Math 481

» Instructor: Chenxi Wu wuchenxi2013@gmail.com

» Office: Hill 434, Office hours: 10-11 am Tu, Wed or by
appointment, starting from Jan 28.

» Grading policy: 10% weekly homework (lowest dropped), 20%
each of the two midterms, 50% final exam.

» Prerequisite: Probability. Will finish review of basic probability
on Feb 12.

> Weekly assignments: 2-3 homework problems a week, grade
for correctness, similar to exams. There will also be questions
from textbook assigned for practice which you don’t need to
hand in.

» No late homework or make up midterms.



Main topics we will cover:
» Review of probability
P Point estimate
P p-values and hypothesis testing
» Confidence intervals
>

Bayesian statistics



Bayesian and non-Bayesian approaches to statistics

» Non-Bayesian approach: Set up a null hypothesis and try to
show that observation is highly unlikely if null hypothesis is
true.

» Bayesian approach: Assume prior distribution of some
parameter, calculate posterior via Bayes formula
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Some review of basic probability

> Two random events A and B are called independent if
P(AN B) = P(A)P(B)

» If A and B are two random events, P(A) > 0. The conditional
probability of B when A is given is P(B|A) = P(AN B)/P(A).



Example

Suppose you are given a coin, you flip it 5 times and get head on
all 5 of them.

» Suppose the coin is fair, what is the odds that it gets head for
5 times in 5 flips?

» Null hypothesis
> p-value
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» Suppose the coin is biased and gets head at probability p.

» What is the probability that it gets head for 5 times in 5 flips?

» What is the p that maximizes this probability?

» What is the range of p such that the probability for 5 heads in
5 flips is no less than 0.057

» Maximum likelihood estimate (MLE)
» Confidence interval



» Suppose you pick the coin among a pile of 100 coins, 99 of
which is fair and 1 has head on both sides. What is the
chance of the coin being unfair given the results of the 5 flips?

» Prior and posterior



» Suppose the odds for getting a head is uniformly distributed in
[0, 1], given the results of the 5 flips, what do you think is the
most likely value for p? How about the expectation?

» Maximum a posteriori (MAP) estimate



Basic definitions in probability

A Probability is a triple (S, F, P) where S is called the sample
space denoting all possible states of the world, F C P(S) the
event space and P : F — R a real-valued function on F, such
that:

1. F is closed under complement and countable union.
2. P is non negative.

3. P(S)=1
4

. If {E;j} is a countable sequence of disjoint events in F,

P(Ui Ei) = Zi 'D(Ei)-



Random variables

» A (real valued) random variable X is a function S — R such
that the preimage of any open interval is in F. Multivariant
random variables can be defined similarly.

» The cumulative distribution function (cdf) of a random
variable X is F(x) = P(X < x).

> If F(x) = [*_ f(t)dt we call f the probability density
function (pdf)

» If there is a countable set C and g : C — R such that

F(x) =3 ,cc <x&(y) we call X discrete and g the
probability distribution

> The expectation of a random variable X is defined as
E[X] = [s XdP.



For those who know analysis

P A probability is a measure P : F — R, where F is a o-algebra
on sample space S and P(S) = 1.
» A random variable X is a P-measurable function on S.

> The expectation of a random variable X is the integral
Js XdP.



Some questions

» Must the cdf of a random variable be left or right continuous?

> X is the number of heads in 2 fair coin flips. What is the cdf
of X7 What is the expectation of X7 What is the expectation
of (X — E[X])??

» Can you write down a random variable that is neither discrete
nor has a pdf?

» Can you write down a random variable which has no
expectation?



Independence and conditional probability

| 2

>

>

X and Y are 2 random variables, X and Y are independent iff
Fx7y(5, t) = P(X <snY< t) = Fx(S)Fy(t).

If Ais some event with non zero probability,

Fxia(s) = P(X < s]A) = P(X <snA)/P(A).

If X and Y has joint p.d.f. fx y with non zero marginal
density fy, then fx|y_,(s) = fx,v(s,a)/fy(a).

If A; are disjoint events with non zero probabilities, B C R,
P(X € BlU;i Ai) = 3_,(P(A)P(X € B|Aj))/ >_; P(Ai).

If Y has p.d.f. fy, A C Rsuch that P(Y € A) >0, Bisa

random event, then
P(B|Y € A) = fA fy(s)P(B|Y = s)ds/P(Y € A).



Special random variables

» Discrete: Takes on countably values, has p.d.
» Continuous: has p.d.f.

2 random variables X and Y has the same distribution iff they
have the same c.d.f., or for any A C R, P(X € A) = P(Y € A).

Random variables with the same distribution are NOT necessarily
the same.



Special Probability distributions

» Bernoulli distribution: (1) =0, f(0) =1—#.
» Binomial distribution (sum of iid Bernoulli):

)= (1) ooy x=o01.n
» Negative Binomial distribution (waiting time for the k-th

success of iid trials): f(x) = ( )/i: 1 > 0k(1 — )<k,
x=k,k+1,.... When k =1 it is the geometric

distribution.

» Hypergeometric distribution (randomly pick n elements at
random from N elements, the number of elements picked
from a fixed subset of M elements)

aw=(¥><ﬁiy>(7>{



Poisson distribution (limit of binomial as n — oo, nf — \)
f(x) = e /x!.

Multinomial distribution

n

f(Xla-”Xk): )91(1.”0;?'2’,)(,-:”, 9,9,:1

X1y ey Xk
Multivariate Hypergeometric distribution
-1
M; N
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Special Probability Density Functions

Ma) = [y~ x> te ™ dx. (k)= (k—1)! when k=1,2,....
1/(b—a) x€(a,b)
0 x & (a,b)

(x=p)?
2052 .

» Uniform distribution: f(x) = {

» Normal distribution: f(x) = m}ﬂe

» Multivariate Normal distribution: x € RY, ¥ positive
definite d X d symmetric matrix,
f(X) = (27T)—d/2|z‘—1/26—%(X—M)T271(X—M)

» 2 distribution d: degrees of freedom. Squared sum of d

%X% e 2 x>0
normal distributions: f(x) = ¢ 2 /21(d/2)

0 x<0



%efx/e x>0

» Exponential distribution f(x) = {O <0
X >

Ba%(a)xo‘_le_x/ﬂ X > 0
0 x<0
> Beta distribution: (conjugate prior of Bernoulli distribution)
MNa+p) _a— _
f(x) = e =07 xe(01)
0 x ¢(0,1)
Example: If the bias of a coin p has a uniform prior in [0, 1], after

n flips there are a heads and b tails, the posterior will be Beta
distribution with «a = a+1, S =b+ 1.

» Gamma-distribution: f(x) = {




Sample mean and sample variance

Xi i.i.d. (independent with identical distribution)
> Sample mean: X =1 X;
» Sample variance:
§? = 7k 306 — X2 =
Properties:
> E[X] = E[X]
> Var(X) = lVar(Xl)
> vk )(X E[X1]) — N(0,1) (Central Limit Theorem)
> E[S?] = Var(X1)
Assuming X; ~ N (p1, 02):
» X and S? are independent.
> X~ N, %)
> ('7;712)52 ~x%(n—1)

L (3, X? — nX°).



Proof of (";—12)52 ~x*(n—1)

(n—1)82 =3 (X —X)? =) ((X? — E[X}]) — (X — E[X]))?

i i

= D _(X? — E[Xi))? = n(X — E[X])?

1

Now divide by o2, the first term is x?(n) and second x?(1).



x? distribution

Definition: X; independent, A/(0,1), then Y7, X; = x?(n)
PDF: i
__ 1 [ FEax/2
F(x) = { 2N 7 € x>0
0 x<0
Calculation of PDF:

d —n/2 _— -X-2 2
fem(r) = dr/z,-x.2<r(27T) 2= Eix 2y, . dxp

= (27?)_"/2e_r/2—j Vol(B(\/r))
r
Where B(x) is the ball of radius x.



t distribution

Definition: X and Y independent, X ~ A(0,1), Y ~ x?(n), then

X
NeZE t(n).
By LLN, when n — oo this converges to N(0, 1).
PDF:




Calculation of PDF of t

o ps\yin
fins) = P <5V = 5 [T [

1 2 1 n—2
d —x?/2 > a—Y/2
art 20r(nj2)” " €

o 1 2 1
_ dvr/ —s°y/2n == —y/2
/o I e () €

[e.o]

1 = :
— dyy 7 e Y(1+5)/2
V2mn2n21 (n)2) /o Y

Now let z = y(1 + %)/2 and it's done.



F-distribution

Definition: U and V independent, U ~ x?(m), V ~ x?(n), then
Yim F(m,n)

V/n

CbF.

f(x) = ré)g(é)(%)"’/zxm/z‘l(lﬂt mx)"2 x>0
0 x <0
Strategy for calculating the PDF of Y = g(X;)
1. Find joint pdf of X;
2. Write down the CDF of Y as a probability, hence, some
integral of the pdf of X;
3.

Differentiate the CDF of Y.



Probability Review

» Probability, cdf and pdf for continuous random variables:
> Probability to cdf: Fx(t) = P(X <t)
> cdf to pdf: fx(t) = < Fx(t)
> pdf to probability: P(X € A) = [, fx(s)ds
Probability, cdf and pd for discrete random variables:
> Probability to cdf: Fx(t) = P(X <t)

> cdf to pd: Fx(t) => .. gx(s)
> pd to probability: P(X € A) =3 _, gx(s)

v

» Joint cdf/pdf/pd, independence, conditional probability.
> Expectation, variance, covariance

» LLN and CLT
>

Special distributions: binomial, uniform, normal, X2: etc.



