
ℎ1
𝑐

)𝑑𝑥 = 0
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Remark 3.15. For comparison, when 𝑛 = 8, the Newton-Cotes quadrature weights are not
all positive.

As a consequence, we have:

Theorem 3.16. (Theorem 10.2 in textbook) Given any continuous function 𝑓 , the Gauss-

Legendre quadrature result 𝐼𝑛(𝑓) converges to
∫︀ 𝑏

𝑎
𝑓𝑑𝑥 as 𝑛→∞.

Proof. By Weierstrass approximation theorem there is some 𝑝 such that |𝑓 −𝑝| < 𝜖 on [𝑎, 𝑏],
hence for any 𝑛 > deg(𝑝),

|
∫︁ 𝑏

𝑎

𝑓𝑑𝑥− 𝐼𝑛(𝑓)| ≤ |
∫︁ 𝑏

𝑎

𝑓𝑑𝑥−
∫︁ 𝑏

𝑎

𝑝𝑑𝑥|+ |
∫︁ 𝑏

𝑎

𝑝𝑑𝑥− 𝐼𝑛(𝑝)|+ |𝐼𝑛(𝑝)− 𝐼𝑛(𝑓)|

≤ 𝜖(𝑏− 𝑎) + 0 + 𝜖(𝑏− 𝑎)

The last bit is due to

|𝐼𝑛(𝑝)− 𝐼𝑛(𝑓)| = |
∑︁
𝑖

𝑤𝑖(𝑝(𝑥𝑖)− 𝑓(𝑥𝑖))| ≤ 𝜖
∑︁
𝑖

|𝑤𝑖| = 𝜖
∑︁
𝑖

𝑤𝑖

And 𝐼𝑛(1) =
∫︀ 𝑏

𝑎
1𝑑𝑥 = 𝑏− 𝑎 so

∑︀
𝑖 𝑤𝑖 = 𝑏− 𝑎. Now let 𝜖→ 0 we get the convergence.

If 𝑤𝑖 are not all positive, one can not remove the absolute value, hence this may not be
true for other quadrature rules.
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Remark 3.17. The Gauss-Legendre quadrature can be generalized to deal with the problem

of estimating
∫︀ 𝑏

𝑎
𝑓𝑤𝑑𝑥 where 𝑤 is a given weight function not depend on 𝑓 , by replacing Leg-

endre polynomials with other orthogonal polynomials, which are called “Gauss quadrature”.

Definition 3.18. The Gauss quadrature points with weight 𝑤, 𝑥0, . . . , 𝑥𝑛 on [𝑎, 𝑏] is defined
as 𝑥𝑗 is the 𝑗 + 1-th root of the weight-𝑤 orthogonal polynomial on [𝑎, 𝑏] with index 𝑛 + 1,

𝜓𝑛+1. The quadrature weights are chosen as 𝑤𝑘 =
∫︀ 𝑏

𝑎
𝑤

∏︀
𝑗 ̸=𝑘(𝑥−𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘−𝑥𝑗)

𝑑𝑥.

For example, if [𝑎, 𝑏] = [−1, 1], and 𝑤 is (1−𝑥2)−1/2 we call it Chebyshev-Gauss quadra-
ture.

Theorem 3.19. (i) 𝑤𝑘 =
∫︀ 𝑏

𝑎
𝑤
(︁ ∏︀

𝑗 ̸=𝑘(𝑥−𝑥𝑗)∏︀
𝑗 ̸=𝑘(𝑥𝑘−𝑥𝑗)

)︁2
𝑑𝑥 hence is always positive.

(ii) If 𝑓 is a polynomial of degree no more than 2𝑛+ 1, then
∫︀ 𝑏

𝑎
𝑤𝑓𝑑𝑥 = 𝐼𝑛(𝑓), where 𝐼 is

the Gauss quadrature rule with 𝑛+ 1 quadrature points.

(iii) If 𝑓 is continuous on [𝑎, 𝑏], lim𝑛→∞ 𝐼𝑛(𝑓) =
∫︀ 𝑏

𝑎
𝑤𝑓𝑑𝑥 (Theorem 10.2 in textbook).

(iv) If 𝑓 ∈ 𝐶2𝑛+2, then there is some 𝑐 ∈ [𝑎, 𝑏], where
∫︀ 𝑏

𝑎
𝑤𝑓𝑑𝑥−𝐼(𝑓) = 𝑓(2𝑛+2)(𝑐)

(2𝑛+2)!

∫︀ 𝑏

𝑎
𝑤
∏︀

𝑖(𝑥−
𝑥𝑖)

2𝑑𝑥. (Theorem 10.1 in textbook)

The proof is very similar to the Gauss-Legendre case.
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3.6 Friday Review and Examples

� Definition of Gauss Legendre quadrature.

� Error bound.

� Convergence.

� General Gauss quadrature.

Key ideas:

� Error bound for Lagrange and Hermite interpolation.

� Quadrature and integration as linear transformation.

� Inner product and orthogonal polynomials.
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Example 3.20. 𝐼 =
∫︀ 𝜋

0
1√
sin 𝑥

𝑑𝑥. The correct answer is 5.2441151

� By change of variable,

𝐼 =
𝜋

2

∫︁ 1

−1

1√︀
cos(𝜋𝑥/2)

𝑑𝑥

� Let 𝑤 = (1− 𝑥2)−1/2, 𝑓 = (1−𝑥2)1/2√
cos(𝜋𝑥/2)

. Then
∫︀ 1

−1
1√

cos(𝜋𝑥/2)
𝑑𝑥 =

∫︀
𝑓𝑤𝑑𝑥.

� Now do Chebyshev-Gauss formula for 𝑓 . Suppose 𝑛 = 2, then the quadrature points,

which are the roots of 𝑇3 = cos(3 cos−1 𝑥), are 0,±
√
3
2 .

� The quadrature weights are

𝑤1 =

∫︁ 1

−1

(𝑥2 − 3/4)/(−3/4)√
1− 𝑥2

𝑑𝑥 = 𝜋/3

𝑤0 = 𝑤2 = 𝜋/3

(One can check that for Chebyshev-Gauss, the weights are always 𝜋
𝑛+1 .)

� The Chebyshev-Gauss for 𝑛 = 2 is

𝐼2 =

2∑︁
𝑖=0

𝑤𝑖𝑓(𝑥𝑖) = 3.3384

� The final answer is 5.2439, difference is 0.00018.
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Exercises:

(i) (a) Write down the Lagrange interpolation polynomial 𝑝 of a function 𝑓 , with inter-
polation points −1, 0 and 1.

(b) Calculate
∫︀ 1

0
𝑝(𝑥)𝑑𝑥, write it into the form of 𝑤0𝑓(−1) + 𝑤1𝑓(0) + 𝑤2𝑓(1).

(c) Show that the formula 𝐼(𝑓) = 𝑤0𝑓(−1) + 𝑤1𝑓(0) + 𝑤2𝑓(1) will give accurate
answer if 𝑓 is a polynomial of degree 2.

(d) Use the error estimate for Lagrange interpolation polynomial, find an upper

bound for
∫︀ 1

0
𝑓(𝑥)𝑑𝑥− 𝐼(𝑓).

(ii) (a) Let 𝑤 = 𝑒−𝑥, 𝐿2
𝑤([0,∞)) be the space of functions 𝑓 such that

∫︀∞
0
𝑤𝑓2𝑑𝑥 exists.

Show that 1, 𝑥, 𝑥2 ∈ 𝐿2
𝑤([0,∞)).

(b) Use the inner product (𝑓, 𝑔) =
∫︀∞
0
𝑤𝑓𝑔𝑑𝑥, carry out Gram-Schmidt process for

{1, 𝑥, 𝑥2} (the results are called Laguerre polynomials).

(c) Find the roots of the third polynomial you get from the above step, call them 𝑥0
and 𝑥1.

(d) Find 𝑤0 and 𝑤1 such that
∫︀∞
0
𝑤𝑔𝑑𝑥 = 𝑤0𝑔(𝑥0) + 𝑤1𝑔(𝑥1) for any polynomial 𝑔

of degree 1. This is called the Gauss-Laguerre quadrature.
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Answer:

(i) (a) 𝑝(𝑥) = 𝑓(−1)(𝑥(𝑥− 1)/2) + 𝑓(0)(1− 𝑥2) + 𝑓(1)(𝑥(𝑥+ 1)/2)

(b) −𝑓(−1)/12 + 2𝑓(0)/3 + 5𝑤2𝑓(1)/12.

(c) Because in this case, due to uniqueness of Lagrange interpolation, 𝑓 = 𝑝.

(d) The error bound for Lagrange interpolation polynomial is |𝑓(𝑥)−𝑝(𝑥)| ≤ max |𝑓 ′′′||𝑥3−
𝑥|/3!, so the error bound for 𝐼 is max |𝑓 ′′′|/24 Here maximum is taken on [−1, 1].

(ii) Note that
∫︀∞
0
𝑥𝑛𝑒−𝑥𝑑𝑥 = 𝑛!

(a) Because the weighted 𝐿2 norms of them are 1, 2, 24 respectively.

(b) {1, 𝑥− 1, 𝑥2 − 4𝑥+ 2}
(c) 2±

√
2.

(d)

1 +
√

2

2
√

2
𝑔(2−

√
2) +

√
2− 1

2
√

2
𝑔(2 +

√
2)
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3.7 Composite Gauss quadrature (Section 10.5)

One can combine composite method and Gauss quadrature: divide the interval into 𝑚
subintervals of equal length, then apply Gauss quadrature on each. For example, if we
apply Gauss-Legendre quadrature with 𝑘 + 1 quadrature points to each subinterval, when
the function is in 𝐶2𝑘+2, the error decay at a speed of 𝑂(𝑚−2𝑘−2).
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Example 3.21.
∫︀ 0.5

−0.5

√
1− 𝑥2𝑑𝑥, using composite Gauss quadrature with 𝑘 = 1

Roots of degree 2 Legendre polynomials are ±1/
√

3.

def composite_gauss (n , a , b , f ) :
r=0
m=int ( ( n+1)/2)
for i in range (m) :

l 0=( i *b+(m=i )* a )/m
l1 =(( i +1)*b+(m=i =1)*a )/m
x0=( l 0+l1 )/2=( l1=l 0 ) /2/ (3**0 . 5 )
x1=( l 0+l1 )/2+( l1=l 0 ) /2/ (3**0 . 5 )
r+=f ( x0)+ f ( x1 )

return r *(b=a )/ ( n+1)

0.5 1 1.5 2 2.5 3 3.5

5

10

15

𝑙𝑜𝑔(𝑛)

−
𝑙𝑜
𝑔
(𝐸
𝑟𝑟
𝑜𝑟

)
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3.8 Other topics in numerical integration

3.8.1 Modified Gauss Quadratures (Section 10.6), won’t be in final exam

Sometimes some quadrature points are pre-determined while others can be chosen strate-
gically, in which case we can choose them as roots of orthogonal polynomials. If the pre-
determined point is one of the end point we call this strategy Radau quadrature, if it is
both end points we call it Lobatto quadrature.

If there are 𝑛+ 1 quadrature points, 𝑘 of them are predetermined and the rest roots of
Legendre polynomial of degree 𝑛+ 1− 𝑘, the error is bounded by 𝑂((𝑏− 𝑎)2𝑛+3−𝑘). When
𝑛 = 𝑘 = 2 we get Simpson’s method.
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3.8.2 Richardson Extrapolation (Section 7.6, 7.7), won’t be in final exam

A common trick in numerical analysis is extrapolation: if a sequence 𝑎𝑛 can be calculated
whose limit as 𝑛→∞ is some 𝑎, and the speed of convergence is known, we can use linear
combination of successive terms to speed up the convergence. For example, for composite
trapezium rule, Euler-Maclaurin formula says that, when 𝑓 is “good enough”,

𝐼𝑛 − 𝐼 =

∞∑︁
𝑘=1

𝑐𝑘𝑛
−2𝑘

So 4𝐼2𝑛−𝐼𝑛
3 (which is identical to composite Simpson’s rule) has 𝑂(𝑛−4) convergence, and

one can do it repeatedly to get higher convergence speed.

3.9 Review

� Quadrature rule

� Newton-Cotes quadrature

� Gauss quadrature

� Composite method

79



4 Numerical ODE: IVP (Chapter 12)

Initial value problem of ODE:
𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0

Here 𝑦 can be a real valued function or R𝑛-valued function. For now we focus on the case
where 𝑦 is real valued.

We always assume 𝑓 is continuous and Lipschitz on the second parameter (|𝑓(𝑡, 𝑦) −
𝑓(𝑡, 𝑧)| ≤ 𝐿|𝑦 − 𝑧| for all pair 𝑦, 𝑧, 𝐿 is called the Lipschitz constant). So by Picard’s Theo-
rem, IVP has a unique solution.

Numerical integration can be seen as a special case of IVP of numerical ODE, with 𝑓
independent from 𝑦.

Strategy: Find some small positive number ℎ as the “step size”, estimate the value of 𝑦
at 𝑛ℎ for all 𝑛.

80



4.1 Euler’s Method (12.2, 12.3)

ℎ is a small number, 𝑧 an approximation of 𝑦 evaluated using:

𝑧(0) = 𝑦0

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

� The motivation is using PL function to approximate 𝑦.

� Truncated error 𝑇𝑛 is error introduced at step 𝑛, divided by step size. More precisely,
suppose the method is 𝑧((𝑛+ 1)ℎ) = 𝐺(𝑧(𝑛ℎ)), then

𝑇𝑛 =
𝐺(𝑦(𝑛ℎ))− 𝑦((𝑛+ 1)ℎ)

ℎ

.

� A method has order of accuracy 𝑝 if when 𝑓 is sufficiently smooth, 𝑇 = 𝑂(ℎ𝑝).

� Global error at time 𝑡 is the difference between the estimated 𝑧(𝑡) and the true
value of 𝑦(𝑡).

� A method is called consistent if truncated error goes to 0 as ℎ→ 0. Convergent if
global error goes to 0 as ℎ→ 0.

� Under certain assumptions, global error at given time 𝑡 is controlled by the bound on
truncated error (Theorem 12.2 and 12.5 in textbook).

81



Example 4.1. Euler’s method applied to 𝑦′ = 𝑦, 𝑦(0) = 1

True solution: 𝑦(𝑡) = 𝑒𝑡.

Approximated solution using Euler’s method with step-size ℎ:

𝑧(0) = 1, 𝑧(ℎ) = 1+ℎ𝑧(0) = 1+ℎ, 𝑧(2ℎ) = 𝑧(ℎ)+ℎ𝑧(ℎ) = 1+ℎ+ℎ(1+ℎ) = (1+ℎ)2, . . . , 𝑧(𝑛ℎ) = (1+ℎ)𝑛

So the global error at time 𝑡 = 𝑛ℎ is 𝑒𝑡 − (1 + ℎ)𝑛 = 𝑒𝑡 − (1 + ℎ)𝑡/ℎ, which converges to
0 as ℎ→ 0.

To understand the error created at each step, consider the sequence 𝑧𝑘(𝑛ℎ), such that

𝑧𝑘(𝑘ℎ) = 𝑦(𝑘ℎ) = 𝑒𝑘ℎ

𝑧𝑘((𝑛+ 1)ℎ) = 𝑧𝑘(𝑛ℎ) + ℎ𝑧𝑘(𝑛ℎ)

So
𝑧𝑘(𝑛ℎ) = 𝑒𝑘ℎ(1 + ℎ)𝑛−𝑘

𝑇𝑛 =
𝑒(𝑛+1)ℎ − 𝑒𝑛ℎ(1 + ℎ)

ℎ
= 𝑂(ℎ)

So the method is consistent with order of accuracy 1.
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𝑥

𝑦

To study global error, we need to understand:

� What are the truncated errors?

� How do error introduced in prior steps grow with time?
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� By definition of derivative, if 𝑡 = 𝑛ℎ,

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑓(𝑡, 𝑦(𝑡)) + 𝑜(ℎ)

So 𝑇𝑛 = 𝑜(ℎ)
ℎ , Euler’s method is consistent.

� If 𝑓 is sufficiently smooth, so is 𝑦, so

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑓(𝑡, 𝑦(𝑡)) +
ℎ2

2
𝑦′′(𝑡) + 𝑜(ℎ2)

So 𝑇𝑛 = 𝑂(ℎ), Euler’s method is of order of accuracy 1.