Point estimates

Basic setting:

» F: a family of possible distributions (represented by a family
of cdf, pdf, or pd)

> 0 :F — R population parameter
> Xi,...X,ii.d. with distribution F € F

> )= GA(Xl, ..., Xp) a function of Xj, which is an estimate of
O(F), is called a point estimate.

Example: F: all distributions with an expectation, then X is a
point estimate of the expectation.



0 is a point estimate of 6.

>
>
>

The bias is E[0] — 6. 0 is called unbiased if E[f] = 6.
The variance is Var(f).

0 is called minimum variance unbiased estimate if it has
the smallest variance among all unbiased estimates.

91 and thgtag are two unbiased estimates, the relative
efficiency is the ratio of their variance. When they are biased,
one can use the mean squared error E[(f — 0)?] instead.

ﬁA is called asymptotically unbiased if bias converges to 0 as
n — oo.

A is called consistent if B converges to [ in distribution.



Review of definitions regarding point estimates

6 is a point estimate of ¢
» Unbiased
» Minimal Variance Unbiased
> Asymptotically unbiased
» Consistent
Properties:
» Minimal Variance Unbiased can be verified via Cramer-Rao
> I\/IeaAﬂ squared error A . . A
E[(6—-0)%] = E[((6—E[6])+(E[0]-0))*] = Var(0)+(E[6]-0)

» Mean squared error — 0 implies consistence:

P(|é—9\>6)<w

€

But consistence does not imply mean squared error — 0.



Maximal Likelihood Estimate (MLE)

§uppose Xi ~ F(0), i.i.d., observation is xi, ..., Xk, then
0 = arg maxg L(x1, ... xk, 0).
» When F is a continuous distribution with p.d.f. f(x,#), let
L(x1,...,xk,0) =1, f(xi,0)
» When F is a discrete distribution with p.d. g(x,0), let
L(xi,...,xk,0)=1]&(xi,0)
When there are multiple parameters, we can get their MLE by
taking arg max to all of them altogether.

Sometimes we maximize log(L) (log likelihood) instead of L, which
is equivalent.



The basic idea of Bayesian statistics

> Input:
» Some (possibly vector valued) random variable © with given
distribution (prior)
> Some (possibly vector valued) random variable X with known
conditional distribution conditioned at a value of ©,
X ~ F(X|©). (observable)

» Output: the conditional distribution of © conditioned at a
value of X (posterior) © ~ F(O|X).



Example:
» Prior Y ~ Bernoulll(loo)

» Observable X;, X5 conditionally i.i.d. when Y =y, and their

conditional distribution is Bernoulli with p = 1+12y.

Calculation of the posterior:
P(Y =1, X1, X2)
P(X1, X2)
P(X1, Xo| Y =1)P(Y =1)
" P(X1, XY = 0)[P(Y = 0) + P(Xy, Xo|Y = 1)[P(Y = 1)
(9/10)X1+X2(1/10)2—X1 X2 x L

P(Y =1|X1,X2) =

T (9/10)X%HX%:(1/102 X% x L+ (1/10)%+%:(9/10)2 X1 %2 x

9X1 +Xa

T 90Xt 199 x 2 XX

So, for example, if we know both X; takes a value of 1, then the
probability of Y =1 is 9/20.



We can answer many questions using posterior, for example:

» What is the probability of © taking value in A given X7

> What is the “most likely” value of ©7
Omap = arg maxs fg|x(s), where f is p.d.f. when O[X is
continuous and p.d. when it is discrete. This is called the
maximum a posteriori (MAP) estimate.

> What is the average value of ©? & = E[©|X]. This is called
the Bayesian point estimate with L2 lost.

» In general, let /(-,-) be a lost function (a positive function
such that /(a, a) = 0), then © = arg ming E[/(©, 0)|X] is
called the Bayesian point estimate.



MLE vs. Point estimate using Bayesian statistics

MLE:

» Input: Assumption on the distribution of X: X ~ F(«a). A
likelihood function L(X, «).

» Output: dpe = arg max, L(X, ).
Bayesian statistics:
» Input: Prior: a ~ Fy, Conditional distribution: X|a ~ F(a).
» Calculated output: Posterior: «|X ~ F'(X)
> MAP Point estimate: & = arg max, fypha|x (@)
» [2-Bayesian Point estimate: & = E[a|X].



Input:

> u~N(0,1)

» Xj|p cond. i.id., ~ N(p,1)
Posterior:

f X.(S) _ fM,X,-(57X1,~--7Xn) _ fmxl.(S,Xl,...,Xn)
uIX; fX,-(le-an) fR mel.(t,Xl,...Xn)dt

_ [T fxjp=s(Xi)fu(s) — (2m) 5t e Li(Xi—s)?/2-52/2
fR Hi inlM:t(Xi)fu(t)dt fR(27T)_ e e~ Li(Xi—t)2/2—t2/2 44
So

X1
XNNZI !
X~ N 57

The MAP and L2 Bayesian estimate of 1 are both ji = %:J’r)l(’




Formula for Posterior

f,u|X(5) X fX|,u:5(X)fu(5)

This works for discrete p or X as well!

Example: P uniform on [0, 1], X|P ~ Binomial(5, P), then
fpix(s) o sX(1 —s)> %X .1, hence P|X ~ Beta(X +1,6 — X).



Often in practice we build “hierarchical models” by stacking
multiple layers of Bayesian and non Bayesian models together. For

example:
of ~ (o, B)

0_2 ~ r(O/,B/)
wi ~ N(0’02)
Xjj ind. ~ N (i, 0?)

How would you estimate o; and p; from the values of Xj;?

We will talk about models like this if we have more time at the end

of the semester.



More examples

0 x <0

e x>0

P(Y = n|t) = (1 — e t)e . Knowing Y, find tymap and E[t]Y].
2. a, t indep. ~ Uniform([0,1]). Xj|a, t i.i.d. ~ Uniform([a, a + t]),
find ,i'MAp.

Answer: M = max(X;), m = min(X;), then:

1. t has p.d.f. fy(x) =

t7™" 0<a<m<M<a+t<a+l1l
.
2,tX 0 otherwise

So

{t” (min(1,m) = (M=1t)) M-min(l,m)<t<1
fy1x; o

otherwise

thap = min(1, Ll(M — min(1, m)))



Review: Point estimate

» Problem: X ~ F(©), want to know unknown parameter ©.

> Solution: Build a random variable © depending on X via:
> MOM
> MLE
» Bayesian-based methods like MAP or Bayesian point estimate
» Other methods



Hypothesis testing

> Problem: want to know if the distribution of X satisfy certain
propositions (null hypothesis), for example:
» Will anyone be infected by covid-19 2 years from now?
» Will the expectation of our midterm 2 grade be better than
midterm 17
» |s the performance of a machine learning algorithm better than
random chance?

» Solution: Find a random variable Z (test statistics)

depending on X and a set A (critical region), and reject the
hypothesis when Z € A.



» (Z,A) is called a statistical test to null hypothesis Hp.
> If Ze A < Z € A’ we consider (Z,A) and (Z', A’) to be
the same test.

» If Hy completely determines P(Z € A) (simple hypothesis),
p = P(Z € A|Hp) is called the significance level.



Example 1: Suppose your grade for midterm 1 is Xi, your grade for
midterm 2 is X5, Y = X5 — X satisfies normal distribution with
variance 25. How do we test the null hypothesis E[Y] = 07

» Answer 1: Z=Y, A= (—o0,—M) U (M, o).
p=P(Y <—-MUY > M|Ho)

= P(Y < —M|Y ~ N(0,25))

+P(Y > M]Y ~ N(0,25))

* 1 2
=2 —— e /0
/M v 50w

> Answer2: Z=Y, A= (M,x), p= f;@o \/51076—t2/50dt
» Answer 3: Z=Y, A=(-M,M), p= f_MM 7\/;07642/5061,5

Which of the three is more reasonable?



Ways to evaluate a test

> Alternative hypothesis: an alternative to the null hypothesis
Hy, called H;.
» P(Z € A|Hp) is called Significance level or type | error.
» If H; is a simple hypothesis, P(Z ¢ A|H1) is called type Il
error.
» If Hy is a simple hypothesis, 1 — P(Z & AlH1) = P(Z € A|Hh1)
is called (statistical) power
> If X ~ F(0), m(0) = P(Z € Alf) is called the power
function. If Hy : 6 = 60, H1 : 6 = 61, then significance is
m(0p) and power is 7(61).
In Example 1, let Y = A/(6,25), what is the power function of the
three tests?



Example 2: Y; ii.d. ~N(0,25), Hy: 6 = 0.
Example 3: Y; i.i.d. Bernoulli distribution with parameter 6,
Ho:0=1/2.



Review

v

X ~ F(0). Null hypothesis: Hp : 8 = 6y, alternative
hypothesis H; : 60 = 6.

Statistical test: (Z,A), Z: test statistics, A: critical region
Type | error: P(Z € A|Ho)

Type Il error: P(Z & A|H)

Power: P(Z € A|H:)

Power function: 7(t) = P(Z € Alf = t)

vVvYyyvyy



Intuition behind statistical tests

If (Z,A) is a test such that the significance level is very small.
Suppose Hj is true.

It must mean that P(Z € A) is very small.

However, in an experiment we get Z € A

Hence the assumption earlier is probably untrue.

Hence Hp is probably false.



Example 2

Xii=1,...6i.i.d., Bernoulli with P(X; =1) = p.
Ho:p:0.5, H1:p=0.9.

Test statistics: Z =), X;. A=[M,6], M is an integer.
Then power function is:

6
w(p) = P(Z = Mlp) = 3 (?) pi(1— p)oi

Significance is 7(0.5) = 6% Z?:M (?)
Power is 7(0.9) = 3°%_,, (8)(0.9)(0.1)5".