� Furthermore, if we write down the remainder of Taylor’s series, we have

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑦′(𝑡) +
ℎ2

2
𝑦′′(𝑠)

= 𝑦(𝑡) + ℎ𝑓(𝑡, 𝑦(𝑡)) +
ℎ2

2
(𝑓1(𝑠, 𝑦(𝑠)) + 𝑓2(𝑠, 𝑦(𝑠))𝑓(𝑠, 𝑦(𝑠)))

for some 𝑠 ∈ [𝑡, 𝑡+ℎ], 𝑓1 and 𝑓2 are the partial derivative in first and second parameter.
So, if 𝑓 and its partial derivatives are all bounded, 𝑇 is uniformly bounded by some
𝐶ℎ.

84



Let’s now analyze how error grows in Euler’s method:

Lemma 4.2. If 𝑓 is 𝐿-Lip. on second paramater, 𝑤1, 𝑤2 two functions defined on 𝑚ℎ, (𝑚+
1)ℎ, . . . , 𝑛ℎ, such that

𝑤𝑖((𝑘 + 1)ℎ) = 𝑤𝑖(𝑘ℎ) + ℎ𝑓(𝑘ℎ,𝑤𝑖(𝑘ℎ))

Then
|𝑤1(𝑛ℎ)− 𝑤2(𝑛ℎ)| ≤ 𝑒𝐿(𝑛−𝑚)ℎ|𝑤1(𝑚ℎ)− 𝑤2(𝑚ℎ)|

Proof.
𝐿𝐻𝑆 ≤ (1 + ℎ𝐿)|𝑤1((𝑛− 1)ℎ)− 𝑤2((𝑛− 1)ℎ)| ≤

· · · ≤ (1 + ℎ𝐿)𝑛−𝑚|𝑤1(𝑚ℎ)− 𝑤2(𝑚ℎ)|

And
(1 + ℎ𝐿)𝑛−𝑚 ≤ 𝑒𝐿(𝑛−𝑚)ℎ
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Now let’s estimate global error at time 𝑡 = 𝑛ℎ. Let 𝑧𝑘(𝑛ℎ), 𝑛 ≥ 𝑘, be

𝑧𝑘(𝑘ℎ) = 𝑦(𝑘ℎ)

𝑧𝑘((𝑛+ 1)ℎ) = 𝑧𝑘(𝑛ℎ) + ℎ𝑓(𝑛ℎ, 𝑧𝑘(𝑛ℎ))

|𝑦(𝑛ℎ)− 𝑧(𝑛ℎ)| = |𝑧𝑛(𝑛ℎ)− 𝑧0(𝑛ℎ)| ≤
𝑛−1∑︁
𝑘=0

|𝑧𝑘(𝑛ℎ)− 𝑧𝑘+1(𝑛ℎ)|

(Triangle inequality)

≤
𝑛−1∑︁
𝑘=0

𝑒𝐿ℎ(𝑛−𝑘−1)|𝑧𝑘((𝑘 + 1)ℎ)− 𝑧𝑘+1((𝑘 + 1)ℎ)|

(The Lemma from previous page)

≤
𝑛−1∑︁
𝑘=0

𝐶ℎ2𝑒𝐿(𝑛−𝑘−1)ℎ ≤ 𝐶ℎ2(𝑒𝐿𝑛ℎ − 1)

𝑒𝐿ℎ − 1

(Bound on truncated error)
So

Theorem 4.3. If

� 𝑓 is smooth, 𝑓 and its partial derivatives are bounded.

� 𝑛ℎ is fixed and 𝑛→∞

then the global error of Euler’s method at time 𝑛ℎ converges to zero at 𝑂(ℎ). In other words,
Euler’s method is convergent.
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4.2 Friday Review and Examples

� Composite Gauss Quadrature

� Euler’s method.

� Truncated error and global error.

� Consistency and order of accuracy.

� Convergence.
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Example 4.4. Midpoint rule

(i) The weight 1 orthogonal polynomial on [𝑎, 𝑏] of degree 1. It is 𝑥− 𝑏+𝑎
2 . The root of it

is 𝑏+𝑎
2 .

(ii) Hence, the Gauss-Legendre quadrature with 𝑛 = 0 is 𝑥0 = 𝑏+𝑎
2 . Quadrature weight is

𝑏− 𝑎.

(iii) If 𝑓 is differentiable, the error bound is

|
∫︁ 𝑏

𝑎

𝑓𝑑𝑥− (𝑏− 𝑎)𝑓(
𝑎+ 𝑏

2
)| ≤

max |𝑓 ′′|
∫︀ 𝑏

𝑎
(𝑥− 𝑎+𝑏

2 )2𝑑𝑥

2!
=

max |𝑓 ′′|(𝑏− 𝑎)3

24

(iv) Now decompose 𝑓 into 𝑚 subintervals, each applying the Gauss-Legendre quadrature,
we get

𝐼 =
𝑏− 𝑎
𝑚

𝑚−1∑︁
𝑖=0

𝑓(𝑎+
(𝑖+ 1/2)(𝑏− 𝑎)

𝑚
)

And the error bound is max |𝑓 ′′|(𝑏−𝑎)3

24𝑚2 .
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Example 4.5. 𝑦′ = sin(𝑦), 𝑦(0) = 1

(i) True solution: 𝑦(𝑡) = 2 tan−1(tan(1/2)𝑒𝑥)

(ii) Euler’s method is:

𝑧(0) = 1, 𝑧(𝑛ℎ) = 𝑧((𝑛− 1)ℎ) + ℎ sin(𝑧((𝑛− 1)ℎ))

(iii) Truncated error for Euler’s method at time 𝑡 is

|𝑦
′′(𝑠)ℎ

2!
| = |𝑦

′ cos(𝑦)ℎ

2!
|

= | sin(𝑦) cos(𝑦)ℎ

2!
| ≤ 𝐶ℎ

What is the number 𝐶?

(iv) sin(𝑦) is 𝐿-Lipschitz. In other words, | sin(𝑎)− sin(𝑏)| ≤ 𝐿|𝑎− 𝑏| for all 𝑎, 𝑏. What’s a
valid 𝐿?

(v) Now the argument from last lecture shows that the global error bound at time 𝑡 = 𝑛ℎ

is 𝐶ℎ2(𝑒𝐿𝑡−1)
𝑒𝐿ℎ−1

.

(vi) Let 𝑡 = 1, ℎ = 0.1, Euler’s method get 𝑧(1) = 1.95109. True answer is 𝑦(1) = 1.95629.
Error bound as calculated from above, using 𝐶 = 1/4, 𝐿 = 1, is 0.04084.
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Example 4.6. Consider IVP 𝑦′ = 𝑓(𝑦), 𝑦(0) = 𝑦0. Suppose 𝑓 is real analytic, i.e. the
Taylor series at every point converges at a neighborhood of the point. Suppose ℎ is a small
positive number. The theory of ODE tells us that 𝑦 is also real analytic.

Suppose 𝑓(𝑥) =
∑︀

𝑖 𝑎𝑖(𝑥− 𝑦0)𝑖.

(i) Write down the Taylor expansion of 𝑦 at 𝑡 = 0, up to 𝑡2 term.

(ii) Write down the result of 𝑧(ℎ) = 𝑧(0) + ℎ𝑓(𝑧(0)), as a power series of ℎ.

(iii) Write down the result of 𝑧(2ℎ) = 𝑧(ℎ) + ℎ𝑓(𝑧(ℎ)), as a power series of ℎ.

(iv) Find a linear combination of 𝑦0, 𝑧(ℎ), 𝑧(2ℎ) which is close to 𝑦(2ℎ) up to the ℎ2 term.
This is called the 2nd order Runge-Kutta method (rk2).

Answer:

(i) 𝑦(𝑡) = 𝑦0 + 𝑎0𝑡+ 𝑎0𝑎1

2 𝑡2 +𝑂(𝑡3)

(ii) 𝑧(ℎ) = 𝑦0 + 𝑎0ℎ

(iii) 𝑧(2ℎ) = 𝑦0 + 2𝑎0ℎ+ 𝑎0𝑎1ℎ
2 +𝑂(ℎ3)

(iv) 𝑦(2ℎ) = 𝑦0 − 2𝑧(ℎ) + 2𝑧(2ℎ) +𝑂(ℎ3)
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4.3 Ways to get higher order methods

4.3.1 Method based on Lagrange Interpolation (12.4, 12.6)

Firstly some methods based on Lagrange interpolation:

Explicit Methods Consider the function 𝑔(𝑡) = 𝑓(𝑡, 𝑦(𝑡)). One can then use 𝑔(𝑡 −
ℎ), . . . , 𝑔(𝑡− 𝑘ℎ) as quadrature point to estimate

∫︀ 𝑡

𝑡−𝑑ℎ
𝑔(𝑠)𝑑𝑠, then use 𝑦(𝑡) = 𝑦(𝑡− 𝑑ℎ) +∫︀ 𝑡

𝑡−𝑑ℎ
𝑔(𝑠)𝑑𝑠.

Implicit Methods One can also use 𝑔(𝑡), 𝑔(𝑡 − ℎ), . . . , 𝑔(𝑡 − 𝑘ℎ) as quadrature point to

estimate
∫︀ 𝑡

𝑡−𝑑ℎ
𝑔(𝑠)𝑑𝑠, then use 𝑦(𝑡) = 𝑦(𝑡 − 𝑑ℎ) +

∫︀ 𝑡

𝑡−𝑑ℎ
𝑔(𝑠)𝑑𝑠. This way 𝑦(𝑡) appears on

the right hand side and the estimate of 𝑦(𝑡) requires solving an equation, hence is called
implicit.
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Example 4.7. � Explicit method for 𝑑 = 1, 𝑘 = 1 is Euler’s Method.

� Implicit method for 𝑑 = 1, 𝑘 = 1 is the trapezium method as the numerical inte-
gration is via trapezium rule:

𝑧(𝑡) = 𝑧(𝑡− ℎ) +
ℎ

2
(𝑓(𝑡, 𝑧(𝑡)) + 𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ)))

We can show that it is consistent with order of accuracy 2.

� Implicit method for 𝑘 = 𝑑 = 2 will be

𝑧(𝑡) = 𝑧(𝑡− 2ℎ) +
ℎ

3
(𝑓(𝑡, 𝑧(𝑡)) + 4𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ)) + 𝑓(𝑡− 2ℎ, 𝑧(𝑡− 2ℎ)))

When 𝑓(𝑡, 𝑦) = 𝑓(𝑡) this reduces to Simpson’s rule. This is called the 2-step Milne’s
method.

� When 𝑑 = 1, the explicit methods are called 𝑘-th step Adams-Bashforth methods,
while the implicit methods are called Adams-Moulton methods.
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Example 4.8. Let’s deduce the Adams-Bashforth method for 𝑘 = 4.

(i) The Lagrange interpolation of 𝑓(𝑠, 𝑧(𝑠)) at 𝑡− ℎ, 𝑡− 2ℎ, 𝑡− 3ℎ, 𝑡− 4ℎ is

𝑝(𝑠) = 𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ))
(𝑠− (𝑡− 2ℎ))(𝑠− (𝑡− 3ℎ))(𝑠− (𝑡− 4ℎ))

6ℎ3

+𝑓(𝑡− 2ℎ, 𝑧(𝑡− 2ℎ))
(𝑠− (𝑡− ℎ))(𝑠− (𝑡− 3ℎ))(𝑠− (𝑡− 4ℎ))

−2ℎ3

+𝑓(𝑡− 3ℎ, 𝑧(𝑡− 3ℎ))
(𝑠− (𝑡− ℎ))(𝑠− (𝑡− 2ℎ))(𝑠− (𝑡− 4ℎ))

2ℎ2

+𝑓(𝑡− 4ℎ, 𝑧(𝑡− 4ℎ))
(𝑠− (𝑡− ℎ))(𝑠− (𝑡− 2ℎ))(𝑠− (𝑡− 3ℎ))

−6ℎ3

(ii)

𝑧(𝑡) = 𝑧(𝑡− ℎ) +

∫︁ 𝑡

𝑡−ℎ

𝑝(𝑠)𝑑𝑠

= 𝑧(𝑡− ℎ) + ℎ(
55

24
𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ))− 59

24
𝑓(𝑡− 2ℎ, 𝑧(𝑡− 2ℎ))

+
37

24
𝑓(𝑡− 3ℎ, 𝑧(𝑡− 3ℎ))− 3

8
𝑓(𝑡− 4ℎ, 𝑧(𝑡− 4ℎ)))
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An alternative to implicit method is the predictor-corrector method: for example,
instead of Trapzsium method, we first estimate 𝑧(𝑡) using Euler’s method, then “correct” it
using the trapezium rule formula, and get:

𝑧𝑝(𝑡) = 𝑧(𝑡− ℎ) + ℎ𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ))

𝑧(𝑡) = 𝑧(𝑡− ℎ) +
ℎ

2
(𝑓(𝑡, 𝑧𝑝(𝑡)) + 𝑓(𝑡− ℎ, 𝑧(𝑡− ℎ)))

This is called Heun’s method.
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Example 4.9. 𝑦′ = 𝑦, 𝑦(0) = 1

� Euler’s method:
𝑧(𝑛ℎ+ ℎ) = 𝑧(𝑛ℎ) + ℎ𝑧(𝑛ℎ)

𝑧(𝑛ℎ) = (1 + ℎ)𝑛

� Trapezium rule method:

𝑧(𝑛ℎ+ ℎ) = 𝑧(𝑛ℎ) +
ℎ

2
(𝑧(𝑛ℎ+ ℎ) + 𝑧(𝑛ℎ))

𝑧(𝑛ℎ) =
(1 + ℎ/2)𝑛

(1− ℎ/2)𝑛

Truncated error is

𝑂(
𝑒ℎ − 1+ℎ/2

1−ℎ/2

ℎ
) = 𝑂(ℎ2)

� Heun’s rule is

𝑧(𝑛ℎ+ ℎ) = 𝑧(𝑛ℎ) +
ℎ

2
(2𝑧(𝑛ℎ) + ℎ𝑧(𝑛ℎ))

𝑧(𝑛ℎ) = (1 + ℎ+ ℎ2/2)𝑛

Truncated error is also 𝑂(ℎ2).
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4.3.2 Theory of General Linear Multistep Methods (12.7-12.9)

General Linear 𝑘-step Method:

𝑘∑︁
𝑗=0

𝛼𝑗𝑧((𝑛+ 𝑗)ℎ) = ℎ

𝑘∑︁
𝑗=0

𝛽𝑗𝑓((𝑛+ 𝑗)ℎ, 𝑧((𝑛+ 𝑗)ℎ))

If 𝛽𝑘 = 0 it is explicit, otherwise it is implicit. To start the 𝑘-step method, we need 𝑘
initial values 𝑧(0), . . . , 𝑧((𝑘 − 1)ℎ), then solve the equation to get 𝑧(𝑘ℎ), 𝑧((𝑘 + 1)ℎ, . . .

� We want a linear 𝑘-step method to be zero-stable. In other words, if the equation
is 𝑦′ = 0, then the 𝑧(𝑛ℎ) does not go to infinity as 𝑛 → ∞. From the theory in
linear difference equations in linear algebra, we know that this is equivalent to the
first characteristic polynomial 𝜌(𝑧) =

∑︀𝑘
𝑗=0 𝛼𝑗𝑧

𝑗 having all roots inside the closed
unit disc and at most only single roots on the unit circle.

� All the method obtained via Lagrange interpolation, including Adams-Moulton and
Adams-Bashforth, are zero-stable.
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� Why do we need zero-stability? Suppose we let ℎ→ 0 and 𝑡 = ℎ𝑛 remain unchanged,
then 𝑛→∞. If there is no zero stability, error at previous steps will grow indefinitely.

Example 4.10. 𝑦′ = 𝑦, 𝑦(0) = 1. Use multistep method 𝑧((𝑛+2)ℎ)−3𝑧((𝑛+1)ℎ)+2𝑧(𝑛ℎ) =
−ℎ𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

(i) Start with 𝑧(0) = 1, 𝑧(ℎ) = 𝑒ℎ.

(ii) One can verify by doing Taylor expansion of 𝑧, that the method is consistent.

(iii) Similar to Example 4.1, define 𝑧𝑘(𝑛ℎ) be 𝑧𝑘(𝑘ℎ) = 𝑦(𝑘ℎ), 𝑧𝑘((𝑘 + 1)ℎ) = 𝑦((𝑘 + 1)ℎ),
and for all 𝑛 > 𝑘 + 1, 𝑧𝑘(𝑛ℎ) are calculated using the multistep method.

(iv) Then the error created at time (𝑘 + 2)ℎ is

𝑧𝑘((𝑘 + 2)ℎ)− 𝑦((𝑘 + 2)ℎ) = 𝑧𝑘((𝑘 + 2)ℎ)− 𝑧𝑘+1((𝑘 + 2)ℎ) = 𝑂(ℎ2)
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(v) Now let’s see how this error grow with time: Let 𝑤𝑚 = 𝑧𝑘((𝑘 + 1 +𝑚)ℎ)− 𝑧𝑘+1((𝑘 +
1 +𝑚)ℎ). Then

𝑤0 = 0

𝑤1 = 𝑂(ℎ2)

𝑤𝑚+2 − 3𝑤𝑚+1 + 2𝑤𝑚 = 𝑂(ℎ)

(vi) So if the linear difference equation

𝑤𝑚+2 − 3𝑤𝑚+1 + 2𝑤𝑚 = 0

Has solution that grows to infinity, then the error created at time (𝑘 + 2)ℎ, after
propagating to 𝑡 = 𝑛ℎ, will be 𝑤𝑛−𝑘−1 which goes to ∞ as ℎ→ 0.

This is when 𝑡 = 1, ℎ = 0.1 (See https://github.com/wuchenxi/Math-514/blob/

main/zero_stability.py):

𝑥

𝑦
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� To get consistency, let 𝜎(𝑧) =
∑︀𝑘

𝑗=0 𝛽𝑗𝑧
𝑗 be the second characteristic polynomial.

When 𝑓 is smooth, 𝑠 << 1, 𝑓(𝑛ℎ+ 𝑠, 𝑦(𝑛ℎ+ 𝑠)) = 𝑓(𝑛ℎ, 𝑦(𝑛ℎ)) + 𝑂(𝑠), 𝑦(𝑛ℎ+ 𝑠) =
𝑦(𝑛ℎ) + 𝑠𝑓(𝑛ℎ, 𝑦(𝑛ℎ)) + 𝑂(𝑠2). To make method consistent, we want to make sure
that if we put 𝑦((𝑛 + 𝑗)ℎ) in place of 𝑧((𝑛 + 𝑗)ℎ), the left hand side and right hand
side are off by 𝑜(ℎ), hence∑︁

𝑖

𝛼𝑖 +
∑︁
𝑖

𝑖𝛼𝑖𝑓(𝑛ℎ, 𝑦(𝑛ℎ))ℎ = ℎ
∑︁
𝑖

𝛽𝑖𝑓(𝑛ℎ, 𝑦(𝑛ℎ)) +𝑂(ℎ2)

So 𝜌(1) =
∑︀

𝑖 𝛼𝑖 = 0, 𝜌′(1) =
∑︀

𝑖 𝑖𝛼𝑖 =
∑︀

𝑖 𝛽𝑖 = 𝜎(1).

� All the methods obtained via Lagrange interpolation are consistent, by looking at
𝑓 = 1.

� To get order of accuracy, carry out the same argument as above but do higher order
power expansion for 𝑦(𝑛ℎ+ 𝑠) and 𝑓(𝑛ℎ+ 𝑠, 𝑦(𝑛ℎ+ 𝑠)).
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For global convergence of linear multistep methods we have the Dahlquist’s theorems:

� If a linear 𝑘-step method has zero stability, then it is consistent iff it is convergent,
and the truncated error and global error has the same order as ℎ→ 0.

� (First Dahlquist barrier) If a linear 𝑘-step method is 0-stable then the order of accuracy
is no more than 𝑘 + 1 if 𝑘 is odd (e.g. Adams-Moulton, by Theorem 3.4), 𝑘 + 2 if
𝑘 is even (e.g. 𝑑 = 𝑘 implicit, by Theorem 3.5), and 𝑘 if it has to be explicit (e.g.
Adams-Bashforth, by Theorem 3.4).
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4.3.3 Runge-Kutta methods (12.5)

To get initial conditions for linear multistep methods, we need one step methods with higher
orders of accuracy. To accomplish that we need to have more evaluations of 𝑓 per step.

Recall Heun’s method:

𝑧𝑝((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) +
ℎ

2
(𝑓(𝑛ℎ, 𝑧(𝑛ℎ)) + (𝑓((𝑛+ 1)ℎ, 𝑧𝑝((𝑛+ 1)ℎ))))

We can rewrite it as
𝑘1 = 𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

𝑘2 = 𝑓(𝑛ℎ+ ℎ, 𝑧(𝑛ℎ) + ℎ𝑘1)

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ(
𝑘1
2

+
𝑘2
2

)
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General Runge-Kutta:
𝑘1 = 𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

𝑘𝑗 = 𝑓(𝑛ℎ+ 𝛼𝑗ℎ, 𝑧(𝑛ℎ) +
∑︁
𝑖<𝑗

𝛽𝑖𝑗ℎ𝑘𝑖)

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ
∑︁
𝑗

𝑐𝑗𝑘𝑗

Some popular choice of parameters:

(i) Heun’s method, or improved Euler method: 𝛼2 = 𝛽12 = 1, 𝑐1 = 𝑐2 = 1/2

(ii) RK2, or modified Euler’s method: 𝛼2 = 𝛽12 = 1/2, 𝑐1 = 0, 𝑐2 = 1.

(iii) RK4: 𝛼2 = 𝛼3 = 𝛽12 = 𝛽23 = 1/2, 𝛼4 = 𝛽34 = 1, 𝑐1 = 𝑐4 = 1/6, 𝑐2 = 𝑐3 = 1/3.
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How to check consistency and order of accuracy: Taylor series expansion for 𝑦 and 𝑓 .

Example 4.11. Show that Heun’s method is consistent and has order of accuracy 2.

(i)
𝑓(𝑡+ 𝑠, 𝑦(𝑡) + 𝑟) = 𝑓(𝑡, 𝑦(𝑡)) + 𝑠𝑓1(𝑡, 𝑦(𝑡)) + 𝑟𝑓2(𝑡, 𝑦(𝑡)) +𝑂(𝑟2 + 𝑠2)

(ii) Now calculate the Taylor series of 𝑦(𝑡+ 𝑠):

𝑦(𝑡+ 𝑠) = 𝑦(𝑡) + 𝑦′(𝑡)𝑠+
𝑦′′(𝑡)

2
𝑠2 +𝑂(𝑠3)

= 𝑦(𝑡) + 𝑓(𝑡, 𝑦(𝑡))𝑠+
𝑓1 + 𝑓𝑓2

2
𝑠2 +𝑂(𝑠3)

(iii) Now do Heun’s method:
𝑘1 = 𝑓(𝑡, 𝑦(𝑡))

𝑘2 = 𝑓(𝑡+ ℎ, 𝑦(𝑡) + ℎ𝑘1) = 𝑓 + ℎ(𝑓1 + 𝑓𝑓2) +𝑂(ℎ2)

So

𝑧(𝑡+ ℎ) = 𝑦(𝑡) +
ℎ

2
(𝑘1 + 𝑘2) = 𝑦(𝑡+ ℎ) +𝑂(ℎ3)

(iv) The method is consistent and has order of accuracy 2.

Similarly, rk2 can be shown to have order of accuracy 2 and rk4 order of accuracy 4.

Global error bound can then be obtained in a way similar to Euler’s method.

When using linear multistep methods of order of accuracy 𝑛, we can calculate the initial
values using one-step methods of order 𝑛− 1. This way the error created in the initial steps
will be 𝑂(ℎ𝑛) which is comparable with global error of an 𝑛-th order method.
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Example 4.12. 𝑦′ = sin(𝑦), 𝑦(0) = 1. ℎ = 0.25, 𝑡 = 4ℎ = 1.

True answer is 𝑦(1) = 1.9562950.

(i) Euler’s Method:
𝑧(0.25) = 𝑦(0) + ℎ sin(𝑦(0)) = 1.2103677

𝑧(0.5) = 𝑦(0.25) + ℎ sin(𝑦(0.25)) = 1.4443042

𝑧(0.75) = 1.6923068, 𝑧(1) = 1.9404635

(ii) Rouge-Kutta 2nd Order

𝑧(0.25) = 𝑦(0) + ℎ sin(𝑦(0) + ℎ sin(𝑦(0))/2) = 1.2233867

𝑧(0.5) = 1.4668103, 𝑧(0.75) = 1.7167586, 𝑧(1) = 1.9577257
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(iii) Improved Euler’s Method+Adams-Bashforth 3rd order

(a) Improved Euler’s Method for 𝑧(0.25) and 𝑧(0.5):

𝑧(0.25) = 𝑦(0) +
ℎ

2
(sin(𝑦(0)) + sin(𝑦(0) + ℎ sin(𝑦0))) = 1.2221521

𝑧(0.5) = 1.4638248

(b) Adams-Bashforth 3rd order:

𝑧(0.75) = 𝑧(0.5) + ℎ(
23

12
sin(𝑧(0.5))− 4

3
sin(𝑧(0.25)) +

5

12
sin(𝑦(0))) = 1.7146269

𝑧(1) = 1.9553174
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(iv) Rouge-Kutta 4th Order:

(a) Calculate 𝑧(0.25):

𝑘1 = sin(𝑦(0)) = 0.8414710, 𝑘2 = sin(𝑦(0) +
ℎ

2
𝑘1) = 0.8935468

𝑘3 = sin(𝑦(0) +
ℎ

2
𝑘2) = 0.8964504, 𝑘4 = sin(𝑦(0) + ℎ𝑘3) = 0.9405047

𝑧(0.25) = 𝑦(0) +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 1.2234154

(b) Continue with the calculation, we get:

𝑧(0.5) = 1.4663981, 𝑧(0.75) = 1.7156965, 𝑧(1) = 1.9562859
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Let ℎ = 1/𝑛, 𝑛 = 4, 5, . . . , 20, the behavior of the global error at 𝑡 = 1 is (see
https://github.com/wuchenxi/Math-514/blob/main/ivp.py):

1.5 2 2.5 3

5

10

15

𝑙𝑜𝑔(𝑛)

−
𝑙𝑜
𝑔
(𝐸
𝑟𝑟
𝑜𝑟

)

The dots from low to high are euler, heun, rk2, ab3, rk4.
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4.4 Stiffness and Absolute Stability

All the methods we discussed so far can be easily generalized to systems of equations. Just
see 𝑦 as a vector-valued function.

Example 4.13.

𝑦′ =

(︂
−1 0
1 −100

)︂
𝑦

𝑦(0) =

(︂
1
1

)︂
Do time step ℎ = 0.1, 𝑡 = 10ℎ = 1, using Euler’s, improved Euler’s and trapezium rule

methods:

𝑦(1) =

(︂
1/𝑒

𝑒−100(𝑒99/99 + 98/99)

)︂
Let 𝐴 =

(︂
−1 0
1 −100

)︂
.

� Euler’s method:

𝑧(1) = (𝐼2 + 0.1𝐴)10
(︂

1
1

)︂
=

(︂
0.3486784401

3451564356.5489765499

)︂
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� Heun’s method:

𝑧(1) = (𝐼2 + 0.1𝐴+ 0.005𝐴2)10
(︂

1
1

)︂
=

(︂
0.368540984834

1.32870768929× 1016

)︂
� Trapezium rule method:

𝑧(1) = ((𝐼2 + 0.05𝐴)/(𝐼2 − 0.05𝐴))10
(︂

1
1

)︂

=

(︂
0.367572542383
0.02087921691

)︂
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� A system of equations is called stiff, if, after linearization into 𝑦′ = 𝐴𝑦, 𝐴 has eigen-
values with negative real parts, and the ratio between real parts of eigenvalues can be
large.

� Stiffness means there are behavior in different time scale. A numerical method need to
take small step size to accommodate for the faster behavior, but also need to calculate
till a large 𝑡 to see the slow behavior, resulting in huge amount of computation.

� There are other cases of stiffness which are beyond the scope of this course.
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To deal with stiff equations efficiently, we need numerical methods which does not require
a small time scale to get good answers. Usually we use test equation 𝑦′ = 𝜆𝑦, 𝑦(0) = 1,
where 𝑅𝑒(𝜆) < 0, and the set of values ℎ𝜆 that makes lim𝑛→∞ 𝑧(𝑛ℎ) = 0, are called the
region of absolute stability.

Example 4.14. � For Euler’s method,

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ𝜆(𝑧(𝑛ℎ)) = (1 + ℎ𝜆)𝑧(𝑛ℎ)

So the solution goes to 0 if |1 + ℎ𝜆| < 1, the region of absolute stability is the circle of
radius 1 centered at −1.

� For Trapezium Rule Method,

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) +
ℎ

2
(𝜆(𝑧(𝑛ℎ)) + 𝜆(𝑧((𝑛+ 1)ℎ))

So

𝑧((𝑛+ 1)ℎ) =
1 + ℎ𝜆/2

1− ℎ𝜆/2
𝑧(𝑛ℎ)

The region of absolute stability is the left half plane.

Amethod whose region of absolute stability is the whole left half plane is calledA-stable.
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4.5 Review

𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0

Key idea: estimate 𝑦(ℎ), 𝑦(2ℎ), 𝑦(3ℎ), . . . successively.

Methods:

(i) Euler’s method

(ii) First Generalization of Euler’s Method: Method based on quadrature rule (Adams-
Bashforth, Adams-Moulton), general Linear Multistep methods

(iii) Second Generalization of Euler’s Method: Rouge-Kutta family
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Concepts:

(i) Local

(a) Truncated error

(b) Consistency

(c) Order of accuracy

(ii) Global

(a) Zero stability

(b) Convergence

(iii) Efficiency issue

(a) Region of absolute stability.

(b) A-stability.
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How to analyze numerical methods:

(i) Locally: Taylor series expansion.

(ii) Globally: separate the error created at each step, as in the argument for Euler’s
method. We can summarize it as below:

Theorem 4.15. (Theorem 12.2 in textbook) If 𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎΦ(𝑛ℎ, 𝑧(𝑛ℎ)),
𝑧(0) = 𝑦(0), |𝑦((𝑛+1)ℎ)−ℎΦ(𝑦(𝑛ℎ))−𝑦(𝑛ℎ)| ≤ 𝑇ℎ, and Φ is 𝐿-Lispchitz with respect
to the second parameter. Then

|𝑧(𝑛ℎ)− 𝑦(𝑛ℎ)| ≤ 𝑇 · 𝑒
𝑛ℎ𝐿 − 1

𝐿

Proof. Let 𝑧𝑘(𝑘ℎ) = 𝑦(𝑘ℎ), 𝑧𝑘((𝑛+ 1)ℎ) = 𝑧𝑘(𝑛ℎ) + ℎΦ(𝑛ℎ, 𝑧𝑘(𝑛ℎ)), then

|𝑧𝑘(𝑛ℎ)−𝑧𝑘+1(𝑛ℎ)| ≤ (1+ℎ𝐿)𝑛−𝑘−1|𝑧𝑘((𝑘+1)ℎ)−𝑧𝑘+1((𝑘+1)ℎ)| ≤ 𝑇ℎ(1+ℎ𝐿)𝑛−𝑘−1

|𝑧(𝑛ℎ)− 𝑦(𝑛ℎ)| = |𝑧0(𝑛ℎ)− 𝑧𝑛(𝑛ℎ)| ≤ 𝑇 · 𝑒
𝑛ℎ𝐿 − 1

𝐿

114



Example 4.16. Consistency, order of accuracy, and convergence of rk2.

𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0

𝑧(𝑡+ ℎ) = 𝑧(𝑡) + ℎ𝑓(𝑡+
ℎ

2
, 𝑧(𝑡) +

ℎ

2
𝑓(𝑡, 𝑧(𝑡)))

(i) Consistency and order of accuracy: Suppose 𝑧(𝑡) = 𝑦(𝑡), then

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑦′(𝑡) +
ℎ2

2
𝑦′′(𝑡) +

ℎ3

6
𝑦′′′(𝑡) + . . .

= 𝑦(𝑡)+𝑓(𝑡, 𝑦(𝑡))ℎ+(𝑓1(𝑡, 𝑦(𝑡))+𝑓(𝑡, 𝑦(𝑡))𝑓2(𝑡, 𝑦𝑡))
ℎ2

2
+(𝑓11+𝑓𝑓12+(𝑓1+𝑓𝑓2)𝑓2+𝑓(𝑓12+𝑓𝑓22))

ℎ3

6
+. . .