> M = 6: significance=0.0156, power=0.531
> M =5: significance=0.109, power=0.886
> M = 4: significance=0.344, power=0.984

There is trade-off between significance and power. Which M to
choose depends on the purpose of the test, in particular whether
false positive or false negative would be more costly.



Neyman-Pearson test

Recall that the likelihood function is L(x, #) = fxjs(x), which is the
p.d.f. when X is continuous and p.d. when X is discrete.
The Neyman-Pearson test for Hy : 0 = 0, Hy : 0 = 6 is:

(X, {x: L(x,6p)/L(x,01) < k})



Example 2, Neyman-Pearson test

po=0.5,p1 =0.9

1

L(X17 s aX67pO) = HP()]C(l - PO)l_Xi = E

L(X1,...,X6,p1) = pr"(l —p)t %
i

—0.92i%i.0.162iX — .16 .92 Xi



Sometimes we need to consider composite hypothesis, i.e. cases
when Hy and H; does not completely determine the distribution of
X. Suppose Hy : 6 € Dy, Hy : 0 € D1, the likelihood ratio test
becomes:

. SUPpeny L(x.0) <K}
SUPgepyuD; L(x,0)
How would you do likelihood ratio test for the following examples:
» X; i.i.d. Bernoulli(p). Ho: p=10.5, Hy : p# 0.5.

> X;iid NM(p,1). Ho: p=0, Hy : p #0.

(X, {x



Review

Because (Z,A) and (Z', A') are the same test if

ZeA < Z €A, we sometimes don't specify test
statistics and critical region and just call the proposition
Z € A a statistical test.

Neyman-Pearson test: fx|p,(X)/fxjm (X) < k
Likelihood ratio test: Hy : 8 € Dy, Hy : 8 € D;.

SUPpep, fxjo(X)

< k
SUPgepyuD; fX\G(X)

Correction: type | error should be called the significance
level of a test.



Neyman-Pearson Lemma

Neyman-Pearson test has the highest power for given significance,
and lowest significance level for given power.

Proof in continuous case: Let X taking value in R”, k be the
threshold of the Neyman-Pearson test with significance «. In other
words,

/fXHO<x)<k x|y (X)dx = @

x| Hy ) =

Then its power is By = ffX‘HO(x)<k fx|H, (x)dx.
fX\Hl(X)_
Suppose another test (Z, A) has significance «, then by definition

of conditional p.d.f.,

/n P(Z € AIX)fx|h,(x)dx = a



While the power is

/ P(Z € A|X)fx|n (x)dx

_ /fwo(x) P(Z € AlX)fx i, (x)dx +/ P(Z € AX)fxm (x)dx
<k

X | Hg ™)
X |H ()= x|Hy )
= ,30 - /fX‘H ) P(Z g A|X)fx‘H1(X)dX + /'XlH (x) P(Z € A‘X)f)qu(X)dX
fX‘Hl(X)Sk x| Hy )
1 1
< fBo— K /;X\HO(X) P(Z o4 A|X)fx‘H0(X)dX + % /X\HO(X) P(Z € A|X)fx‘H0(X)dX
fX\Hl(X)Sk fX\Hl(X)>k
1 1
=Bo— P ﬁx%(x)<k x| (X)dx + ;/ P(Z € A|X)fx |, (x)dx
fX\Hl(x)_

=fo



Significance and p-value

X ~ F(Q), Hqy : 0 € Dy.
Suppose a family of statistical tests with parameter k is X € A(k).
Then:
» The significance level of the test X € A(k) is
o = supgep, P(X € A(k)|0). k < k' = A(k) < A(K').

» The p-value for x, which is an observed value of X, is

= inf sup P(X € A(k
P ke{k:xeA(k)} Qego ( ( ))

» Suppose the test X € A(ko) has significance level ap. Then
x € A(ko) (i.e. X = x results in rejection of Hy under this
test) implies that x has a p-value no larger than ap, and x has
p-value less than «g implies that x € A(kp).



Relationship between significance and p-value

Proof: Let a(k) = supyep, P(X € A(k)|0), then because
P(X € A(k)|0) is non-increasing, k — «(k) is non increasing.
Furthermore, by assumption, a(kg) = ag, and

a(k) > ag = k > ko, and the p-value for x is

= inf k
P ke{k:L?eA(k)}a()

Suppose x € A(ko), then the p-value of x is

p = infrc(kxean)y a(k) < alko) = ao.

Now suppose the p-value of x is less than «y, then there is some k’
such that x € A(k’) and a(k’) < ag. Hence, k" < ko,

x € A(k") C A(ko).



Example 1: Normal approximation for large sample

X; i.i.d., Bernoulli distribution with parameter p. Hy : p = po,
Hi : p # po. Likelihood ratio test:

[T pg" (1= po)*
sup, [1; (1 = p)t=%i =k
e (1 — po)nXiXi <
(5220 X) =i X (1 — 5 30, X)X
log(LHS) = nX(log(po)—log(X))+n(1-X)(log(1—po)—log(1-X))

Which is non positive and 0 iff X = pg. So for k close to 1 the test
should be of the form:

‘Y—po‘ > €



From CLT, if n>> 1, under Ho, \ /5"y - (X — po) has

distribution close to N/(0, 1), so the test with significance level « is

roughly |[X — po| > ®71(1 — a/2)4/ M where ® is the cdf of
N, 1). B
And the p-value for given X =X is

p=inf{a:|x—po| > d7(1—a/2) ”O(ln_po)}

=21 ([ K= o)

po(1 — po



Suppose n = 100, pg = 0.5, 60 of the X; has a value of 1 and 40
has a value of 0. We want to test if Hy : p = pg is true with a
significance level 0.05.

» Method 1: The test with significance level 0.05 is roughly

X — po| > &~1(1 - 0.05/2)/22=P) — 0.0980.

X — po = 0.1 which is larger than the threshold, hence we
should reject Hp.

» Method 2: Calculate the p-value, we get
p=201-0( /i |X — pol|)) = 0.0455 < 0.05, so we
should reject Hy.



Review

Neyman-Pearson test: fx |y, (X)/fxh, (X) < k
Likelihood ratio test: Hy : 60 € Dy, Hy : 6 € D;.

SUPgep, fxjo(X)

< k
SUPgepyUD; fX\G(X)

Significance level of a test: highest possible probability of false
positive under Hp. It is a increasing function of the threshold
k.

p-value of a possible value of X: the significance level of the
test with the lowest threshold that rejects Hp.
How to test Hyp with given significance level a:
» Method I: Find the threshold k corresponding to «, test the
observed value of X using threshold k.

» Method Il: Find the p-value corresponding to the observed
value of X, compare it with a.



Example 2: single sample t-test

X; i.i.d. N(p,02), here i and 02 are both unknown. Hp : 1 = 0,
Hy:p#0.
Likelihood ratio test:

sup,2(2ma2) "2 ], e~ X7/27 e
SUPM,U2(27T‘72)_"/2 I e—(Xi—p)?/202 =

Do the optimization we get the optimal x is X, the optimal o2 in
denominator is %ZIXI?, and the optimal ¢ in the numerator is

%Z,—(X;—YY = %ZIX,? -X (Recall examples we did in MLE).



L) is a decreasing function of t2.

Where h(t) = g |Og(1 — m

X
So the LRT must be of the form ‘\/ST/n > M. From the
definition of t-distribution, we know that if
Xi ~ N(0,5?)

Then
(n— 1)52/(72 ~x(n—1)
X/y/o2/n~ N(0,1)

So
X _ X/+\/o2/n ~ t(n—1)
VS /n /((n—1)S2/0?)/(n—1)




For any observed value x;, let X and s? be the sample mean and
sample variance, then the largest threshold M which yield positive
result (which corresponds to the smallest k) is:

\/s%/n

The p-value, which is the significance level of the test with
threshold My, is:

M0:|

Where T is the cdf of t(n—1).



Example 3: one sided single sample t-test

X; i.i.d. N(p,02), here i and 02 are both unknown. Hp : 1 <0,
Hy:p>0.
Likelihood ratio test:

SUPM§o702(27rU2)*”/2 I1; e~ (Xi—n)?/20° o
SUPM,U2(27T02)—"/2 Hi e—(Xi—p)?j202 =

The likelihood ratio is 1 if ) ; X; <0, and the same as Example 2
if >°; X; > 0. Hence, the LRT is of the form:

> Mand X >0

‘ X
\V/S?/n

Hence -
X
2/

> M

(@)

S



Hence, for given significant level o« we let
M=T7"11-a)

For given value x; we can calculate the p-value as
X
p=1-T(—==)
\/s?/n

Where X and s? are the calculated sample mean and sample
variance.




Some conceptual questions

> Suppose a statistical test with significance level 0.05 is used
to test covid-19, null hypothesis being not having covid-19. If
your test come out positive, what do you know about your
probability of getting covid-197

» Let p be a function that sends observed value X to a p-value.
What can you say about the c.d.f. of random variable p(X)
when Hy is true?



Midterm 2 Review

» Regular OHs: 10-11 am Tu Wed Fr, Extra OH: 5-8 pm April 6.

P> Please make sure you understand the examples fully before
doing homework.

» If you find a homework problem too challenging, write down
your thought process and where you get stuck, and make sure
to read the posted solution after it is due!

» All homework grades lower than your final grades will be
replaced by your final grades.

» Please tell me to stop if there is anything you do not
understand.

» April 10 is the last day to drop the class.



Midterm 2 review

» MOM

» Bayesian-based point estimates: expectation of posterior,
MAP, etc.