𝑧(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑓(𝑡+
ℎ

2
, 𝑦(𝑡) +

ℎ

2
𝑓(𝑡, 𝑦(𝑡)))

= 𝑦(𝑡) + 𝑓(𝑡, 𝑦(𝑡))ℎ+ (𝑓1 + 𝑓𝑓2)
ℎ2

2
+ (𝑓11 + 2𝑓12𝑓 + 𝑓22𝑓

2)
ℎ3

8
+ . . .

So
|𝑦(𝑡+ ℎ)− 𝑧(𝑡+ ℎ)| = 𝑂(ℎ3)

It is consistent with order of accuracy 2.
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(ii) If 𝑓 , 𝑓1, 𝑓2, 𝑓11, 𝑓12, 𝑓22 are all bounded, then there is uniform constant 𝐾 such that

|𝑦(𝑡+ ℎ)− 𝑧(𝑡+ ℎ)| ≤ 𝐾ℎ3

(iii) Φ(𝑡, 𝑦) = 𝑓(𝑡+ ℎ
2 , 𝑧(𝑡) + ℎ

2 𝑓(𝑡, 𝑧(𝑡))), hence it is 𝐿+ ℎ𝐿2/2-Lipschitz.

(iv) Hence in this case, by Theorem 4.15,

|𝑦(𝑡)− 𝑧(𝑡)| ≤ 𝐾ℎ2 𝑒
(𝐿+ℎ𝐿2/2)𝑡 − 1

𝐿+ ℎ𝐿2/2
= 𝑂(ℎ2)
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Exercise: Consider 𝑦′ = 𝑦 cos(𝑡), 𝑦(0) = 1.

(i) Find 𝐴, 𝐵 such that the linear multistep method

𝑧(𝑡+ 2ℎ) = 𝑧(𝑡) +𝐴ℎ𝑓(𝑡, 𝑧(𝑡)) +𝐵ℎ𝑓(𝑡+ ℎ, 𝑧(𝑡+ ℎ))

is consistent. (Answer: 𝐴+𝐵 = 2)

(ii) Find 𝐴, 𝐵 such that the linear multistep method has order of accuracy 2. (Answer:

𝑦(𝑡+ 2ℎ) = 𝑦(𝑡) + 𝑓 · 2ℎ+ (𝑓1 + 𝑓𝑓2)(2ℎ)2/2 + . . .

𝑧(𝑡+ 2ℎ) = 𝑦(𝑡) +𝐴ℎ𝑓 +𝐵ℎ(𝑓 + ℎ(𝑓1 + 𝑓𝑓2)) + . . .

Hence𝐴 = 0, 𝐵 = 2)
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(iii) Estimate 𝑦(ℎ) using Euler’s method, then 𝑦(2ℎ) using this linear multistep method.
(Answer: 𝑧(ℎ) = 1 + ℎ, 𝑧(2ℎ) = 1 +𝐴ℎ+𝐵ℎ(1 + ℎ) cos(ℎ).)

(iv) Find the region of absolute stability of this linear multistep method, using the fact
(from linear algebra) that iterative relation

𝑎𝑛+2 = 𝑐𝑎𝑛+1 + 𝑑𝑎𝑛

has all solutions converging to 0 iff all roots of 𝑧2 − (𝑐𝑧 + 𝑑) has absolute value less
than 1. (Answer: apply the algorithm to 𝑦′ = 𝜆𝑦, we get

𝑧((𝑛+ 2)ℎ) = 𝑧(𝑛ℎ) +𝐴ℎ𝜆𝑧(𝑛ℎ) +𝐵ℎ𝜆𝑧((𝑛+ 1)ℎ)

so ℎ𝜆 is in region of absolute stability iff 𝑧2 − 𝐵ℎ𝜆𝑧 − (1 + 𝐴ℎ𝜆) = 0 has all roots
inside the open unit circle, i.e.

|𝐵ℎ𝜆±
√
𝐵2ℎ2𝜆2 + 4 + 4𝐴ℎ𝜆

2
| < 1
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5 Boundary Value Problems

This section will not be in final exam.
Example: 𝑦′′ = −𝑦, 𝑦(0) = 0, 𝑦(1) = 1. True answer is 𝑦(𝑥) = sin(𝑥)

sin(1) .

We discretize the problem by estimating the solution on a uniform mesh: 𝑥𝑖 = 𝑖/𝑛,
𝑖 = 0, 1, . . . 𝑛. Denote 𝑧 as the estimation.

5.1 Finite Difference (Chap. 13)

𝑧(0) = 0, 𝑧(1) = 1. For any 𝑥𝑖 = 𝑖/𝑛, 𝑖 = 1, . . . , 𝑛 − 1, approximate the second order
derivative using idea from Section 1.3.1:

Lagrange interpolation using 𝑥𝑖−1, 𝑥𝑖 and 𝑥𝑖+1 as interpolation points, we get

𝑝(𝑥) = 𝑧((𝑖− 1)/𝑛)
(𝑥− 𝑖/𝑛)(𝑥− (𝑖+ 1)/𝑛)

2/𝑛2
− 𝑧(𝑖/𝑛)

(𝑥− (𝑖− 1)/𝑛)(𝑥− (𝑖+ 1)/𝑛)

1/𝑛2

+𝑧((𝑖+ 1)/𝑛)
(𝑥− 𝑖/𝑛)(𝑥− (𝑖− 1)/𝑛)

2/𝑛2

So
𝑝′′(𝑥𝑖) = 𝑛2(𝑧((𝑖+ 1)/𝑛) + 𝑧((𝑖− 1)/𝑛)− 2𝑧(𝑖/𝑛))

So the question reduces to a system of equations:

𝑧(0) = 0

𝑧(1) = 1

𝑛2(𝑧((𝑖+ 1)/𝑛) + 𝑧((𝑖− 1)/𝑛)− 2𝑧(𝑖/𝑛)) = −𝑧(𝑖/𝑛)

When 𝑛 = 3, we get 𝑧(1/3) = 81/208, 𝑧(2/3) = 153/208. Error is about 0.0007.
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5.2 Finite Element Method (Chap. 14)

Rewrite the differential equation into a variational problem, which is minimizing∫︁ 1

0

𝑦′2 − 𝑦2𝑑𝑥

Now pick values of 𝑧(𝑖/𝑛), such that the linear spline 𝑔 using 𝑥𝑖 minimizes
∫︀ 1

0
𝑔′2− 𝑔2𝑑𝑥.

When 𝑛 = 3, this gives us 𝑧(1/3) = 3025/7791, 𝑧(2/3) = 5720/7791. Error is about
0.0007.
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6 Final review

(i) Interpolation

(a) Lagrange and Hermite interpolation

(b) Uniqueness

(c) Error Estimate

(ii) Orthogonal Polynomials

(a) 𝑝𝑑 is a degree 𝑑 orthogonal polynomial of weight 𝑤 on [𝑎, 𝑏], iff for any polynomial 𝑞 of degree

no more than 𝑑− 1,
∫︀ 𝑏
𝑎 𝑤𝑝𝑑𝑞𝑑𝑥 = 0.

(b) Gram-Schmidt process

(c) Example: Legendre and Chebyshev polynomials.

(iii) Numerical integration

(a) Quadrature rule

i. Error estimate

ii. Newton-Cotes quadrature. (Special cases: trapezium rule, Simpson’s rule)

A. Improved error estimate for 𝑛 even. (Special case: error bound for Simpson’s rule)

iii. Gauss quadrature (Special case: Gauss-Legendre quadrature)

A. Error bound

B. Positive weights

C. Convergence

(b) Composite methods

(iv) Numerical solution for IVP

(a) Methods

i. Linear Multistep Methods (Special case: AB, AM)

ii. Runge-Kutta methods (Special case: RK2, RK4, Heun)

(b) Analysis

i. One step: power series expansion w.r.t. ℎ

ii. Global error

A. Zero stability and Dahlquist theorem

B. One step method: 𝑧(𝑡+ ℎ) = 𝑧(𝑡) + ℎΦ(𝑧(𝑡)), needs Φ Lipschitz.

iii. Domain of absolute stability
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Example 6.1. Consider the function 𝑓(𝑥) = 1
𝜋 cos(𝜋𝑥). Find the Hermite interpolation

polynomial 𝑝 with interpolation points at ±1/2,±3/2. Find the error bound at 𝑥 = 0 using
the error bound of Hermite interpolation.

Answer:

𝑝 = −
(𝑥+ 3

2 )(𝑥− 3
2 )2(𝑥2 − 1/4)2

36
+

(𝑥+ 1
2 )(𝑥− 1

2 )2(𝑥2 − 9
4 )2

4

−
(𝑥− 1

2 )(𝑥+ 1
2 )2(𝑥2 − 9

4 )2

4
+

(𝑥+ 3
2 )2(𝑥− 3

2 )(𝑥2 − 1/4)2

36

The error bound at 0 is

max ‖𝑓 (8)‖ × 1
2

4 × 3
2

4

8!
=

9𝜋7

1146880
≈ 0.0237

The actual error is 0.00972 < 0.0237.

Remark 6.2. When one add two more interpolation points at ±(𝑚 − 1
2 ), the theoretical

error bound is multiplied by

𝜋4(𝑚− 1
2 )4

(4𝑚− 3)(4𝑚− 2)(4𝑚− 1)(4𝑚)
≈ 𝜋4

44
< 1

So if we do interpolation at ±1/2, . . . ,±(𝑚− 1/2), as 𝑚→∞ the value of the interpolation
polynomial at 𝑥 = 0 does converge to 1

𝜋 , though very slowly.
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Example 6.3. Consider IVP 𝑦′ = 𝑓(𝑦), 𝑦(0) = 𝑦0, where |𝑓 |, |𝑓 (𝑘)| are all bounded by 1.
Consider the linear multistep method

𝑧(𝑡+ 2ℎ) = 𝑧(𝑡) +
ℎ𝑓(𝑧(𝑡))

3
+

4ℎ𝑓(𝑧(𝑡+ ℎ))

3
+
ℎ𝑓(𝑧(𝑡+ 2ℎ))

3

Here 𝑧 is an approximation of 𝑦. Find 𝐶 such that for sufficiently small ℎ, if 𝑧(𝑡) = 𝑦(𝑡),
𝑧(𝑡+ ℎ) = 𝑦(𝑡+ ℎ), then

|𝑧(𝑡+ 2ℎ)− 𝑦(𝑡+ 2ℎ)| < 𝐶ℎ5

Answer:

� Firstly, by error bound of Simpson’s rule,

𝑦(𝑡+ 2ℎ) = 𝑦(𝑡) +

∫︁ 𝑡+2ℎ

𝑡

𝑓(𝑦(𝑠))𝑑𝑠

= 𝑦(𝑡) +
ℎ𝑓(𝑦(𝑡))

3
+

4ℎ𝑓(𝑦(𝑡+ ℎ))

3
+
ℎ𝑓(𝑦(𝑡+ 2ℎ))

3
+ 𝐸

Here

|𝐸| ≤ max |(𝑓 ∘ 𝑦)(4)|(2ℎ)5

2880

≤ 4ℎ5

15

This is because

|(𝑓 ∘ 𝑦)(4)| = |(𝑓𝑓 ′4 + 11𝑓2𝑓 ′2𝑓 ′′ + 4𝑓3𝑓 ′′2 + 7𝑓3𝑓 ′𝑓 ′′ + 𝑓4𝑓 ′′′) ∘ 𝑦| ≤ 24

� Now, by assumption,

|𝑦(𝑡+ 2ℎ)− 𝑧(𝑡+ 2ℎ)| ≤ ℎ|𝑦(𝑡+ 2ℎ)− 𝑧(𝑡+ 2ℎ)|
3

+ |𝐸|

So, for example, if ℎ < 1, we have

|𝑦(𝑡+ 2ℎ)− 𝑧(𝑡+ 2ℎ)| ≤ 2

5
ℎ5
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Example 6.4. Suppose we use quadrature rule to estimate
∫︀ 1

0
𝑓𝑑𝑥, 𝑥0 = −1, 𝑥1 = 0. Can

you find a 𝑥2 such that the quadrature rule gives accurate answer for any polynomial of
degree 3?

Answer: For any 𝑥2, the quadrature rule with 3 quadrature points 𝐼3 will give accurate
answer to any polynomial of degree at most 2. Let 𝑔3 = 𝑥(𝑥 + 1)(𝑥 − 𝑥3) (you can also
choose any other polynomial of degree 3, e.g. 𝑥3), then any polynomial of degree 3 can be
written as 𝑐𝑔3 + ℎ, where 𝑐 is a constant and ℎ is a polynomial of degree at most 2. Hence

0 = 𝐼3(𝑓)−
∫︁ 1

0

𝑓𝑑𝑥

= 𝑐𝐼3(𝑔3) + 𝐼3(ℎ)− 𝑐
∫︁ 1

0

𝑔3𝑑𝑥−
∫︁ 1

0

ℎ𝑑𝑥

= 𝑐(𝐼3(𝑔3)−
∫︁ 1

0

𝑔3𝑑𝑥)

So we only need to have 𝐼3(𝑔3) =
∫︀ 1

0
𝑔3𝑑𝑥. Because 𝑔3 is zero at all three quadrature points,

this is equivalent to
∫︀ 1

0
𝑔3𝑑𝑥 = 0, by calculation 𝑥3 = 7/10.
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Example 6.5. Suppose 𝑓 and all its partial derivatives are bounded by 1. Consider IVP:
𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0, and the implicit one-step method

𝑧(0) = 𝑦(0), 𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) + ℎ𝑓((𝑛+ 1)ℎ, 𝑧((𝑛+ 1)ℎ))

� Find the order of accuracy.

� Show that this method is A-stable, i.e. the domain of absolute stability covers the whole
left half plane.

Answer: By Taylor series:

𝑦(𝑛ℎ+ ℎ) = 𝑦(𝑛ℎ) + ℎ𝑦′(𝑛ℎ) + ℎ2
𝑦′′(𝑛ℎ)

2
+ . . .

= 𝑦(𝑛ℎ) + ℎ𝑓(𝑛ℎ, 𝑦(𝑛ℎ)) +
ℎ2

2
(𝑓𝑡(𝑛ℎ, 𝑦(𝑛ℎ)) + 𝑓(𝑛ℎ, 𝑦(𝑛ℎ))𝑓𝑦(𝑛ℎ, 𝑦(𝑛ℎ)) + . . .

Now assume 𝑧(𝑛ℎ) = 𝑦(𝑛ℎ), and do power series expansion for 𝑧(𝑛ℎ+ℎ): suppose 𝑧(𝑛ℎ+ℎ) =
𝑦(𝑛ℎ) + 𝑎ℎ+ 𝑏ℎ2 +𝑂(ℎ3), then the formula for this implicit method becomes

𝑦(𝑛ℎ)+𝑎ℎ+𝑏ℎ2+𝑂(ℎ3) = 𝑦(𝑛ℎ)+ℎ(𝑓(𝑛ℎ, 𝑦(𝑛ℎ))+𝑓𝑡(𝑛ℎ, 𝑦(𝑛ℎ))ℎ+𝑓𝑦(𝑛ℎ, 𝑦(𝑛ℎ))(𝑎ℎ+𝑏ℎ2+𝑂(ℎ3))+𝑂(ℎ2))

Here the right hand side is due to the fact that 𝑓 is differentiable, hence if 𝑡 − 𝑛ℎ = 𝑂(ℎ),
𝑦 − 𝑦(𝑛ℎ) = 𝑂(ℎ), then

𝑓(𝑡, 𝑦) = 𝑓(𝑛ℎ, 𝑦(𝑛ℎ)) + 𝑓𝑡(𝑛ℎ, 𝑦(𝑛ℎ))(𝑡− 𝑛ℎ) + 𝑓𝑦(𝑛ℎ, 𝑦(𝑛ℎ))(𝑦 − 𝑛ℎ) +𝑂(ℎ2)

Now substitute 𝑦 with (𝑛+ 1)ℎ and 𝑦 with 𝑦(𝑛ℎ+ ℎ) = 𝑦(𝑛ℎ) + 𝑎ℎ+ 𝑏ℎ2 +𝑂(ℎ3)4.