» Neyman-Pearson test (the proof that it is optimal will not be
tested in the exam)

» Likelihood ratio test

» Significance, power, and p-value



How to read examples and do homework problems

When reviewing the examples, please do not focus on the

calculation part and focus on the concepts and ideas.

For example, this is part of the HW7 due yesterday:

0 x <0

ce™ ™ x>0

> let Hp:c=1 Hi:0<c<1lorc>1. Find the likelihood
ratio test.

» Find the threshold in the likelihood ratio test above that
makes type | error o equals 0.01.

Xi, i=1,2,3 are i.id. with p.d.f. fx,(x) =



Relevant examples from the lectures
LRT for X; i.i.d. N(p,1). Ho:p =0, Hy : u # 0.
Likelihood under Hy is

i X7
e X2 = (27r)_”/2e_ 2

1
Lo = —
==
maximum likelihood under Hy or H; is

—(Xi—p)?/2

1
L1 = sup —c€
1l

>i(XG—n)?
_n/ze_f“

= sup(2m)
w
i X2—(2; X)?/n
2 I e a—
So ,
i Xi)
LO/L]. = e_ 2n

So the likelihood ratio test must be of the form | > . X;| > C.



Strategy for the HW problem

So, to find the LRT, find the maximal likelihood (here we are
dealing with continuous random variables, so just the joint p.d.f.)
under Hyp and Hg or Hy respectively as Lo(X1, X2, X3) and

Ll(Xl, Xz, X3), and the test is Lo(Xl, Xz, X3)/L1(X1, Xz, X3) < k.
For each k, the type | error is by definition

a = P(L1(X1, X2, X3)/La(X1, X2, X3) < k|Ho)

Recall that to get probability of a continuous random variable on
certain range one integrate its pdf. So here integrate the joint pdf
of X1, X5 and X3 on the region defined by the LRT.



Solution to this HW problem

LRT:

Lo e X1 e . e

— = <k
Ly sup.ce=X1.ce=X2.ce=Xs —

So
3+ 3(log(X) — X) < log(k)

Let a < b be the two numbers such that ae~? = be™?, and

e~ (b tx3) s dxydxs +
X1,%2,X3>0,x1+x2+x3>b e_(X1+X2+X3)dX1dX2dX3 = 0.01, then the

threshold k is a3e3732. You will get full credit if you write up to

this or something equivalent to this.

One can further simplify this statement by doing the integration,

for instance, and get something like:

le X2,x3>0,x1+x2+x3<a

1
~e 3P(9b% + 6b + 2) = 0.99

1
~e3%(9a% + 6a+2) — 5

2

_ .3.3-3a _ ;3.3-3b
k = a’e = b’e



Practice Midterm 2

1. X is a random variable with uniform distribution on [0, 1], Y;,

i =1,2i.i.d. conditioned at any value of X, and are of the
distribution /(0,1 + X).

> Write down the joint p.d.f. of X, Y7, Y>.

» Find the conditional distribution of X conditioned at Y; =1,
Y, = 2.

» Find the conditional expectation of X when Y; =1, Y, =2.



Answer:

> fX7Y1,Y2(X7y17y2) =

0 X g [07 1]
@2r(1 + x))"Le0F+3)/+2)  x e 10,1]

0 x ¢[0,1]

» fX|Y1=1,Y2:2(X) — (27r(1+X))_16_5/(2+2X) x e [O 1]

f01(27r(1+$))_1 875/(2+25)d5

Jo (2m(14s)) ~'se=®/(+2)ds
Jo (2n(1+5))~Le=®/(42)ds




2. X;, i=1,...,niid. with p.d.f. f(x) = ae 2?*~bl_Find the
estimate of a and b using method of moments.

Answer:
bl > X
= 52X
1
A 1 1
b? =) X?
+2§2 nZ !
So

1
o ¢ 25X XF — (X X)?)



3. X;, i =1,2,3i.i.d., Hp is that they are standard normal, H; is
that they are uniform on [0, 1].

» Find the Neyman-Pearson test.

» What is the smallest possible type | error for a
Neyman-Pearson test that has non-zero power?

Answer: The Neyman-Pearson test is:
1 2
(2m)32e 22X < k X € [0,1]
To make sure that the power is non-zero, we must let

k > min (27r)_3/2e_%2ixi2 = (2m)~3/2e73/2
Xi€[071]



Hence the type | error

o = / (277)’3/2e’% 20 dxy dxp s
X,‘G[O,l],ZiX,?272 log((2m)3/2k)

decreases as k decreases. The function being integrated is
bounded, and the region of integration has area that goes to 0 as
k goes to (27r)_3/2e_3/2, hence the type | error can be as close to
0 as one wants.



4. X;, i=1,2,...ni.id. and are discrete random variables taking
value on {—2,—-1,1,2}. Ho: P(X; = n) = P(X; = —n) for all n,
Hi: P(X; = n) # P(X; = —n) for some n.

» Find the likelihood ratio test.

» Find the p-value for the observation: X; = —1, X; = —1,
X3=-2,Xa =2

> Find a sequence X; with the smallest possible n and a p-value
less than 0.05.



Answer: Let n_», n_1, n; and ny be the number of X; taking value
at —2, —1, 1, and 2 respectively. The likelihood ratio test is:

SUPp4g=1 (P/2)n‘2+"2 (q/2)"-1tm
Supa+b+c+d ahn-2 bnfl ch dn2

<k

In other words,

n_»+nm
2

n_ip+m

(n—2 + n2) log( 5 )

) + (n_1 + n1) |Og(

—n_2log(n—2) — n—1log(n_1) — nylog(ny) — n2log(n2) < log k
Here Olog0 = 0.



When n=4,n_>=1 nmn =1, n_1 =2, ng =0, the left-hand-side
of the inequality above becomes —2log?2. So the smallest possible
k is 1/4. Now we find out the possible cases where the likelihood
ratio is no larger than 1/4: Assuming

p/2 = P(X; =2) = P(X; = —2),

q/2 = P(X, = 1) = P(X, = —]_).

1. If ny 4+ n_1 = ny+ n_y = 2, the likelihood ratio is 1/4 if one
of the nj is 2, 1/16 if two of them are 2. Total probability is
(P/2)2(Q/2)2 1|‘1l:2| 2-2+ 22. 2?7; = 72([)/2)2((]/2)2-

2. f m+n_1=1, np+ n_o =3, the likelihood ratio is no larger
than 1/4 iff one of the n; is 3. Total probability is
(p/2)°(q/2)-2-2-4.

3. Similarly, if ny +n_1 =3, mo+n_» =1, we get
(p/2)(q/2)*-2-2-4.

4. Lastly, if no+n_o =4 or n; + n_1 = 4, the only possibility for
getting likelihood ratio less than 1/4 is if one of the n; is 4.
So, total probability is ((p/2)* + (q/2)*) - 2



So, total probability is ngzqz +(P3q + pq®) + %. The minimum
is taken at p = ¢ = 1/2, so the p-value is

9/32+1/8+1/64 = 27/64.

For every n, it is evident that the smallest k is 27" and it is
obtained when either n; or n_7 is 0, either ny or n_» is 0. Hence,
the total probability for that is

S 22(7)(p/2) (a/2)" 7+ 2(p/2)" +2(a/2)" =

22(p/2 +q/2)" = 2(p/2)" — 2(q/2)" = 27" = 27" (p" +q").
So the maximum is obtained when p = g = 2, and is

272 _ 27202 Hence the smallest n is 6. We can pick this
sequence 1,1,1,1,1,1, the p-value is 27 — 276 = 3, < 0.05.



Example: X;, i = 1,2 independent and normal, with same variance
and expectations p and 2 respectively.

» If variance is 1 and p has A/(0,1/)) prior, what is its
posterior?

> Ho:pu=0,and Hy : p # 0. Find the likelihood ratio test and
p-value.



Answer:

> fH|X;(t) X e—tQ)\/2e— Zk(Xk_kt)Q/z, SO ,U,‘X, ~ N(X15T|—2)\X2 ) 5-{-%)

(this prior is call the prior for ridge regression or L2
regularization)

> LRT:
sup,, (2mo?) e X X/
5 2 2 é k
supo,u(2ﬂaz)71e7 Dok (Xe—kp)? /20
X2
log(LHS) = (_|og(2k2k) )
DXk —k (%))2
—(— log( > )—1)
So the LRT is of the form:
>, kX
2klX — K (k?k>)2 (2X1 — Xz)?

Sk Xk (X1 1 2%)2 + (2X1 — Xo)2 =



Which is equivalent to

(2X1 — X2)?
- - <M
(Xl + 2X2)2 -

Where M /(1 + M) = C. It is easy to see that under Hp, the test

% ~ F(1,1). So the p-value when X; = xi,
(2x1—x2)?

Xo=x2is p= Fp; ((X1+2X2 )-

statistics




Midterm 2

Mean and Median: about 70

1. X;, i=1,2,...,n are i.i.d. random variables that satisfies
normal distribution with expectation A and variance 1 + \.

» Find the MOM estimate for A. (10 points)
» |s the MOM estimate for A biased or unbiased? (10 points)
Answer: Apvom = %ZIX;. Yes.



2. ¢ has uniform distribution on [1,2], X;, i = 1,2, are
conditionally i.i.d. for given value of ¢, and has conditional p.d.f.
of the form fx(x) = ce—2c.