Now compare coefficients on both sides, we get

𝑎 = 𝑓(𝑛ℎ, 𝑦(𝑛ℎ))

𝑏 = 𝑓𝑡(𝑛ℎ, 𝑦(𝑛ℎ)) + 𝑓(𝑛ℎ, 𝑦(𝑛ℎ))𝑓𝑦(𝑛ℎ, 𝑦(𝑛ℎ))

So 𝑦(𝑛ℎ+ ℎ)− 𝑧(𝑛ℎ+ ℎ) = 𝑂(ℎ2), the order of accuracy is 1.
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To see domain of absolute stability, consider equation 𝑦′ = 𝜆𝑦, 𝜆 ∈ C and 𝑅𝑒(𝜆) < 0.
The method becomes:

𝑧(𝑛ℎ+ ℎ) = 𝑧(𝑛ℎ) + ℎ𝜆𝑧(𝑛ℎ+ ℎ)

Hence the solution converges to 0 iff | 1
1−ℎ𝜆 | < 1, which is true for all ℎ > 0 and all 𝑅𝑒(𝜆) < 0.
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Example 6.6. Apply Euler’s method to the IVP 𝑦′ = 𝑓(𝑡), 𝑦(0) = 0. Bound the error at
time 𝑡 = 1 using the derivative of 𝑓 and step size 1/𝑛.

Answer:

� We can use the error bound for Euler’s method discussed in the lecture, which is

𝐶ℎ 𝑒𝐿−1
𝐿 where 𝐶 is

max(|𝑓𝑡|)+max(|𝑓 |)max(|𝑓𝑦|)
2 = max |𝑓 ′|

2 , and 𝐿 can be any positive
number, which is because 𝑓 is not dependent on 𝑦, hence is 0-Lip with respect to 𝑦.

Now let 𝐿→ 0, we get the upper bound max |𝑓 ′|ℎ
2 = max |𝑓 ′|

2𝑛 .

� Alternatively, we can use Euler’s method to get the estimate of 𝑦 at time 1, which is

𝑧(1) =

𝑛−1∑︁
𝑖=0

1

𝑛
𝑓(
𝑖

𝑛
)

So

|𝑦(1)− 𝑧(1)| =
𝑛−1∑︁
𝑖=0

∫︁ (𝑖+1)/𝑛

𝑖/𝑛

|𝑓(𝑠)− 𝑓(𝑖/𝑛)|𝑑𝑠

≤
𝑛−1∑︁
𝑖=0

∫︁ (𝑖+1)/𝑛

𝑖/𝑛

max |𝑓 ′||𝑠− 𝑖/𝑛|𝑑𝑠

= 𝑛
max |𝑓 ′|

2𝑛2
=

max |𝑓 ′|
2𝑛

The inequality is due to mean value theorem.
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Example 6.7. Consider solving IVP 𝑦′ = 𝑓(𝑦), 𝑦(0) = 0. Here 𝑓 ∈ 𝐶2, |𝑓 | ≤ 1, |𝑓 ′| ≤ 1,
|𝑓 ′′| ≤ 1

� Show that 𝑦(𝑡+ ℎ) = 𝑦(𝑡) +
∫︀ 𝑡+ℎ

𝑡
𝑓(𝑦(𝑠))𝑑𝑠.

� Write down the Hermite interpolation of 𝑓(𝑦(𝑠)) using interpolation point 𝑥0 = 𝑡.

� Integrate this Hermite interpolation, and make a numerical method based on this in-
tegration.

� Find the order of accuracy of this method. Bound its truncated error.

Answer:

� This is fundamental theorem of calculus.

� 𝑝(𝑠) = 𝑓(𝑦(𝑡)) + 𝑓(𝑦(𝑡))𝑓 ′(𝑦(𝑡))(𝑠− 𝑡)

�

∫︀ 𝑡+ℎ

𝑡
= ℎ𝑓(𝑦(𝑡)) + ℎ2

2 𝑓(𝑦(𝑡))𝑓 ′(𝑦(𝑡)). So we can approximate the IVP using

𝑧(𝑡+ ℎ) = 𝑧(𝑡) + ℎ𝑓(𝑧(𝑡)) +
ℎ2

2
𝑓(𝑧(𝑡))𝑓 ′(𝑧(𝑡))

� When 𝑧(𝑡) = 𝑦(𝑡), the Taylor series with remainder formula tells us:

𝑦(𝑡+ℎ) = 𝑦(𝑡)+ℎ𝑓(𝑦(𝑡))+
ℎ2

2
𝑓(𝑦(𝑡))𝑓 ′(𝑦(𝑡))+

ℎ3

6
(𝑓(𝑦(𝑠))𝑓 ′2(𝑦(𝑠))+𝑓(𝑦(𝑠))𝑓 ′′(𝑦(𝑠)))

Where 𝑠 ∈ [𝑡, 𝑡+ ℎ].

𝑧(𝑡+ ℎ) = 𝑦(𝑡) + ℎ𝑓(𝑦(𝑡)) +
ℎ2

2
𝑓(𝑦(𝑡))𝑓 ′(𝑦(𝑡))

So the truncated error is bounded by

|𝑦(𝑡+ ℎ)− 𝑧(𝑡+ ℎ)

ℎ
| ≤ max |𝑓 |max |𝑓 ′|2 + max |𝑓 |max |𝑓 ′′|

6
ℎ2 = 𝑂(ℎ2)

So order of accuracy is 2.

128



7 HW Solutions

7.1 HW 4

1. Let 𝑓(𝑥) = 𝑥3, 𝑝 be the Lagrange interpolation polynomial of 𝑓 using interpolation points
𝑥 = 0, 𝑥 = 1. On the interval [0, 1], find the point 𝑐 that maximizes the interpolation error
|𝑓(𝑐)− 𝑝(𝑐)|, and find another point 𝑠 ∈ [0, 1] such that

𝑓(𝑐)− 𝑝(𝑐) = 𝑓 ′′(𝑠)𝑐(𝑐− 1)/2

Answer:

𝑝(𝑥) = 0 · 𝑥− 1

0− 1
+ 1 · 𝑥− 0

1− 0
= 𝑥

|𝑓 − 𝑝| = |𝑥3 − 𝑥|

So this is maximalized at point 𝑐 =
√
3
3 .

𝑓(𝑐)− 𝑝(𝑐) = 𝑐3 − 𝑐 = 3𝑠𝑐(𝑐− 1)

So

𝑠 =
𝑐+ 1

3
=

√
3 + 3

9

2. Let 𝑓(𝑥) = 𝑒𝑥, 𝑝 be the Lagrange interpolation polynomial of 𝑓 on interval [0, 2]
using interpolation points 𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, find an upper bound for the 𝐿∞ norm of
𝑓(𝑥)−𝑝(𝑥) on [0, 2], using the error bound of Lagrange polynomial we covered in the lecture
(Theorem 6.2 in textbook, Theorem 1.5 in lecture notes).

Answer:

The error bound of Lagrange polynomial is

|𝑓(𝑥)− 𝑝(𝑥)| = |𝑓
′′′(𝑐)||𝑥(𝑥− 1)(𝑥− 2)|

3!
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When 𝑐 ∈ [0, 2], |𝑓 ′′′(𝑐)| ≤ 𝑒2.
When 𝑥 ∈ [0, 2], |𝑥(𝑥− 1)(𝑥− 2)| ≤ 2

√
3

9 .

Hence an upper bound for this error is 𝑒2
√
3

27 .
It’s ok if you get a slightly larger error bound, for example 4𝑒2/3.

3. Suppose 𝑓 is continuous and with continuous derivatives of order up to and including
5 on [𝑎, 𝑏], and there are three distinct points 𝑥0, 𝑥1, 𝑥2 in [𝑎, 𝑏]. Let 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 0, 1, 2;
𝑧𝑗 = 𝑓 ′(𝑥𝑗), 𝑗 = 0, 2.

(i) Find a polynomial 𝑝 of degree at most 4, such that 𝑝(𝑥𝑖) = 𝑦𝑖, 𝑖 = 0, 1, 2; 𝑝′(𝑥𝑗) = 𝑧𝑗 ,
𝑗 = 0, 2.

(ii) Use an argument similar to the error estimate of Hermite interpolation polynomial to
show that for any 𝑥 ∈ [𝑎, 𝑏], there is some number 𝑠 ∈ [𝑎, 𝑏] such that

𝑓(𝑥)− 𝑝(𝑥) = 𝑓 (5)(𝑠)(𝑥− 𝑥0)2(𝑥− 𝑥1)(𝑥− 𝑥2)2/5!

Answer:

(i) � Approach I: We can find five polynomials 𝑝0, 𝑝1, 𝑝2, 𝑞0, 𝑞2, such that

𝑝0(𝑥0) = 𝑝1(𝑥1) = 𝑝2(𝑥2) = 𝑞′0(𝑥0) = 𝑞′2(𝑥2) = 1

𝑝𝑖(𝑥𝑗) = 0 when 𝑖 ̸= 𝑗

𝑝′𝑖(𝑥𝑗) = 0 when 𝑗 = 0, 2

𝑞′0(𝑥2) = 𝑞′2(𝑥0) = 0

𝑞𝑖(𝑥𝑗) = 0

Then the answer can be written as

𝑝 =
∑︁
𝑖

𝑦𝑖𝑝𝑖 + 𝑧0𝑞0 + 𝑧2𝑞2
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To get 𝑝0, from 𝑝0(𝑥1) = 𝑝0(𝑥2) = 𝑝′0(𝑥2) = 0 we get 𝑝0 = (𝑥−𝑥1)(𝑥−𝑥2)2(𝐴𝑥+
𝐵), now use the remaining two conditions, 𝑝0(𝑥0) = 1, 𝑝′0(𝑥0) = 0, to solve for 𝐴
and 𝐵, we get

𝑝0 =
(𝑥− 𝑥1)(𝑥− 𝑥2)2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)2
(1− (𝑥− 𝑥0)(

1

𝑥0 − 𝑥1
+

2

𝑥0 − 𝑥2
))

Similarly,

𝑝1 =
(𝑥− 𝑥0)2(𝑥− 𝑥2)2

(𝑥1 − 𝑥0)2(𝑥1 − 𝑥2)2

𝑝2 =
(𝑥− 𝑥0)2(𝑥− 𝑥1)

(𝑥2 − 𝑥0)2(𝑥2 − 𝑥1)
(1− (𝑥− 𝑥2)(

2

𝑥2 − 𝑥0
+

1

𝑥2 − 𝑥1
))

𝑞0 =
(𝑥− 𝑥0)(𝑥− 𝑥1)(𝑥− 𝑥2)2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)2

𝑞2 =
(𝑥− 𝑥0)2(𝑥− 𝑥1)(𝑥− 𝑥2)

(𝑥2 − 𝑥0)2(𝑥2 − 𝑥1)

So

𝑝 = 𝑦0
(𝑥− 𝑥1)(𝑥− 𝑥2)2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)2
(1− (𝑥− 𝑥0)(

1

𝑥0 − 𝑥1
+

2

𝑥0 − 𝑥2
))

+𝑦1
(𝑥− 𝑥0)2(𝑥− 𝑥2)2

(𝑥1 − 𝑥0)2(𝑥1 − 𝑥2)2

+𝑦2
(𝑥− 𝑥0)2(𝑥− 𝑥1)

(𝑥2 − 𝑥0)2(𝑥2 − 𝑥1)
(1− (𝑥− 𝑥2)(

2

𝑥2 − 𝑥0
+

1

𝑥2 − 𝑥1
))

+𝑧0
(𝑥− 𝑥0)(𝑥− 𝑥1)(𝑥− 𝑥2)2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)2

+𝑧2
(𝑥− 𝑥0)2(𝑥− 𝑥1)(𝑥− 𝑥2)

(𝑥2 − 𝑥0)2(𝑥2 − 𝑥1)
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� We can also use Hermite interpolation polynomial: suppose 𝑝′(𝑥1) = 𝑎, use all
information for 𝑝(𝑥𝑖), 𝑖 = 0, 1, 2 and 𝑝′(𝑥𝑖), 𝑖 = 0, 1, 2, we can write down the
Hermite interpolation polynomial which is a polynomial of degree at most 5. The
coefficient for 𝑥5 is

− 𝑦0
(𝑥0 − 𝑥1)2(𝑥0 − 𝑥2)2

(
2

𝑥0 − 𝑥1
+

2

𝑥0 − 𝑥2
)

− 𝑦1
(𝑥1 − 𝑥0)2(𝑥1 − 𝑥2)2

(
2

𝑥1 − 𝑥0
+

2

𝑥1 − 𝑥2
)

− 𝑦2
(𝑥2 − 𝑥1)2(𝑥2 − 𝑥0)2

(
2

𝑥2 − 𝑥1
+

2

𝑥2 − 𝑥0
)

+
𝑧0

(𝑥0 − 𝑥1)2(𝑥0 − 𝑥2)2
+

𝑎

(𝑥1 − 𝑥0)2(𝑥1 − 𝑥2)2

+
𝑧2

(𝑥2 − 𝑥0)2(𝑥2 − 𝑥1)2

Since we want 𝑝 to be of degree no more than 4, we must set this coefficient to
be 0. Hence

𝑎 =
𝑦0(𝑥1 − 𝑥2)2

(𝑥0 − 𝑥2)2
(

2

𝑥0 − 𝑥1
+

2

𝑥0 − 𝑥2
)

+𝑦1(
2

𝑥1 − 𝑥0
+

2

𝑥1 − 𝑥2
)

+
𝑦2(𝑥1 − 𝑥0)2

(𝑥2 − 𝑥0)2
(

2

𝑥2 − 𝑥1
+

2

𝑥2 − 𝑥0
)

−𝑧0(𝑥1 − 𝑥2)2

(𝑥0 − 𝑥2)2
− 𝑧2(𝑥1 − 𝑥0)2

(𝑥2 − 𝑥0)2

Now put this in the formula for Hermite interpolation polynomials, you’ll get the
exact same answer as above.

132



(ii) If 𝑥 = 𝑥𝑖 it’s trivially true. Now suppose 𝑥 ̸= 𝑥𝑖 for any 𝑖, consider

𝐺(𝑡) = 𝑓(𝑡)− 𝑝(𝑡)− (𝑓(𝑥)− 𝑝(𝑥))(𝑡− 𝑥0)2(𝑡− 𝑥1)(𝑡− 𝑥2)2

(𝑥− 𝑥0)2(𝑥− 𝑥1)(𝑥− 𝑥2)2

𝐺(𝑥) = 𝐺(𝑥𝑖) = 𝐺′(𝑥0) = 𝐺′(𝑥2) = 0, so 𝐺′ is zero at at least 5 points, 𝐺(5) is zero at
at least one point. Let that point be 𝑠, then 𝐺(5)(𝑠) = 0 implies the equation we need
to prove.

4. Let 𝑞𝑗 = (1−𝑥2)𝑗 , 𝜙𝑗 = 𝑞
(𝑗)
𝑗 , show that 𝜙𝑗 are orthogonal to each other in 𝐿

2([−1, 1]).

In other words, if 𝑗 ̸= 𝑗′,
∫︀ 1

−1
𝜙𝑗𝜙𝑗′𝑑𝑥 = 0.

Answer:

Firstly we show that if 𝑖 < 𝑗, then 𝑞
(𝑖)
𝑗 has a factor (1− 𝑥2)𝑗−𝑖. Do induction on 𝑖. It is

trivially true for 𝑖 = 0. Now, suppose 𝑞
(𝑖)
𝑗 = (1− 𝑥2)𝑗−𝑖ℎ(𝑥) where ℎ is a polynomial, then,

by product rule,

𝑞
(𝑖+1)
𝑗 = ((1− 𝑥2)𝑗−𝑖ℎ(𝑥))′ = −2(𝑗 − 𝑖)𝑥(1− 𝑥2)𝑗−𝑖−1ℎ(𝑥) + (1− 𝑥2)𝑗−𝑖ℎ′(𝑥)

= (1− 𝑥2)𝑗−𝑖−1(−2(𝑗 − 𝑖)𝑥ℎ(𝑥) + (1− 𝑥2)ℎ′(𝑥))

Hence by induction this statement is proved.

Now, because 𝜙𝑖 are all non-zero, they all have non-zero 𝐿2 norms on [−1, 1]. We only

need to show that when 𝑖 ̸= 𝑗,
∫︀ 1

−1
𝜙𝑖𝜙𝑗𝑑𝑥 = 0. Without loss of generality assume 𝑖 < 𝑗,

then by integration by parts and the conclusion in the previous step,∫︁ 1

−1

𝜙𝑖𝜙𝑗𝑑𝑥 =

∫︁ 1

−1

𝑞
(𝑖)
𝑖 𝑞

(𝑗)
𝑗 𝑑𝑥

= −
∫︁ 1

−1

𝑞
(𝑖+1)
𝑖 𝑞

(𝑗−1)
𝑗 𝑑𝑥
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=

∫︁ 1

−1

𝑞
(𝑖+2)
𝑖 𝑞

(𝑗−2)
𝑗 𝑑𝑥

= · · · = (−1)𝑗
∫︁ 1

−1

𝑞
(𝑖+𝑗)
𝑖 𝑞𝑗𝑑𝑥

However the degree of 𝑞𝑖 is 2𝑖 < 𝑖 + 𝑗, hence 𝑞
(𝑖+𝑗)
𝑖 = 0, which implies that the integration

is zero.

5. Find three distinct points 𝑥0, 𝑥1 and 𝑥2 in (−1, 1), such that for any polynomial
function 𝑓 of degree 3, the best approximation of 𝑓 under 𝐿2 norm on [−1, 1] of degree at
most 2 coincides with the Lagrange interpolation polynomial of 𝑓 using interpolation points
𝑥0, 𝑥1 and 𝑥2.

Answer:

Suppose 𝑓 is the degree 3 Legendre polynomial 𝑓3 = 𝑥3 − 3
5𝑥, then, because it is or-

thogonal to the degree 0, 1, and 2 Legendre polynomials under 𝐿2([−1, 1]), and these three
Legendre polynomials form an orthogonal basis of the space 𝑉2 of polynomials of degree no
more than 2, the best approximation formula in inner product space implies that the best
approximation of 𝑓 on 𝑉2 under 𝐿

2([−1, 1]) norm must be 0. By assumption, the Legendre
interpolation of 𝑓3 at 𝑥0, 𝑥1 and 𝑥2 must also be zero, so these three points can only be the

three roots of 𝑥3 − 3
5𝑥, which are 0,±

√︁
3
5 .

Now suppose 𝑓 =
∑︀3

𝑖=0 𝑎𝑖𝑥
𝑖 is any degree 3 polynomial. Then, because 𝑓 − 𝑎3𝑓3 is of

degree at most 2 and is identical to 𝑓 at 0,±
√︁

3
5 , the Lagrange interpolation of 𝑓 at 𝑥𝑖

is 𝑓 − 𝑎3𝑓3. On the other hand, let 𝑒0, 𝑒1, 𝑒2 be any orthogonal basis of 𝑉2, then the best
approximation of 𝑓 on 𝑉2 under 𝐿2([−1, 1]) norm is

∑︀
𝑖(𝑓, 𝑒𝑖)𝑒𝑖. However, because 𝑓3 is

orthogonal to 𝑉2, (𝑓, 𝑒𝑖) = (𝑓 − 𝑎3𝑓3, 𝑒𝑖), so the best approximation of 𝑓 is the same as the
best approximation of 𝑓 − 𝑎3𝑓3, which must be 𝑓 − 𝑎3𝑓3 itself as 𝑓 − 𝑎3𝑓3 ∈ 𝑉2. This proves
that 𝑥𝑖 being 0,±

√︁
3
5 satisfies the requirement in the problem.
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6. Let 𝑓 be a continuous function on [0, 1], 𝑝𝑛 be the polynomial of best approximation
of degree no more than 𝑛 under the 𝐿2 norm. Then, after studying Theorem 9.5 in the
textbook, which proved that 𝑓 − 𝑝𝑛 is zero at at least 𝑛+ 1 distinct points in (0, 1), find a
function 𝑓 such that 𝑓 − 𝑝2 is zero at 4 distinct points in (0, 1).

Answer:

Let 𝑉2 be the space of polynomials of degree no more than 2. If we pick 𝑓 to be anything
orthogonal to 𝑉2 under the 𝐿

2([0, 1]) norm, then the best approximation of 𝑓 on 𝑉2 must be
zero, so we just need to pick such a 𝑓 with 4 or more zeros. So, for example, we can pick the
degree 4 orthogonal polynomials with weight 1 on [0, 1], which is 70𝑥4−140𝑥3+90𝑥2−20𝑥+1.

7.2 HW 5

1. (Problem 7.6 in textbook) Consider the trapezium and Simpson’s rule applied to
∫︀ 1

0
(𝑥5−

𝐶𝑥4)𝑑𝑥.

� Write down the error for trapezium and Simpson’s rule, as functions of 𝐶.

� Find 𝐶 that makes the error under trapezium rule is 0.

� Find the range of 𝐶 where the trapezium rule is more accurate than Simpson’s rule.

Answer:

� The true answer is 1/6−𝐶/5. The result of the trapezium rule is 1−𝑐
2 , and the result

of Simpson’s rule is 2
3 (1/32 − 𝐶/16) + 1

6 (1 − 𝑐) = 3/16 − 5𝑐/24. So the error under
trapezium rule is |1/3− 3𝐶/10|, the error under Simpson’s rule is |1/48−𝐶/120|. It’s
ok if you do not write the absolute value.

� We need to have |1/3− 3𝐶/10| = 0, hence 𝐶 = 10/9.

� This is the range of 𝐶 such that |1/3−3𝐶/10| < |1/48−𝐶/120|, hence 𝐶 ∈ (15/14, 85/74).

2. (Problem 7.11 in textbook) Suppose 𝑓 ∈ 𝐶4([−1, 1]). Let 𝑝 be the Hermite interpo-
lation polynomial of 𝑓 at 𝑥0 = −1, 𝑥1 = 1.
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� Calculate
∫︀ 1

−1
𝑝𝑑𝑥 and write it as a linear combination of 𝑓(±1), 𝑓 ′(±1).

� Prove that

|
∫︁ 1

−1

𝑓𝑑𝑥−
∫︁ 1

−1

𝑝𝑑𝑥| ≤ 2

45
max

𝑐∈[−1,1]
|𝑓 (4)(𝑐)|

Answer:

�

𝑝(𝑥) = 𝑓 ′(−1)
(𝑥+ 1)(𝑥− 1)2

4
+ 𝑓 ′(1)

(𝑥− 1)(𝑥+ 1)2

4

+𝑓(−1)
(𝑥− 1)2(1 + (𝑥+ 1))

4
+ 𝑓(1)

(𝑥+ 1)2(1− (𝑥− 1))

4

So ∫︁ 1

−1

𝑝𝑑𝑥 =
𝑓 ′(−1)

3
− 𝑓 ′(1)

3
+ 𝑓(−1) + 𝑓(1)

� The error bound for Hermite interpolation tells us

|𝑓(𝑥)− 𝑝(𝑥)| ≤ max |𝑓 (4)|(𝑥+ 1)2(𝑥− 1)2

4!

So

|
∫︁ 1

−1

𝑓𝑑𝑥−
∫︁ 1

−1

𝑝𝑑𝑥| ≤
∫︁ 1

−1

|𝑓 − 𝑝|𝑑𝑥

≤ max |𝑓 (4)| ·
∫︁ 1

−1

(𝑥+ 1)2(𝑥− 1)2

4!
𝑑𝑥

=
2

45
max

𝑐∈[−1,1]
|𝑓 (4)(𝑐)|

3. (Problem 10.3 in textbook) Show that if 𝑓 ∈ 𝐶2([0, 1]), then there is some point
𝑐 ∈ (0, 1) such that ∫︁ 1

0

𝑥𝑓𝑑𝑥 =
1

2
𝑓(2/3) +

1

72
𝑓 ′′(𝑐)
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Hint: use Gauss quadrature with weight 𝑥.

Answer: Because for any constant function 𝐶,
∫︀ 1

0
𝑥𝐶(𝑥−2/3)𝑑𝑥 = 0, 𝑥−2/3 is the degree-

1 orthogonal polynomial on [0, 1] with weight 𝑥. Hence the weight 𝑥 Gauss quadrature for∫︀ 1

0
𝑥𝑓𝑑𝑥 should be the 𝐼0(𝑓) = 𝑤0𝑓(𝑥0), where 𝑥0 is the root of 𝑥− 2/3 which is 2/3, and

𝑤0 =

∫︁ 1

0

𝑤(𝑥)

∏︀
𝑖 ̸=0(𝑥− 𝑥𝑖)∏︀
𝑖 ̸=0(𝑥0 − 𝑥𝑖)

𝑑𝑥 =

∫︁ 1

0

𝑤𝑑𝑥 =
1

2

Now the error formula for Gauss quadrature tells us∫︁ 1

0

𝑥𝑓𝑑𝑥− 𝐼0(𝑓) = 𝑓 ′′(𝑐)

∫︁ 1

0

𝑥(𝑥− 2/3)2

2!
𝑑𝑥 =

𝑓 ′′(𝑐)

72

4.

� Suppose 𝑓 is continuous on [0, 1]. Let 𝐼𝑛 be the estimate of
∫︀ 1

0
𝑓𝑑𝑥 using composite

trapezium rule with 𝑛 subintervals. Show that

lim
𝑛→∞

|
∫︁ 1

0

𝑓𝑑𝑥− 𝐼𝑛| = 0

Hint: There are many possible approaches. You can use the fact that any continuous
function on a closed interval is uniformly continuous (for any 𝜖 > 0, there is some 𝛿
such that |𝑥− 𝑦| < 𝛿 implies |𝑓(𝑥)− 𝑓(𝑦)| < 𝜖), or use the Weierstrass approximation
theorem.

� (Optional) Find a continuous function 𝑓 , such that there is 𝐶 > 0 such that

|
∫︁ 1

0

𝑓𝑑𝑥− 𝐼𝑛| ≥
𝐶

𝑛

Hint: if 𝑓 has bounded second derivative then the error decays like 𝑂(1/𝑛2), so you
need to find some 𝑓 that doesn’t have second order derivative or has unbounded second
order derivative.

137



Answer:

� – Approach I: 𝑓 is continuous on [0, 1] hence uniformly continuous. For any 𝜖 > 0,
find 𝛿 such that |𝑥− 𝑦| < 𝛿 implies |𝑓(𝑥)− 𝑓(𝑦)| < 𝜖. Now let 𝑁 be some integer
larger than 1/𝜖. For any 𝑛 > 𝑁 , consider the composite trapezium rule 𝐼𝑛, then 𝑓
sends each of the 𝑛 subintervals to an interval of length no more than 𝜖, hence the
error of the trapezium rule on this subinterval is no more than 𝜖/𝑛, and the error

of the composite trapezium rule is no more than 𝜖, hence lim𝑛→∞ 𝐼𝑛(𝑓) =
∫︀ 1

0
𝑓𝑑𝑥

by definition of limit.

– Approach II: For any 𝜖 > 0, find polynomial 𝑝 such that |𝑓 − 𝑝|∞ < 𝜖/3, then

|
∫︀ 1

0
𝑓𝑑𝑥−

∫︀ 1

0
𝑝𝑑𝑥| < 𝜖/3, and for any 𝑛, |𝐼𝑛(𝑓)−𝐼𝑛(𝑝)| < 𝜖/3. Now let 𝑁 be large

enough such that max |𝑝′′|
12𝑁2 < 𝜖/3, then for any 𝑛 > 𝑁 , |𝐼𝑛(𝑝) −

∫︀ 1

0
𝑝𝑑𝑥| < 𝜖/3,

hence

|𝐼𝑛(𝑓)−
∫︁ 1

0

𝑓𝑑𝑥| ≤ |
∫︁ 1

0

𝑓𝑑𝑥−
∫︁ 1

0

𝑝𝑑𝑥|+ |𝐼𝑛(𝑝)−
∫︁ 1

0

𝑝𝑑𝑥|+ |𝐼𝑛(𝑓)− 𝐼𝑛(𝑝)| < 𝜖

� Let 𝑓(𝑥) =
∑︀∞

𝑖=1
1

𝑖(𝑖+1) cos(2𝜋𝑖!𝑥). Then
∫︀ 1

0
𝑓𝑑𝑥 = 0, and by trigonometry, 𝐼𝑛(𝑓) = 1

𝑛 .

7.3 HW 6

1. (Problem 12.7 in textbook) Consider solving 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0 using the trapezium
method

𝑧((𝑛+ 1)ℎ) = 𝑧(𝑛ℎ) +
ℎ

2
(𝑓((𝑛+ 1)ℎ, 𝑧((𝑛+ 1)ℎ)) + 𝑓(𝑛ℎ, 𝑧(𝑛ℎ)))

Suppose further that |𝑦′′′| is uniformly bounded by 𝑀 .

(i) Prove that

|𝑦((𝑛+ 1)ℎ)− 𝑦(𝑛ℎ)

ℎ
− 1

2
(𝑓((𝑛+ 1)ℎ, 𝑦((𝑛+ 1)ℎ)) + 𝑓(𝑛ℎ, 𝑦(𝑛ℎ)))| ≤ 𝑀ℎ2

12

Hint: You can prove it by applying integration by parts to
∫︀ (𝑛+1)ℎ

𝑛ℎ
(𝑥− ℎ𝑛)(𝑥− 𝑛ℎ−

ℎ)𝑦′′′(𝑥)𝑑𝑥.
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(ii) Let 𝑒𝑛 = 𝑧(𝑛ℎ)− 𝑦(𝑛ℎ), and assume that 𝑓 is 𝐿-Lipschitz with respect to the second
parmeter, then

|𝑒𝑛+1| ≤ |𝑒𝑛|+
1

2
ℎ𝐿(|𝑒𝑛+1|+ |𝑒𝑛|) +

ℎ3𝑀

12

Answer:

(i) � Approach I: Left hand side is the error for applying trapezium rule to calculate∫︀ (𝑛+1)ℎ

𝑛ℎ
𝑓(𝑠, 𝑦(𝑠))𝑑𝑠, and right hand side is the error bound we learned in class.

� Approach II:

ℎ3𝑀

6
≥ |
∫︁ (𝑛+1)ℎ

𝑛ℎ

(𝑥− ℎ𝑛)(𝑥− 𝑛ℎ− ℎ)𝑦′′′(𝑥)𝑑𝑥|

= |(𝑥− ℎ𝑛)(𝑥− 𝑛ℎ− ℎ)𝑦′′|(𝑛+1)ℎ
𝑛ℎ −

∫︁ (𝑛+1)ℎ

𝑛ℎ

(2𝑥− 2𝑛ℎ− ℎ)𝑦′′(𝑥)𝑑𝑥|

= |
∫︁ (𝑛+1)ℎ

𝑛ℎ

(2𝑥− 2𝑛ℎ− ℎ)𝑦′′(𝑥)𝑑𝑥|

= |(2𝑥− 2𝑛ℎ− ℎ)𝑦′|(𝑛+1)ℎ
𝑛ℎ −

∫︁ (𝑛+1)ℎ

𝑛ℎ

2𝑦′𝑑𝑥|

= |ℎ(𝑓((𝑛+ 1)ℎ, 𝑦((𝑛+ 1)ℎ)) + 𝑓(𝑛ℎ, 𝑦(𝑛ℎ)))− 2(𝑦((𝑛+ 1)ℎ)− 𝑦(𝑛ℎ))|
Divide ℎ on both sides we get the required inequality.

(ii) From the inequality proved above, we have

𝑦((𝑛+ 1)ℎ) = 𝑦(𝑛ℎ) +
ℎ

2
(𝑓((𝑛+ 1)ℎ, 𝑦((𝑛+ 1)ℎ)) + 𝑓(𝑛ℎ, 𝑦(𝑛ℎ))) + 𝐸

Where |𝐸| ≤ 𝑀ℎ3

12 . Hence,

|𝑒𝑛+1| = |𝑦((𝑛+1)ℎ)−𝑧((𝑛+1)ℎ)| ≤ |𝑦(𝑛ℎ)−𝑧(𝑛ℎ)|+ℎ𝐿

2
(|𝑦((𝑛+1)ℎ)−𝑧((𝑛+1)ℎ)|+|𝑦(𝑛ℎ)−𝑧(𝑛ℎ)|)+|𝐸|

≤ |𝑒𝑛|+
ℎ𝐿

2
(|𝑒𝑛+1|+ |𝑒𝑛|) +

ℎ3𝑀

12
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2. (Problem 12.12 in textbook) Consider solving the initial value problem 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) =
𝑦0 via linear multistep method:

𝑧((𝑛+ 3)ℎ) + 𝑏𝑧((𝑛+ 1)ℎ) + 𝑎𝑧(𝑛ℎ) = ℎ𝑓((𝑛+ 2)ℎ, 𝑧((𝑛+ 2)ℎ))

(i) Find 𝑎, 𝑏 such that the method is consistent.

(ii) Show that for such 𝑎, 𝑏, the method is not zero stable.