» Find the conditional p.d.f. of ¢ when X; =1, X, = —2. (10
points)

» Find the MAP estimate for ¢ when X1 =1, Xo = —2. In
other words, find the value ¢yap that maximizes the
conditional p.d.f. you calculated above. (10 points)

» Find the conditional expectation of ¢ when X; =1, X, = —2.
(10 points)

0 x<lorx>2

Answer: fC|X1:1,x2:72(X) = 108x2e 6%
Fe—b-gsemz L <X <2
6le 6—373e"12

¢map = 1, and the conditional expectation is go"——775"—1>.



3. Random variable X has p.d.f.
f(x) = \/% ((:e_(’<+1)2/2 +(1- c)e_(X_1)2/2>. Here 0 < ¢ < 1.
Let Hp: c=0, Hy : ¢ > 0.

» Find the likelihood ratio test. (10 points)

» If the threshold for likelihood ratio in the test above is set to
be 0.5, calculate the significance level. (10 points)
. —(x—1)2/2

Answer: LRT is supc(ce*(X+1(;2/(2+(i)l—/c)e*“*l)z/2) < k. In the
denominator, the optimal cis 1 if x > 0 and 0 if x < 0. Hence, if
k =1 then x can be anything, if 0 < k < 1 then x < %Iog(k). If
k = 0.5, the significance level is F(—1 — log(2)/2) where F is the
c.d.f. of standard normal.




4. X;, i =1,2 are i.i.d. random variables taking values in {1,2,3}.
Null hypothesis Hy is P(X; =1) = P(X; =2) = P(X; =3) = %
and alternative hypothesis H; is P(X; = k) = k/6 for k = 1,2, 3.
» Write down the Neyman-Pearson test for this problem. (10
points)
» Calculate the p-value for X; = X = 3. (10 points)

» Find the threshold for the Neyman-Pearson test that
minimizes that sum of false positive (probability of rejecting
Ho when Hy is true) and false negative (probability of not
rejecting Ho when Hj is true). (10 points)



Answer: Likelihood ratio for choices of possible values of X; are

Xo\Xq
1

1
4
2 2
3 4/3

2

2
2
1
/

3

3
4/3
2/3
4/9

So the N-P test for different threshold r, as well as the type | and Il errors, are:

threshold
r<4/9
4/9<r<2/3
2/3<r<1
1<r<4/3
4/3<r<2
2<r<4
r>4a

test

0
X1 =X =3
Xi+X >5

X1 >1,X%>1
X1+ Xy > 4
X1+ X2 >3
everything

type | error
0

type Il error

1/9 3/4
1/3 5/12

4/9 11/36
2/3 5/36
8/9 1/36
1 0

The p-value for X; = Xy = 3 is 1/9, and the threshold that minimize the sum of two types of errors is in the

range [2/3,4/3).



How to use a given statistical test

Some common hypothesis testing problems have well known tests,
which are usually either LRT or approximated LRT. We will
illustrate via examples how to use some of the tests in Chapter 13
of the textbook.

Usually a statistical test is stated as follows:

Testing Hp against H;, test statistics z = z(X), critical region
of size (significance level) a is z € D,,.



For example, for the One sample, One sided t-test:
X1, ... Xpy iiid. ~ N(p,0?). Testing < 0 against p > 0.

. e X . . —1/1 _
Test statistics t = NGIT Critical region t > T~ (1 — «),

where T is the cdf of t(n—1).

To make use of it, say n=05 and X; are —1,0,1,2,1. The t
statistics can be calculated as 1.1767. T-1(1 — 0.05) = 2.1318, so
we can not reject Hy when significance level is chosen to be 0.05.
The minimal « such that 1.1767 is in the critical region is

1— T(1.1767) = 0.1523, so the p-value is 0.1523.

If X; are 0,1,2,3,4 however, t = 2.8284 > 2.1318, so reject Hy
under significance level 0.05. The p-value is 0.0237.




Sometimes we make use of a test indirectly by transforming the
observed random variables: from some observed random variables
X, we build random variables Y, and use a known test on Y. For
example: X; i =1,...10i.i.d. N(p1,02), Y;, i=1,...10, i.id.
/\/(,ug,a%), Xi and Yj are all independent. Want to test if 13 = po.
One way to do so would be to consider Z; = X; — Y;, which are
i.i.d.normal, and test if their expectation is O.

This approach usually won’t give us the most powerful test as we
are losing information during the transformation. However in many
situations this is good enough.



Some commonly used statistical tests

X;iid. i=1,....,n ~N(u,oc?).
» Test y = pg against pu # pg. t = \/% critical region
[t] > th;—l)(l — a/2), where Fy,_y) is the c.d.f. of t(n—1).
> Test u < o against p > g, same t as above, critical region

t> thi—l)(l —a,n—1).

> Test 02 = 03: X2 =(n 1)52/00, critical region
¥2 € (~o, F—(n y(e/2)0 [F iy (@ — a/2),00)
> Test 02 < a against 02 > 0’0. X same as above, critical

region x? > FX(}, 1)( —a).

> Test o2 > a agalnst 0% < a : x same as above, critical
region x? < F (- 1)( Q).




Xi,i=1,...npiid N(u1,02), Yii=1,...miid N(ua,03),
X,', i indep
> Test for 1 = po against py # po, knowing 01 and o3.
z=——>Y ___ Critical region |z| > FN(0 1)( —a/2).

\/02/n1+o'2/n2
> If a,-z unknown but number of samples is large, can
approximate them with S2.

> a% = a% but unknown, test ©; = uo against u1 # uo:
X-Y

(M —1)S2+(np—1)S2
\/(1/n1 * 1/”2) ' ( - ’71{’(‘I72222 Y)

Critical region |t| > F H(mtm—2) (1-a/2).

t =

» One sided tests are similar.



Xi,i=1,...npiid. N(u1,02), Yii=1,...miid N(ua,03),
Xi, Yj indep.
> Testing 02 = 03 against 0% # 03. f = S%/S%. Critical region
F € (0, Frn 1. 1y(@/2TUFrg, 1 1)1 — /2),00).
» One sided tests are similar.

One can check by calculation that all these tests have the
significance level a.



Pearson's 2 test
X; i.i.d. taking values at {1,2,...m}. Test for null hypothesis:
P(X =j) = €, where ej = f(j,01,...,0k). Let n; be the number
of X; taking value j. Then likelihood ratio test gives:

5UP91,...,6k HJ efj
nj S k
suPy, 5, p=111; Pj
The optimal p; is nj/n where n = 3. n;. So
ni/n n; — né;
og(LHS) = 3 ni(~log("U)) = 3" mi(~tog(1 + "))
j / j
Here é; is the MLE of e;.
Taylor expansion at n; = ne;, we get approximated LRT:

22

Z (n; —A”ej) >m
- nej

J

When n is large, and with some additional assumptions, the test
statistics ~ x?(m — k — 1).




Examples of Pearson’s x? test:
> X; takes value in {1,2,3,4}. To test if
PX=1)=P(X=2)=P(X=3)=P(X =4)=1/4,

—n/4)> _ " .
consider 2 = Zf 1 (n n%“ satisfies x2(3), so critical region

is x> > F 2(3)( —a).

» X;, Y; taking values in {0,1}, (X;, Y;) i.i.d. Want to test if X;
and Y; are independent. Consider the random variable
Z; =2X; + Y; +1, then Z; takes value at 1,2, 3,4, and this is
the same as testing if

ab k=1
R

(1-a)(1—b) k=4

MLE: 3 = @n” b= %nm Use Pearson’s x2 test, there is 1
degrees of freedom.



The final exam is open book, so there is no need to
memorize the tests! You just need to know how to
use a given statistical test.



Confidence interval

Setting: X has p.d.f. (or p.d.) f(x,6), where 6 is unknown.

» Point estimate: find a random variable 6 based on X, which
is close to 6.

» Hypothesis testing: given 6y, we can tell how unlikely it is to
get the observed value of X if 6 = 6.
» Confidence interval is related to both of these concepts:

» Conceptually, confidence interval is an extension of point
estimate: this is a random variable taking value in the set of
sets, such that @ is in it with probability 1 — «.

» Mathematically, confidence intervals are equivalent to certain
types of statistical tests.



Definition of confidence interval

X has p.d.f. (or p.d.) f(x,0), where 6 is unknown.
The 1 — a-confidence interval of 0 is a set /(X) depending on X,
such that for any possible value of 8, P(6 € I(X)|0) =1 — «.
Here, as in hypothesis testing, P(0 € /(X)|f) does not necessarily
mean conditional probability. It means the probability after we fix
the value of 6.
Equivalence between confidence intervals and statistical tests:
> If X € D(6p) is a statistical test of the null hypothesis
Hp : 8 = 8y, which has significance level a.. Then
I(X)={00: X & D(6p)} is al— « confidence interval for 6.

» If /(X) is a 1 — a confidence interval for X, then 6y & I(X) is
a statistical test of the null hypothesis Hy : 6 = 6.



In some textbooks the Cl is defined as P(0 € I(X)|0) > 1 — «,
then, they should correspond to statistical tests of significance level
< a. They will not be the focus of this course, but in case we need
to mention them in examples, let's call them CI with confidence

level at least 1 — «.



Proof of equivalence

» Suppose P(X € D(0)|0) = a. Let
I(X) = {0 X ¢ D(6)}

then
P(6 € 1(X)]0) = P(X & D(6)]0)
=1-P(XeD®))=1-a
» Suppose P(6 € (X)) =1 — a. Let

D(6o) = {X : 6o & 1(X)}

Then
P(X € D(0)[6) = P(6 & 1(X)|0)

=1-P(0 € I(X)0) =a



Example 1

X normal distribution with expectation p and variance 1. Find the 0.95
confidence interval for p.
Likelihood ratio test for Ho : o = po against Hi @y # po:
e~ (X—10)?/2 r
sup, e~(X—w?/2 =
The optimal p is X, so the LRT is

X — o] > /~2log(K)

Let ® be the c.d.f. of standard normal distribution. The significance level is the
probability of success under null hypothesis, and under null hypothesis, X — o
is standard normal. So,

a=2(1 - o(y/~2log(k)))

So the test
|X — po| > &7(0.975)

Is a test with significance level «, the confidence interval is

I(X) = {p:|X —p| <710.975)} = [X — & (0.975), X + &~ 1(0.975)]



One sided confidence interval
Sometimes we want the confidence interval to be one sided, like
I = [a(X),00). The statistical test associated to it should be
mu < a(X), in other words, it should only reject null hypothesis
= po if o is too small. Hence, let's consider Hy : pn = po and
Hi : i > po, then the LRT becomes

ef(X7H0)2/2
X2 =

k
SUPL>po

So the optimal p is pg if X < pg, X if X > pg. So the test is
X — po > +/—2log(k)
When k < 1, and everything when k = 1. So
a=0.05=1—d(\/—2log(k))

X — po > 71(0.95)
I(X)={p: X —p<d710.95)} =[X — d71(0.95), 00)



> As an exercise, read Chapter 11 and Chapter 13. For every
statistical test in 13.2-13.6, find the corresponding confidence
interval, if there are any, from 11.2-11.7.

» True or false: suppose based on the statistics up to today, the
reproductive number Ry of covid-19 has a 95% confidence
interval [2.1,2.5]. Then the probability of Ry being between
2.1 and 2.5 is 0.95.

» True or false: suppose after the covid-19 outbreak we found a
very good model for estimating the Ry of an epidemic, and
this model gives a 95% confidence interval. Then, the
probability of Ry lying in this confidence interval is 0.95.



Example 2

X1, Xz i.i.d. with uniform distribution on [a —1/2,a+ 1/2]. Find
d such that [X — d, X + d] is a 95% confidence interval, and find

the corresponding statistical tests.
X has p.d.f.

00 = 0 xdla—1/2,a+1/2]
XU \alx—al xela—1/2,a+1/2]

Because a € [X —d, X +d] iff X € [a—d,a+d],
o - o a+d
0.95 = P(a € [X—d, X+d]|a) = P(X € [a—d, a+d]|a) = / fie(s)ds
a—d

Sod=1/2—4/1/80. The test for Hy: a = ap is
a0 <X —1/2+/1/80 or ag > X +1/2 — /1/80.



Remark: Bayesian analogy of hypothesis testing and
confidence interval

One can create some analogy of hypothesis testing and confidence
interval under Bayesian statistics as well, which is conceptually
much simpler but completely different from the ones we learn in
the non-Bayesian setting:

» Recall that the output of Bayesian statistics is the posterior,
i.e. conditional distribution of # conditioned at X.

» For a hypothesis H : 6 € D, we can calculate its probability
under this posterior P(6 € D|X), and reject it when this
probability is small.

» The 1 — a-credible interval is J(X) such that
PO e J(X)X)=1-q.

This slide will not be in the exam.



o



Review of LRT, significance level, p value
Likelihood ratio test:
X has p.d.f. (or p.d.) f(x,0), Hy: 6 € Dy, Hy : 0 € D\Dy.
The LRT is:
Lo(X)/L(X) < k
Where
Lo(X) = sup f(X,0),L1(X) = sup f(X,0)
0Dy

And k is an arbitrary threshold parameter. The significance level is

a = sup P(Lo/L1 < k|0)
0e Dy
For X = x, we find the smallest k that rejects Hp, which is
km = Lo(x)/L1(x). The significant level for the LRT with
threshold k,, is called the p-value for x:

p= sup P(Lo(X)/L1(X) < knl0)
6cHy



0 x ¢ [0,1]
1+c(x—1/2) xelo,1]
ce[-2,2. Hy:c=0, Hi:c#0.

Example: X has p.d.f. f(x) = {

Lo(X) = 1 X€[0,1]7L1(X): 1+2[X—1/2] Xe[o0,1]
0 X¢[0,1] 0 X ¢ [0.1]

1/(1+2[X —1/2]) < k
(X —1/2[ > 1/(2k) - 1/2

If k =2/3, the above becomes |X —1/2| > 1/4. Under null
hypothesis X is uniform on [0, 1], so the significance level is
a=P(X—-1/2|>1/4)=P(X €[0,1/4] U [3/4,1]) =1/2.



If X =2/3, the minimal k, kp,, satisfies
1/6 =1/(2km) — 1/2
So the LRT with threshold k,, is:
|X —1/2|>1/6
The significance level for this test is
ap, =2/3

And the p-value is
p=ap, =2/3



Review for ClI

X ~

>

>

F(6).

Definition: An Cl with 1 — « confidence level is a random set
1(X) depending on X, such that P(6 € I(X)|0) =1—« .

If there is a statistical test for 8 = 0y with significance level «
of the form X € D(6p), then I(X) ={0: X & D(6p)} is a
1—aCl

If (X)isal—a«aCl 6y ¢&I(X)is a test for § = 6y with
significance level a.

Sometimes we want /(X) to be one-sided, e.g. of the form
[A(X), 00). Hence the corresponding statistical test must be
of the form 0y < a(X). In other words, the null hypothesis
can be rejected is only if 8y is too small, i.e. when 6y < 6.
Hence the power function of the test must be no more than «

on (—o0, 6p], and one can pick the alternative hypothesis as
Oy < 0.



In practice we often use the following definitions, which will NOT
be in the HW or exam:
X ~ F(0).

» Definition: An Cl with confidence level bounded by 1 — « is a
random set /(X) depending on X, such that
POel(X)0)>1—a.

> If there is a statistical test for 8 = 6y with significance level
< « of the form X € D(fp), then I(X) = {6 : X & D(6p)} is
a Cl with CL bounded by 1 — a.

» If /(X) is a Cl with CL bounded by 1 — «, 0y & I(X) is a test
for 8 = Oy with significance level < a.



Example 1: normal approximation of binomial distribution

X ~ B(n,p), n >>1, p not too close to 0 or 1. Want Cl of p.
From what we learned some weeks ago, we have an approximated
LRT based on CLT which says that the test for p = py against

p # po with significance level « is

X/ pol = (| PUP) 011 ap2)

Where ® is the cdf of standard normal.
So the approximated 1 — « Cl is

(p:1X/n—pl < /P2l 010 - 02)) = [or. o
Where

X/n—py = ”1(1;”1) oY1~ a/2)

pr—X/n= "2(1”_”2) oY1 - a/2)



Because n >> 0, p1, p2 = X/n, we have
pr o] = X0 — | S 07 (1 - a2)

X/n+ ni; LO7Y(1 — o/2)]



Example 2: Exponential distribution

—CX > 0
X has p.df. f(x) =4 ° =" Find the one sided Cl of the
0 x<0
form (0, A].
LRT with Hy: c =¢p and H; : ¢ < .
COG*C()X

<k

SUP <, CE~X

If X <1/cythe LHS is 1, if X > 1/cp, the optimal ¢ in
denominator is 1/X, and we get

log(co) — Xcp < log(k) — log(X) —1

coX — log(X) > log(co) + 1 — log(k)



The LHS is an increasing function, so the test must be of the form
X > M. If we want the significance level to be a,

a=P(X >Mc=q)= /MOO f(s)ds

So M = —log(a)/cp. The one sided Cl is now

{c: X < —log(a)/c} = (0, - log(a)/X]



Example 3: Making use of the t-, -, F- ... tests

Suppose there are 2 independent i.i.d. normal samples X;,
i=1,...n, Y j=1,...n, with variance 03 and o3 respectively.
Want the one sided Cl of 02 /03 of the form (0, A].

Ho :0%/03 =r, Hi:0%/03 <r. Let Y/ = r*/2Yj, then the test is
for Var(X;) = Var(Y]) against Var(X;) < Var(Y]), use one sided
F-test with significance level « is:

S%/S% = S3/(1S}) < Fely 1 ny(@)



SoClwithCL1—-a«ais
{r: 5)2</(r552/) > Fl;(%u—l,nz—l)(a)}
Sk

’ 1
S%FF(nl—l,nQ—l)(a)

=(0 ]

In the textbook they used the relationship

—1 -1 _
FF(nl—l,ng—l)(a) = (FF(ng—l,nl—l)(l - a)) '
The Cl for other tests are analogous.



More approximated Cl via CLT

When n; >> 1, np >> 1, CLT allow us to do normal
approximation for the y? distribution. This can also be used to
derive approximated Cl for the ratio of variance:

By definition, x?(k) is the squared sum of k standard normal, so
CLT tells us, if X ~ x?(k), when k — oo, XT;TI: — standard
normal.

ny — 1)52
(m = DX 2) X~y (m 1)
01



So
(”1 - 1)(5x 1)

— N(0,1
2”1 2 ( )
Similarly
—1)(5¢ — o3
o520 — 2
Hence the distribution of S% — rS2 is approximately
20 203
2 2 1 2
N (o1 r2’n1—1 n2—1)
25%  2r3Sy
~ 2 2 X Y
NN(U]. r27n1_1 n2_1)

So the test is




You can now use this to get a corresponding approximated Cl
(0, rm], where

25%  2r2Sy
n — 1 ny — 1

Sy —rmSe =071 -q)

Review for statistical testing and Cl:

» Find statistical test and finding CI are equivalent.
» Common ways to find a statistical test:

» Neyman-Pearson Lemma

» Likelihood ratio test

» Use known tests

» Transform the random variables then use known tests



Resampling techniques

If X; i.i.d., distribution has some parameter 6, n >> 1. Suppose,
via CLT or some other means, we can get a point estimate 0 such
that its distribution converges to some N(,02) as n — oo. Then,
one can get Cl for 6 by estimating 6 using {Xi,...Xn},
{Xm+1,.-.,Xom}, ... and do t-test for the resulting i.i.d. normal
random variables.