Answer:

(i) 1 + 𝑏+ 𝑎 = 0, 3 + 𝑏 = 1, so 𝑏 = −2, 𝑎 = 1.

(ii) The first characteristic polynomial is now 𝑧3 − 2𝑧 + 1, which has a root −1−
√
5

2 hence
is not zero-stable.

7.4 Honors Assignment 2

1. (Exercise 7.13) Show that the composite Trapezium rule always give accurate answer to∫︀ 2𝜋

0
sin(𝑥)𝑑𝑥.

Answer: The composite trapezium rule with 𝑛 subintervals is

𝐼𝑛 =
1

𝑛

𝑛−1∑︁
𝑘=1

sin(
2𝜋𝑘

𝑛
) =

1

𝑛

𝑛−1∑︁
𝑘=1

(sin(
2𝜋𝑘

𝑛
) + sin(

2𝜋(𝑛− 𝑘)

𝑛
))/2

= 0 =

∫︁ 2𝜋

0

sin(𝑥)𝑑𝑥

2. (Exercise 10.7) Let [𝑎, 𝑏] = [−1, 1], let 𝑝𝑛−1 be the degree 𝑛−1 orthogonal polynomial
of weight 1−𝑥2, and let 𝐼𝑛 be the quadrature rule where the quadrature points are roots of
(𝑥2 − 1)𝑝𝑛−1(𝑥).

� Show that if 𝑞 is a polynomial of degree no more than 2𝑛− 1, then
∫︀ 1

−1
𝑞𝑑𝑥 = 𝐼𝑛(𝑞).

� Show that all quadrature weights are positive.
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� Suppose 𝑓 is smooth, find a constant 𝐶 such that

|
∫︁ 1

−1

𝑓𝑑𝑥− 𝐼𝑛(𝑓)| ≤ 𝐶 max
𝑥∈[−1,1]

|𝑓 (2𝑛)(𝑥)|

Answer:

� 𝐼𝑛 has 𝑛+1 quadrature points hence gives accurate answer to any polynomial of degree
up to 𝑛. If 𝑞 is of degree no more than 2𝑛 − 1, by long division of polynomials we
have 𝑞 = (𝑥2 − 1)𝑝𝑛−1𝑞1 + 𝑟, where 𝑟 is of degree at most 𝑛, and 𝑞1 is a polynomial of

degree no more than 𝑛− 2. Hence 𝐼𝑛(𝑞) = 𝐼𝑛(𝑟) =
∫︀ 1

−1
𝑟𝑑𝑥 =

∫︀ 1

−1
𝑞𝑑𝑥.

� The 𝑗-th quadrature weight is

𝑤𝑗 =

∫︁ 1

−1

∏︀
𝑖 ̸=𝑗(𝑥− 𝑥𝑖)∏︀
𝑖 ̸=𝑗(𝑥𝑗 − 𝑥𝑖)

𝑑𝑥

If 𝑗 = 0 or 𝑗 = 𝑛, the function being integrated is non negative, hence 𝑤𝑗 > 0. Now
suppose 0 < 𝑗 < 𝑛, then by calculation,

𝑤𝑗 =

∫︁ 1

−1

𝑥2 − 1

𝑥2𝑗 − 1
·
∏︀

𝑖 ̸=𝑗,1<𝑖<𝑛(𝑥− 𝑥𝑖)2∏︀
𝑖 ̸=𝑗,1<𝑖<𝑛(𝑥𝑗 − 𝑥𝑖)2

𝑑𝑥

Which are all positive.

� Let 𝑝 be the polynomial of degree no more than 2𝑛 − 1 such that 𝑝(𝑥𝑖) = 𝑓(𝑥𝑖), and
for all 1 < 𝑖 < 𝑛, 𝑝′(𝑥𝑖) = 𝑓 ′(𝑥𝑖). Then by a similar argument to the error bound of
Hermite interpolation polynomials we have

|𝑓(𝑥)− 𝑝(𝑥)| ≤ max |𝑓 (2𝑛)|
(1− 𝑥2)

∏︀
1<𝑖<𝑛(𝑥− 𝑥𝑖)2

(2𝑛)!

So

𝐶 =

∫︁ 1

−1

(1− 𝑥2)
∏︀

1<𝑖<𝑛(𝑥− 𝑥𝑖)2

(2𝑛)!
𝑑𝑥
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3. Consider the initial value problem 𝑦′ = sin(𝑦), 𝑦(0) = 1.

� Write down the formula for two step Adams-Bashforth.

� Show that the two step Adams-Bashforth has order of accuracy 2 for this problem.

� Suppose we use starting points 𝑧(0) = 1, 𝑧(ℎ) = 1 + ℎ sin(1) to carry out Adams-
Bashforth till time 𝑡 = 𝑛ℎ = 1. Find number 𝐶 such that

|𝑧(1)− 𝑦(1)| ≤ 𝐶ℎ2

Answer:

� The quadrature weights for
∫︀ 𝑡+2ℎ

𝑡+ℎ
, using 𝑥0 = 𝑡, 𝑥1 = 𝑡+ ℎ, are

𝑤0 =

∫︁ 𝑡+2ℎ

𝑡+ℎ

(𝑠− 𝑡− ℎ)

−ℎ
𝑑𝑠 = −ℎ/2

𝑤1 =

∫︁ 𝑡+2ℎ

𝑡+ℎ

(𝑠− 𝑡)
ℎ

𝑑𝑠 = 3ℎ/2

So the 2nd order Adams-Bashforth is

𝑧(𝑡+ 2ℎ)− 𝑧(𝑡+ ℎ) = ℎ(
3

2
𝑓(𝑡+ ℎ, 𝑧(𝑡+ ℎ))− 1

2
𝑓(𝑡, 𝑧(𝑡)))

� This can be done by doing power series expansion on both sides, or via the error
formula for quadrature rules.

� Suppose 𝑧𝑘(𝑛ℎ) satisfies

𝑧𝑘(𝑛ℎ) =

⎧⎪⎨⎪⎩
𝑦(𝑛ℎ) 𝑛 ≤ 𝑘
𝑧𝑘((𝑛− 1)ℎ) + 3ℎ

2 sin(𝑧𝑘((𝑛− 1)ℎ))− ℎ
2 sin(𝑧𝑘((𝑛− 2)ℎ)) 𝑛 > 𝑘, 𝑛 ≥ 2

1 + ℎ 𝑛 = 1, 𝑘 = 0
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Then by analyzing the truncated error for Euler’s and Adams-Bashforth methods, we
get

|𝑧𝑘((𝑘 + 1)ℎ)− 𝑧𝑘+1((𝑘 + 1)ℎ)| = |𝑧𝑘((𝑘 + 1)ℎ)− 𝑦((𝑘 + 1)ℎ)| ≤

{︃
ℎ2

2 𝑘 = 0
5ℎ3

6 𝑘 > 0

You may be able to find better bounds.

Now we prove by induction on 𝑚 that |𝑧𝑘((𝑘 + 1 + 𝑚)ℎ) − 𝑧𝑘+1((𝑘 + 1 + 𝑚)ℎ)| ≤
(1 + 2ℎ)𝑚|𝑧𝑘((𝑘 + 1)ℎ) − 𝑧𝑘+1((𝑘 + 1)ℎ)|: when 𝑚 = 0 or 𝑚 = 1 one can verify it
directly. If 𝑚 > 1, the left hand side is bounded by

|𝑧𝑘((𝑘+𝑚)ℎ)−𝑧𝑘+1((𝑘+𝑚)ℎ)|+3ℎ

2
|𝑧𝑘((𝑘+𝑚)ℎ)−𝑧𝑘+1((𝑘+𝑚)ℎ)|+ℎ

2
|𝑧𝑘((𝑘+𝑚−1)ℎ)−𝑧𝑘+1((𝑘+𝑚−1)ℎ)|

≤ ((1 + 2ℎ)𝑚−1 +
3ℎ

2
(1 + 2ℎ)𝑚−1 +

ℎ

2
(1 + 2ℎ)𝑚−2)|𝑧𝑘((𝑘 + 1)ℎ)− 𝑧𝑘+1((𝑘 + 1)ℎ)|

≤ (1 + 2ℎ)𝑚|𝑧𝑘((𝑘 + 1)ℎ)− 𝑧𝑘+1((𝑘 + 1)ℎ)|

So
|𝑧(𝑛ℎ)− 𝑦(𝑛ℎ)| ≤

∑︁
𝑘

|𝑧𝑘(𝑛ℎ)− 𝑧𝑘+1(𝑛ℎ)|

≤
𝑛−1∑︁
𝑘=0

(1 + 2ℎ)𝑛−𝑘−1ℎ2

≤ 𝑒2ℎ
2

2
+
𝑒2 − 1

2ℎ

5ℎ3

6

=
11𝑒2 − 5

12
ℎ2
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7.5 Final Review Questions

7.5.1 Basic Problems

1. Write down the Hermite interpolation polynomial 𝑝(𝑥) of 𝑓(𝑥) = sin(𝑥) at 𝑥0 = 0, 𝑥1 = 𝜋,
and find an upper bound of |𝑓(𝑥)− 𝑝(𝑥)| using the error bound of Hermite interpolation.

Answer: The Hermite interpolation polynomial is

𝑝(𝑥) =
1

𝜋2
(𝑥(𝑥− 𝜋)2 + 𝑥2(𝜋 − 𝑥))

And

|𝑓(𝑥)− 𝑝(𝑥)| = | − sin(𝑠)|𝑥2(𝑥− 𝜋)2

4!
≤ 𝑥2(𝑥− 𝜋)2

24
2. Find two points 𝑥0 and 𝑥1, such that for any polynomial 𝑓 of degree no more than 3,∫︁ 𝜋

0

sin(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑓(𝑥0) + 𝑓(𝑥1)

And find constant 𝑐 such that if 𝑔 ∈ 𝐶6([0, 𝜋]),

|
∫︁ 𝜋

0

sin(𝑥)𝑔(𝑥)𝑑𝑥− (𝑔(𝑥0) + 𝑔(𝑥1))| ≤ 𝐶 max |𝑔(6)|

Answer: These two points are the Gauss quadrature points on interval [0, 𝜋] with weight
function sin(𝑥), hence must be the root of the degree-2 orthogonal polynomial on [0, 𝜋] with
weight sin(𝑥). Suppose this polynomial is 𝑝2 = 𝑥2 + 𝑎𝑥+ 𝑏, then

0 =

∫︁ 𝜋

0

sin(𝑥)𝑝2(𝑥)𝑑𝑥 = 𝜋2 − 4 + 𝑎𝜋 + 2𝑏

0 =

∫︁ 𝜋

0

sin(𝑥)𝑥𝑝2(𝑥)𝑑𝑥 = 𝜋3 − 6𝜋 + 𝑎(𝜋2 − 4) + 𝑏𝜋

So 𝑎 = −𝜋, 𝑏 = 2, 𝑥0 = 𝜋−
√
𝜋2−8
2 , 𝑥1 = 𝜋+

√
𝜋2−8
2 . And by Theorem 10.1 from the textbook

or 3.19(iv) in the Lecture notes,

𝐶 =

∫︀ 𝜋

0
sin(𝑥)(𝑥2 − 𝜋𝑥+ 2)2𝑑𝑥

4!
=

10− 𝜋2

6
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3. Estimate the solution of 𝑦′ = sin(𝑦), 𝑦(0) = 1 at time 0.1 using Euler’s method,
improved Euler’s method, and rk4, using time step ℎ = 0.1.

Answer:

� Euler’s method gets 𝑧(0.1) = 1 + 0.1× sin(1) = 1 + sin(1)/10 ≈ 1.0841471.

� Improved Euler’s method gets 𝑧(0.1) = 1+ 1
20 (sin(1)+sin(1+sin(1)/10)) ≈ 1.0862688

� Runge-Kutta 4-th order gets 𝑘1 = sin(1), 𝑘2 = sin(1 + 𝑘1/20), 𝑘3 = sin(1 + 𝑘2/20),
𝑘4 = sin(1 + 𝑘3/10)

𝑧(0.1) = 1 +
sin(1)

60
+

sin(1 + sin(1)/20)

30

+
sin(1 + sin(1 + sin(1)/20)/20)

30

+
sin(1 + sin(1 + sin(1 + sin(1)/20)/20)/10)

60
≈ 1.0863557

The accurate answer is 1.0863558.

4. Consider explicit 2-step method for 𝑦′ = 𝑓(𝑡, 𝑦):

𝑧((𝑛+ 2)ℎ) = 𝑎𝑧((𝑛+ 1)ℎ) + 𝑏𝑧(𝑛ℎ) + 𝑐ℎ𝑓((𝑛+ 1)ℎ, 𝑧((𝑛+ 1)ℎ)) + 𝑑ℎ𝑓(𝑛ℎ, 𝑧(𝑛ℎ))

Where ℎ is step size and 𝑧(𝑡) is the estimate for 𝑦(𝑡). Find all real numbers 𝑎, 𝑏, 𝑐, 𝑑 such
that the method is zero stable and has order of accuracy at least 2.

Answer: The first characteristic polynomial is

𝜌(𝑧) = 𝑧2 − 𝑎𝑧 − 𝑏

To make it consistent, 𝜌(1) = 0, 𝑐+ 𝑑 = 2− 𝑎, so 1− 𝑎− 𝑏 = 0, 𝑏 = 1− 𝑎, and the roots of
𝜌 must be 1 and 𝑎− 1, so 0 ≤ 𝑎 < 2 and 𝑏 = 1− 𝑎.

Now let’s calculate the order of accuracy. Firstly, let 𝑡 = 𝑛ℎ, suppose 𝑦 is the solution
of the IVP, then

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡))
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𝑦′′(𝑡) = 𝜕𝑡𝑓(𝑡, 𝑦(𝑡)) + 𝜕𝑦𝑓(𝑡, 𝑦(𝑡))𝑦′(𝑡)

Now let’s do power series expansion, with respect to ℎ, for

𝑦(𝑡+ 2ℎ)− 𝑎𝑦(𝑡+ ℎ)− (1− 𝑎)𝑦(𝑡)− 𝑐ℎ𝑓(𝑡+ ℎ, 𝑦(𝑡+ ℎ))− 𝑑ℎ𝑓(𝑡, 𝑦(𝑡))

And after cancelling some terms, we get

2𝑦′′(𝑡)ℎ2 − 𝑎𝑦′′(𝑡)ℎ2/2− 𝑐𝜕𝑡𝑓(𝑡, 𝑦(𝑡))ℎ2 − 𝑐𝜕𝑦𝑓(𝑡, 𝑦(𝑡))𝑦′(𝑡)ℎ2 +𝑂(ℎ3)

So 𝑐 = 2− 𝑎/2, 𝑑 = −𝑎/2. Note that when 𝑎 = 1 this is 2-step Adams-Bashforth.

7.5.2 More advanced problems

Problems like the ones below will account for no more than 10% of the final exam, so don’t
worry about them unless you have a lot of time during final review.

5. Suppose 𝑓 is smooth and periodic with period 1, |𝑓 (4)| ≤ 1. Let 𝐼𝑛 be the result of

composite trapezium rule for
∫︀ 1

0
𝑓𝑑𝑥 using 𝑛 subintervals. Find a number 𝐶, such that

|
∫︁ 1

0

𝑓𝑑𝑥− 𝐼𝑛(𝑓)| ≤ 𝐶

𝑛4

Answer: Consider the function 𝑓𝑛(𝑥) =
∑︀𝑛−1

𝑖=0 (𝑥+ 𝑖/𝑛). Then 𝑓𝑛 is periodic with period

1/𝑛, and it is easy to see that the composite trapezium rule for
∫︀ 1

0
𝑓𝑑𝑥 using 𝑛 subintervals

is the same as the trapezium rule for
∫︀ 1/𝑛

0
𝑓𝑛𝑑𝑥.

Now let 𝑝𝑛 be the Hermite interpolation of 𝑓𝑛 at 0 and 1/𝑛. Then because 𝑓𝑛(0) =
𝑓𝑛(1/𝑛), 𝑓 ′𝑛(0) = 𝑓 ′𝑛(1/𝑛), we have

𝑝𝑛(𝑥) = 𝑓𝑛(0) + 2𝑓 ′𝑛(0)𝑛2𝑥(𝑥− 1

2𝑛
)(𝑥− 1

𝑛
)

∫︁ 1/𝑛

0

𝑝𝑛(𝑥)𝑑𝑥 = 𝑓𝑛(0)/𝑛 = 𝐼𝑛(𝑓)
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So

|
∫︁ 1

0

𝑓𝑑𝑥− 𝐼𝑛(𝑓)| ≤
∫︁ 1/𝑛

0

|𝑓𝑛(𝑥)− 𝑝𝑛(𝑥)|𝑑𝑥 ≤
∫︁ 1/𝑛

0

max |𝑓 (4)𝑛 |𝑥2(𝑥− 1/𝑛)2

24
𝑑𝑥 ≤ 1

720𝑛4

6. Consider the 3-step Adams-Bashforth method for 𝑦′ = cos(𝑦):

𝑧(𝑡+ 3ℎ) = 𝑧(𝑡+ 2ℎ) +
23ℎ

12
𝑓(𝑧(𝑡+ 2ℎ))− 4ℎ

3
𝑓(𝑧(𝑡+ ℎ)) +

5ℎ

12
𝑓(𝑧(𝑡))

Suppose 𝑧(𝑡) = 𝑦(𝑡), 𝑧(𝑡+ ℎ) = 𝑦(𝑡+ ℎ), 𝑧(𝑡+ 2ℎ) = 𝑦(𝑡+ 2ℎ), find 𝐶 such that

|𝑧(𝑡+ 3ℎ)− 𝑦(𝑡+ 3ℎ)| ≤ 𝐶ℎ4

Answer: Let 𝑔(𝑡) = 𝑦′(𝑡) = cos(𝑦(𝑡)), 𝑝3 be the Lagrange interpolation of 𝑔 at 𝑡, 𝑡 + ℎ,
𝑡+ 2ℎ, then the 3-step Adams-Bashforth can be written as

𝑧(𝑡+ 3ℎ) = 𝑦(𝑡+ 2ℎ) +

∫︁ 𝑡+3ℎ

𝑡+2ℎ

𝑝3(𝑠)𝑑𝑠

So

|𝑧(𝑡+ 3ℎ)− 𝑦(𝑡+ 3ℎ)| ≤
∫︁ 𝑡+3ℎ

𝑡+2ℎ

|𝑔(𝑠)− 𝑝3(𝑠)|𝑑𝑠

Now by error estimate of Lagrange interpolation,

|𝑔(𝑠)− 𝑝3(𝑠)| ≤ max |𝑔(3)|(𝑠− 𝑡)(𝑠− 𝑡− ℎ)(𝑠− 𝑡− 2ℎ)

6

So after integration we get

|𝑧(𝑡+ 3ℎ)− 𝑦(𝑡+ 3ℎ)| ≤ max |𝑔(3)| · 3ℎ4

8

𝑔′ = −𝑦′ sin(𝑦) = − cos(𝑦) sin(𝑦) = − sin(2𝑦)

2

𝑔′′ = − cos(𝑦) cos(2𝑦) = −cos(3𝑦) + cos(𝑦)

2

𝑔′′′ =
3 sin(3𝑦) cos(𝑦) + sin(𝑦) cos(𝑦)

2
So |𝑔′′′| ≤ 7/4, or you can use a better bound, and 𝐶 = 21/32.
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8 Notes on Prior Subjects

8.1 Notes on linear algebra

Recall that a (real) Vector space 𝑉 is a set with an element 0, a “scalar multiplication”
map R × 𝑉 → 𝑉 and an “addition” map 𝑉 × 𝑉 → 𝑉 , such that, for any 𝑥, 𝑦, 𝑧 ∈ 𝑉 , any
𝑎, 𝑏 ∈ R, the followings are true:

(i) 𝑥+ 𝑦 = 𝑦 + 𝑥

(ii) (𝑥+ 𝑦) + 𝑧 = 𝑥+ (𝑦 + 𝑧)

(iii) 0 + 𝑥 = 𝑥

(iv) 1𝑥 = 𝑥

(v) 0𝑥 = 0

(vi) (𝑎+ 𝑏)𝑥 = 𝑎𝑥+ 𝑏𝑥

(vii) 𝑎(𝑥+ 𝑦) = 𝑎𝑥+ 𝑎𝑦

(viii) (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥)

If 𝑉 is a vector space, any non empty subset 𝑉 ′ ⊂ 𝑉 which is closed under addition and
scalar multiplication is called a subspace.

The span of a set 𝑆 ⊂ 𝑉 is the subset of 𝑉 consisting of finite linear combinations of
elements of 𝑆. We call 𝑆 ⊂ 𝑉 a linearly independent set if for any finite collection of
vectors 𝑠1, . . . 𝑠𝑛 ∈ 𝑆,

∑︀
𝑖 𝑎𝑖𝑠𝑖 = 0 =⇒ 𝑎𝑖 = 0∀𝑖. We call 𝑆 ⊂ 𝑉 a basis of 𝑉 if 𝑆 is linearly

independent and 𝑉 = 𝑠𝑝𝑎𝑛(𝑆).

Any two basis of the same vector space have the same cardinality (number of elements).
This cardinality is called the dimension of 𝑉 .

Example 8.1. � The set of 𝑛 dimensional column vectors R𝑛, under the usual addition
and scalar multiplication, is a vector space, and it has dimension 𝑛.
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� The set of polynomials of degree no more than 𝑛, under the usual addition and scalar
multiplication, is also a vector space. A basis is {1, 𝑥, . . . , 𝑥𝑛} hence its dimension is
𝑛+ 1.

If 𝐵 = {𝑏1, . . . , 𝑏𝑛} is a basis of a vector space 𝑉 of dimension 𝑛, 𝑣 ∈ 𝑉 , the coordinate
of 𝑣 under 𝐵 is a vector 𝑥 ∈ R𝑛 such that 𝑣 =

∑︀
𝑖 𝑥𝑖𝑏𝑖 where 𝑥𝑖 is the 𝑖-th entry of 𝑥.

A map between two vector spaces 𝑇 : 𝑉 →𝑊 is called a linear transformation, if

� 𝑇 (𝑥+ 𝑦) = 𝑇 (𝑥) + 𝑇 (𝑦)

� 𝑇 (𝑐𝑥) = 𝑐𝑇 (𝑥)

If 𝑇 : 𝑉 → 𝑊 is a linear transformation between two linear spaces, 𝑥 is the coordinate
of 𝑣 in basis 𝐵, 𝑦 is the coordinate of 𝑇 (𝑣) under basis 𝐶, then 𝑦 = 𝐴𝑥 where 𝐴 = [𝑎𝑖𝑗 ],
and 𝑇 (𝑏𝑗) =

∑︀
𝑖 𝑎𝑖𝑗𝑐𝑖.

The inner product on R𝑛 is defined as (𝑥, 𝑦) = 𝑥𝑇 𝑦 =
∑︀

𝑖 𝑥𝑖𝑦𝑖. It is easy to check that
this inner product satisfies the following properties:

(i) Symmetry: (𝑥, 𝑦) = (𝑦, 𝑥)

(ii) Bilinearity: (𝑎𝑥+ 𝑎′𝑥′, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑎′(𝑥′, 𝑦), (𝑥, 𝑏𝑦 + 𝑏′𝑦′) = 𝑏(𝑥, 𝑦) + 𝑏′(𝑥, 𝑦′).

(iii) Positive definiteness: (𝑥, 𝑥) ≥ 0 and (𝑥, 𝑥) = 0 iff 𝑥 = 0.

Two vectors are orthogonal to each other iff their inner product is 0. A set of vectors
is orthogonal to another set if every vector in the first set is orthogonal to every vector in
the second.

Let 𝑉 be a subspace of R𝑛. We call a basis of 𝑉 orthogonal if the inner product of
distinct basis vectors are all 0, orthonomal if in addition, the inner product of any basis
vector with itself is 1.

Given any basis {𝑥1, . . . , 𝑥𝑑} of a subspace 𝑉 ⊂ R𝑛, we can make it into an orthogonal
or orthonormal basis via the Gram-Schmidt process:

𝑦1 = 𝑥1
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𝑦𝑖 = 𝑥𝑖 −
∑︁
𝑗<𝑖

((𝑦𝑗 , 𝑥𝑖)/(𝑦𝑗 , 𝑦𝑗))𝑦𝑗

Then {𝑦𝑖} is an orthogonal basis, and {(𝑦𝑖, 𝑦𝑖)−1/2𝑦𝑖} is an orthonormal basis.

If 𝑉 is a subspace of R𝑛, 𝑥 ∈ R𝑛, we call the orthogonal projection of 𝑥 on 𝑉 , denoted
as 𝑃𝑉 (𝑥), the unique vector that satisfies 𝑃𝑉 (𝑥) ∈ 𝑉 and (𝑥− 𝑃𝑉 (𝑥), 𝑦) = 0 for all 𝑦 ∈ 𝑉 .

For any 𝑥′ ∈ 𝑉 , (𝑥 − 𝑃𝑉 (𝑥), 𝑥 − 𝑃𝑉 (𝑥)) ≤ (𝑥 − 𝑥′, 𝑥 − 𝑥′) and equality happens iff
𝑥′ = 𝑃𝑉 (𝑥).

To calculate 𝑃𝑉 (𝑥), we can use either of these formulas:

(i) If {𝑥𝑖} is an orthonormal basis of 𝑉 , then 𝑃𝑉 (𝑥) =
∑︀

𝑖(𝑥, 𝑥𝑖)𝑥𝑖.

(ii) If {𝑥𝑖} is an orthogonal basis of 𝑉 , then 𝑃𝑉 (𝑥) =
∑︀

𝑖((𝑥, 𝑥𝑖)/(𝑥𝑖, 𝑥𝑖))𝑥𝑖.

(iii) If {𝑥𝑖} is just a basis of 𝑉 , let 𝑋 = [𝑥1, . . . 𝑥𝑑] be a 𝑛× 𝑑 matrix, then

𝑃𝑉 (𝑥) = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑥 =
∑︁
𝑖

(
∑︁
𝑗

𝑎𝑖𝑗(𝑥𝑗 , 𝑥))𝑥𝑖

Where 𝐴 = [𝑎𝑖𝑗 ] = [(𝑥𝑖, 𝑥𝑗)]
−1 is a 𝑑× 𝑑 matrix.

If one replace (𝑥, 𝑦) with (𝑥, 𝑦)𝐴 defined as 𝑥𝑇𝐴𝑦, where 𝐴 is a symmetric matrix with all
eigenvalues positive, then (·, ·)𝐴 still satisfies symmetry, bilinearity and positive definiteness,
and all the conclusions about (·, ·) above are still valid.

Furthermore, if 𝑉 is any vector space and (·, ·) is a R-valued function on 𝑉 × 𝑉 which is
symmetric, bilinear and positive definite, all the conclusions above are valid as well.

8.2 Notes on ODE

This is a review on some basics of the theory of ordinary differential equations.
An ordinary differential equation is an equation relating a function on R and its

derivatives. For example, the followings are ordinary differential equations:
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𝑦′ = 𝑡 sin(𝑦)

𝑦′ = 𝑠𝑖𝑛(𝑡)

𝑦′ = 𝑦 cos(𝑡) + 𝑒𝑡

We can also have systems of equations like the following

𝑦′1 = 𝑦2, 𝑦
′
2 = −𝑦1

The initial value problem of an ordinary differential equation means finding a solution
after specifying the value of the solution at some time 𝑡0, which, for convenience, we can
choose to be 0. For example

𝑦′ = 𝑦 cos(𝑡) + 𝑒𝑡, 𝑦(0) = 0

In general the solution of an ODE can not be written down explicitly, however, in some
situations we can get explicit solutions. For example, if the equation is of the form 𝑦′ =
𝑓(𝑡)𝑔(𝑦), then the general solution is of the form∫︁ 𝑦

0

𝑑𝑠

𝑔(𝑠)
=

∫︁ 𝑡

0

𝑓(𝑠)𝑑𝑠+ 𝐶

This is called separation of variables.
The most important result in the theory of ODE is Picard’s theorem:

Theorem 8.2. If 𝑓(𝑡, 𝑦) is continuous and Lipschitz in the second parameter with Lipschitz
constant 𝐿, then 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑎 always has a unique solution.

Proof. Firstly let’s show uniqueness: if 𝑦1 and 𝑦2 are two solutions, then |𝑦1(𝑡)−𝑦2(𝑡)|𝑒−𝐿|𝑡|

is non increasing when 𝑡 > 0 and non decreasing when 𝑡 < 0, hence must always be 0.

Now let’s show existence: consider a sequence of functions defined as below:

𝑦0(𝑡) = 𝑎
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𝑦𝑖(𝑡) = 𝑎+

∫︁ 𝑡

0

𝑓(𝑠, 𝑦𝑖−1(𝑠))𝑑𝑠

Then 𝑓 being Lipschitz implies that

|𝑦𝑖(𝑡)− 𝑦𝑖−1(𝑡)| ≤
∫︁ 𝑡

0

𝐿|𝑦𝑖−1(𝑠)− 𝑦𝑖−2(𝑠)|𝑑𝑠

≤
∫︁ 𝑡

0

𝐿2(𝑡− 𝑠)|𝑦𝑖−2(𝑠)− 𝑦𝑖−3(𝑠)|𝑑𝑠

≤
∫︁ 𝑡

0

𝐿3 (𝑡− 𝑠)2

2
|𝑦𝑖−3(𝑠)− 𝑦𝑖−4(𝑠)|𝑑𝑠

≤ · · · ≤
∫︁ 𝑡

0

𝐿𝑖−1 (𝑡− 𝑠)𝑖−2

(𝑖− 2)!
|𝑦1(𝑠)− 𝑦0(𝑠)|𝑑𝑠

≤ max(|𝑦1 − 𝑦0|)𝐿𝑖−1𝑡𝑖−1

(𝑖− 1)!

Hence the sequence converges uniformly on any finite interval, and fundamental theorem
of calculus implies that the limiting function 𝑦 is the solution.

The argument above can be used to show that if 𝑓 is real analytic (i.e. has Taylor series
convergent to itself), so is 𝑦.

8.3 Notes on Linear difference and differential equations and Tay-
lor’s theorem

8.3.1 Linear Difference Equations

A homogeneous linear difference equation is an iterative relationship:

𝑧𝑛+𝑘 + 𝑎𝑘−1𝑧𝑛+𝑘−1 + · · ·+ 𝑎0𝑧𝑛 = 0

The general solution of a homogeneous linear difference equation can be obtained as
follows:
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� Firstly, define the characteristic polynomial 𝜒(𝑧) = 𝑧𝑘 + 𝑎𝑘−1𝑧
𝑘−1 + · · ·+ 𝑎0.

� Let 𝜆1, . . . , 𝜆𝑙 be its distinct roots, 𝑚1, . . . ,𝑚𝑙 their multiplicities (hence
∑︀

𝑖𝑚𝑖 = 𝑘).

� Then, the general solution can be written as

𝑧𝑛 =
∑︁
𝑖

𝑝𝑖(𝑛)𝜆𝑛𝑖

Where 𝑝𝑖(𝑛) is any polynomial of degree no more than 𝑚𝑖 − 1.

8.3.2 Linear Differential Equations

Similarly, a homogeneous linear differential equation is

𝑦(𝑘) + 𝑎𝑘−1𝑦
(𝑘−1) + · · ·+ 𝑎1𝑦

′ + 𝑎0𝑦 = 0

The general solution of a homogeneous linear differential equation is as follows:

� Firstly, define the characteristic polynomial 𝜒(𝑧) = 𝑧𝑘 + 𝑎𝑘−1𝑧
𝑘−1 + · · ·+ 𝑎0.

� Let 𝜆1, . . . , 𝜆𝑙 be its distinct roots, 𝑚1, . . . ,𝑚𝑙 their multiplicities (hence
∑︀

𝑖𝑚𝑖 = 𝑘).

� Then, the general solution can be written as

𝑦(𝑡) =
∑︁
𝑖

𝑝𝑖(𝑡)𝑒
𝜆𝑖𝑡

Where 𝑝𝑖(𝑛) is any polynomial of degree no more than 𝑚𝑖 − 1.

8.3.3 Taylor Series

If 𝑓 ∈ 𝐶𝑘+1, then the Taylor series of 𝑓 at 𝑎, with Lagrange remainder, is

𝑓(𝑥) = 𝑓(𝑎) +

𝑘∑︁
𝑗=1

𝑓 (𝑗)(𝑎)(𝑥− 𝑎)𝑗

𝑗!
+
𝑓 (𝑗+1)(𝑐)(𝑥− 𝑎)𝑗+1

(𝑗 + 1)!

Where 𝑐 is in the closed interval between 𝑥 and 𝑎.
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