Some commonly used resampling techniques:

» Bootstraping, bagging
Jackknife
Cross validation

>
>
» U-statistics
>



Linear Regression

Setting: x1,...X, real numbers, Yi,...Y, independent,
Y; ~ N(cxi, 02). How do we estimate ¢ and ¢2?



(1) MLE for ¢ and o

Likelihood function:

L= H fy.(Y;) = (2mo?)~"/2e™ ZiYimex)/(20%)
log(L) = (Iog(27r) + log(o 202 Z — cx;)?
0 | 2 -2
87 og = 2 55 Z( X, i CX
2 D, X,Y,
MLE =
Z
9 log(L) = Z — cXj)
002 gl = 20’4 I
A 1

ol MmLE = EZ(Y — emLExi)’ = Z Y? - (ZX:'Y:‘)2/ZX,'2)

i



(2) Prior on ¢, knowing 0% = 1

Suppose 02 = 1, ¢ has a prior N'(0, \).
Posterior will be proportional to

g(c) = —o—e /N (2r) /2 il Vimei /2
2T A
So vy
Vi~ N2 (52 1Y)

Zix?+1/)\’

i



(3) Prior on ¢ and o2

—QSs > 0
Suppose o2 has a prior f(s) = e 5= , ¢ has a prior
0 s<0
N(0, Xo?).
Posterior will be proportional to
2y X _c?/(2xr0?) ,—ao? 2\—n/2 = 3 (Yi—cxi)?/(202)
c,0°%) = e e 270 e i
Be0) = 2 (2r0)
MAP estimate:
S
MAP = S X2+ 1/A
. 2030:(Yi — Emarxi)® + Eyap/N)

o2map =

n+ \/n2 +8a(X (Vi — emapxi)? + Eiyap/N)

Similarly we can calculate the expectation of ¢ and o2 under
posterior distribution. It is evident that E[c| Y]] = &uap.

Jo~ do? [%_o%g(c,0?)

E[o?Y]] = = d2f 2(c.0?)
0




(4) Test for hypothesis Hy : ¢ = 0 against H; : ¢ # 0,
knowing 02 = 1

LRT:
(2m)~"/2e= X YP/2

<
SuPc(27T)—n/2&.—ZI.(YI._CX’.)z/2 <k
The optimal c is % from (1), so

X Y
IR (W_ZZfX2 -x;)? < 2log k
) - iXi

- x; Yi)?

pOF Xi2

So the test should be

1> xiYil =M
i



Under null hypothesis Y~ x; Y; ~ N(0,>". x?), so significance level

is
M

)

a = 2(1 = Fo,1)(
i X7

The test with significance level « should be
1> XYl = Frton (1 —a/2) > x?

p-value for Y; = y; is



(5) ClI for c, knowing 02 = 1
We need statistical test for Hy : ¢ = ¢g against Hp : ¢ # ¢p. Let

Z; = Y; — cox;, then Z; ~ N(c — co)xi,1). Now make use of the
test in (4), we get

\ZX:'Z:'!=|ZX;, ZCOXI> Vo a/2\/§

So the corresponding 1 — « Cl for ¢ is

{c: ZX,Y, ZCX2‘<FN01) —a/2) /Zx

-1 -1
_ixiYi Fyon(—a/2) $.xv; n Frion(t - a/2)]

> S I LN e~




(6) Test for hypothesis Hy : ¢ = 0 against H; : ¢ # 0, with

unknown o2
LRT: 2 2
Supgz(2m?)—"/2e—2,-v,-/(2:) L
SUPC’02(27T0'2)—H/2e— >oi(Yi—exi)?/(202) —

2
sup02(27m2)*"/2e’ > YA/ (20%) _ (271' . Zlnyl )7n/2efn/2

g L2
/2= (Vim0 /(20%) _ (g 2iYi = EX0)ynj2 -2

SUP. 2 (2mo?) p

Where ¢ = % So the test becomes

i

a2
Z/(g ygx’) < k2/n



So we can rewrite the test as

dixiYi/ ZiXi2
| |</\/I

A (v - Gy

(]

By calculation (using multivariable calculus and linear algebra) we

2
can see that under null hypothesis, % ~ x2(n),

2 , Xi l) . (Z:ixiyi)2
Z Y; Z is independent from S and
L. (sz'xl” ~ x2(1). So,

dixiYi/ Zixlg

X Y;)?
(v )

~t(n—1)

o

The M for significance level « is ths_l)(l —a/2).



(7) Cl for ¢, unknown o2

Use the same technique as in (5), and the test in (6), we get

NODRRMEAE
a/?2) \/ i

[ZXI I_F—

s Fentme/2) 2 ’
1 2 (ZixYi)?

S oY =ROMRE S~ )

2 + Fypp(1—a/2) - ]

\/ ZIX:?



Review:
» Point estimate: MLE, MAP and Bayesian point estimate.
» Hypothesis testing: LRT.
» Confidence interval.

Setting: x1,...X, real numbers, Yi,...Y, independent,
Y; ~ N(cx;,02). How do we estimate ¢ and 27
Examples we will do today:

» Cl of 02
P Logistic regression.

» Higher dimensional models.



Independence of residue and regression coefficient

This slide is just for those who remember linear algebra and multivariable
calculus.

Last week we made the claim; " R

If ¥ i.id. normal, 35, Y2 — (X200 is independent from ()

i Eixi2
Proof: Let c; = [x;/y/>.; x*]" € R". |c1| =1, so we can find an
orthonormal basis {c;,...,c,} of R". Let C =[c1....c,]T,

Y =[Y1,...Y,]", Z= CY. Because Y; are i.i.d. normal, the p.d.f. of Y

is f(y) = 2102 "e= 1Y so for any set A C R”,

P(Z € A) = P(CY € A) = / (2r0?)~"2e" 527 Y dy
C-1A

= /(27ra2)_”/2e_2a%szdz
A

So Z; i.i.d. N(0,02).



By calculation it is easy to verify that

S, Y2 - Z#Y) S, Z? and (227) = Z2, hence they

must be mdependent The same calculation works for
Y; ~ N(cxi, 02) as well by change of variable Y; = cx; + Y/.



(8) Test for Hy : 02 = o3 against H; : 0% # o}
Likelihood ratio test:
supc7a2(27ro' )—n/2e—zi(Y,-—cx,-) /(202) —

The optimal ¢ is % Let r2 =3V — % - x;)?, log of
LHS is a a

2

+ 5 log(r/n) + 5 < log(k)

n r
—> log(05) — 5=
20(2) 2

2

Hence the critical region should be of the form r?/n > o2A or
r?/n < of 2B for some positive numbers 0 < B < 1 < A. By similar
argument as in the previous slides, under Hy, 2r ~x?(n—1), so

significance level
o= sz(n_l)(nB) +1-— sz(,,_l)(nA)
log(A) — A=log(B) — B



In practice, we usually just ignore the second equation and let
Fy2(n-1)(nB) =1 — F,2(,_1)(nA) = /2, hence the test is

Yx, _ _
- Z i) & [Fragp_1)(@/2), Fra(p_y(1 = @/2)]

I I



(9) Cl for o2

Using the test on the previous slide, we have the Cl:

SAYi = B w( - B

Foyl—a/2) = Fo, 4y(a/2)



Logistic regression

Materials from this slide on will be beyond the scope of final exam.
Setting Y; independent, Y; ~ Bernoull:(HeCX, )-
Likelihood function

It is easy to see that log(L) is concave w.r.t. ¢, hence any local
maximum is the MLE, and we can use convex optimization to
calculate the optimal c.

This is a first example of Generalized Linear Models (GLM).



Higher dimensional linear regression

Setting: x1,...x, € RY, Y1,...Y, independent, 5 € RY,
Y; ~ N (BT x;,02). How do we estimate 3 and ¢2?
MLE: Log likelihood is

og(L) = — 5 (log(2m) + lo8(0)) — 55 (¥ — 675’

So
3 E=ar minE Y, — B7x)?
BML g 3 i( B )

Take derivative, we get:

QZ(Y, —BTX,')X,' =0

A= (Z XiXiT)fl(Z Yix;i)

The MLE for 2 is the same as the univariant case.



Linear regression with constant term

X1,...Xn €R, Yi,...Y, independent, 3 € RY,

Y; ~ N(d + cx;,02). Find MLE for ¢ and d.

Let x/ = [1,x]7, B = [d, c], then use the formula on the previous
slide, we get

-1
[8 e]T: n Z,’Xi Z:Y’
’ DX Z:’Xi2 i xiYi
So
g S XA Yi =Y ixi i xi Y
a nyix7— (30 xi)?
- =D ixiy; Yitny, xvYi

3¢ — (%)



Ridge Regression

Suppose o = 09, and we add a prior to 3 as § ~ N (0, )\Ugld), log
of posterior will be, up to a constant,
g 1

T 2
“ong? 292 2Yi = B7x)

So the MAP estimate for (5 is

§=argmin 3 (Y — 47w + 1575

Zx,x + lg/N)~ ZYX,

This works even when n < d.



Alternative interpretation of Ridge Regression

The idea from the previous slide has an alternative formulation as
follows: xj, x € RY, Y;, Y satisfies joint distribution

N(0,02(K 4 61)), with known 2 and §, and where

K =[x1,...x][x1,...x]". Find the conditional expectation of Y
with known Y1,...Y,. The log of joint p.d.f. of [Y1,..., Y, Y]
is, up to a constant, proportional to

1 _
*§[y1, Y YI(K+ 6Dy, ymy] T



Let Ko = [x1,. .. Xa][x1,---xa] T, b= [x{ x,...x] x], then

[ Ko+Al BT
K446l = b XTX+)\],hence
x BT
wrari=] g 7]
Where

= (x"x—b(Ko+61)"tpT)7!
B=—(x"x—b(Ko+3)"1b")  b(Kog + 61)7?



So the conditional distribution for y is normal, and the expectation

1 n yi
y=-2B| . = b(Ko +61)7*
Yn Yn

Let X = [x1,...xa], Y = [y1,-..yn] ", then this equals

xTX(XTX +6N7Y =xT(XXT + 617Xy

ZXIX +6Id ZYIX:

So 4 takes the role of /1\ earlier. This model allows us to get a

value for 3 5, by setting it as Smie. This is the simplest case of a
family of statistical models called mixed models.



Questions to think about

» Suppose x; € {1,2,3}, how do you check
Ho : Yi ~ N(cx;, 0?) against Hy : Y; ~ N(f(x;),0?) where f
is an arbitrary function?

» How do you check that Y; ~ A(cx;,02) in general?



Final review: Probability prerequisites

vVvvyVvTVvVvyyypy

Random variables

cd.f., p.d.f., pd.

Conditional p.d.f

Expectation

LLN, CLT

sample mean and sample variance

order statistics



Example
X;iid., i=1,...n, with p.df

The joint p.d.f. is

<% minfx} > 0
c"e min{x;} >

f X,... fX[ —
X X0l H { min{x;} <0

The joint c.d.f. is

FX1, X X]_,... HFX X,

1/ rs)es- {Hi(l_ecxj) mintxi} > 0

NS 0 min{x;} <0

i



Example

> 1
E[X] = / sce” “ds = =
0 C
Var(X;) = E[X?] — E[X/]* = /OO Peeds — = = L
' 0 c2 2
- 1
EX]=E[X] =~
C
Var(X) = 2var(x;) = —=
ar = n ar i) = nc2
2 1 > 2 1 ,2n o o
E[Sx] = E[m(ZXi —nX")] = m(g—n(Var(XH—E[X] )
1 2n 1 n 1 n—1
sl @ @ T am e s )



The p.d.f. of min{X;} = Y1 is

n!

EETCE A Ol

le(X) =

Where f is the p.d.f. of X; and F is the c.d.f. By calculation, the

answer is
0 x <0
fyv. (x) =
M) {nce”cx x>0

LLN for X; implies that as n — oo,
- 1
X = =

c

While CLT implies that as n — oo,

Vne2(X — %) — N(0,1)



Point estimate

Basic setting: X has a distribution with parameter ©.

» Point estimate: a random variable © which we use to
estimate ©.

> Bias: E[6] — ©.

> Variance: Var(©).

» Consistency: X = [Xy,...,X,], Xji.id., ® > 0asn— .
» Some ways to show consistency

» Definition.
» Variance and bias goes to 0 (due to Chebyshev's theorem)
> LLN.
> Ways to find point estimate
» MLE
> MOM
> MAP
» Bayesian point estimate



Example, continued

» MLE for ¢
L(Xi7 C) = le,...Xn(X].a e X,” C) = C”e_CZiXi

So
R n
CMLE = <
Zi Xi

» MOM for c: First empirical moment is X, first moment is %

so
1

~ =X
cMoMm




x >0
» Suppose prior of ¢ has p.d.f. f.(x) = {; x= o Then
X <

posterior is:
fox;(c) = C(c)L(Xq, ... Xp, c) = Cc"em (=i XitD)
So
: B n _ 1
MAP =SS Xi+1 X +1/n

20> X+ 1)clX; ~ x*(2n + 2)

1

So the Bayesian point estimate with L? lost is

n+1

aL2,Bayesian = arg nl',n E[(C - C/)2|Xi] = E[C|X’] = W

> All these point estimates are consistent due to LLN.



Hypothesis testing
Setting: X has a distribution with parameter ©. Hy : © € D,
Hi:©e€D,DnNnD =1.

» Statistical test: a random event Z € A, where Z is a random
variable defined using X, A the critical region (usually the
“tail” of the distribution of Z).

» Significance level (bound on type | error):
supeep P(Z € A|©).

» Power (one minus type Il error): P(Z € A|©) for some
specific © € D'.

» p-value: the lowest significance level that result in rejection of
Ho.

» Intuition of statistical tests: suppose Hp is true, then a test
with small significance level is unlikely to be true. So, if we
observed that it is true, probably Hp isn't.

» Neyman-Pearson test: D and D’ both consists of a single
point ©g and ©1, then test is L(X,00)/L(X,01) < k.

» LRT: supg,cp L(X,©0)/ supg,cpup L(X,01) < k.

> How to use known statistical tests.



Example, Continued
> It is easy to see that 2cX; ~ x3(2), so 2¢ > Xi ~ x?(2n).
» Hy:c=1, H : c =2. Neyman-Pearson test:
e Zixi
2ne—2 Zi X,‘
So the test should be of the form >, X; < M, significance
level is

<k

a=P()_X; < Mlc=1) = Fap,(2M)

So the test with significance level « is

32X < 5 Fatan(@)

The p-value for X; = xy is

p=min{a: le < 2 Fotom(@)} = Fra@n) (2D %)

i



» Suppose a test on Hp : Z ~ x?(k) is
Z¢ (Fx_z(k (a/2), FX_Q(k (1 — «/2)), then we can apply it to
2c ) ; Xi, and get a test for Hy : ¢ = ¢ as

2om(@/2) Fappn(l—a/2)
2n) (2n)
ZX g 2C0 ’ : 2C0 )

F (a/2) 2(2n)( —a/2)

2n)
ZX,- < 26 or ZX T




Confidence Intervals

Setting: X has a distribution with parameter ©.
» A1l-—a-Clis aset /(X) depending on X such that
PO e l(X)©)=1-a.
» Cl with CL 1 — « are related to statistical tests of significance
level a.

» One sided Cls are usually related to tests where the alternative
hypothesis is one sided as well.

Two types of statistical inference:

» Bayesian approach: © has assumed prior distribution, use
successive observation to estimate the posterior, eventually
converging to the true value.

» Non-Bayesian, or frequentist approach: © is a constant with
unknown value. Use observation to rule out more and more
unlikely values of ©, until we have an estimate of its true
value.



Example, continued

» The Cl from the test on Hp : ¢ = ¢p earlier is

2(2’1)(0[/2) 2(2,7)( - Oé/2)

{eo ZX 2¢o ’ pley I
 Faby(0/2) Faly (- af2)
2Z,X, ’ 2> Xi
> To get one sided Cl, use LRT for Hp : ¢ = ¢ against
Hy:c> c.
cé’e_COZiX" <K

SUPc>¢, che—c2iXi —

Zx,g/vl
i

So the test is

for some M < n/cp.



To make significance level a;, we must let M =

test is 1 ( )
«
X <
Z - 2Co

The onesided 1 — o Cl for c is

F);%2n a)

)
ayx )

FX2 (2n) (Oé)

, so the



Review Examples

Suppose X ~ B(n, p), n >> 1.
1. Find the LRT for Hy: 1/3 < p <2/3
2. Use the CLT to calculate its approximated significance level.
3. Find the approximated p-value for n = 9000, X = 2900.

LRT: " X
SUPper/32/3) (x)P*P"™

< k
sup,, (x)PXp"=X

So
0 X €1[n/3,2n/3]
log(LHS) = { Xlog(3%) + (n — X) Og(3(n2£x)) X <n/3
X |°g( %)+ (n—=X) 0g(3(,,zx)) X >2n/3

It is easy to see that this function is increasing when X < n/3, decreasing
when X > 2n/3, and takes the same value at n/3 — a and 2n/3 + a for
any 0 < a < n/3, so the LRT is of the form X & [n/3 — M, 2n/3 + M]



CLT says that as n — 0o, —~=£"— ~ N/(0,1). Hence

V/ np(1—p)
a= sup P(X<n/3—MorX2>2n/3+m)
pE[1/3,2/3]
~ sup X—-p <n/3—M pn X—p 22n/3—|—M—pn
p€[1/3 2/3] \/np(l -p) \/np 1-— \/np 1-— np(1 — p)

If p€(1/3,2/3), as n — oo the two bounds go to |nf|n|ty and probability goes
to 0. So we can only use p=1/3 or p =2/3. In both cases, the significance

level is
M

a=1-90
( 2n/9)
Where ¢ is the c.d.f. of standard normal. The p-value for n = 9000, X = 2900
is
1— o(—20 )~ 0.0127

/2000



Suppose X; i.i.d. and ~ N(0,02), X ~ N (a,0?) is independent
from X;, Hp:a=0, Hy: a# 0.
1. If Z — b satisfies t(d) distribution (which is the distribution of
X .
Ty where X and Y are independent, X N(O, 1),

Y ~x3(d)), |Z| > M is a test for Hy : b = 0. Find the
significance level of this test.

2. Find G, such that \/TX, ~ t(n).

3. Use the test in 1. to find a test for Hy : a = 0 with
significance level a.

Answer:
L= P(IZ] = MIZ ~ t(d)) = 2(1 — Fyay(M))
2. Use definition we know that C, = /n.

31X\ /55 = Fdy(1—a/2).



X1, Xp i.i.d. uniform on [a,a+ /].
1. Find a Cl for / of the form [C|X1 — X3/, 00) with CL 1 — «

2. Use this Cl to derive a test for Hp : | = 1 with significance
level .

Answer:
L 1—a=P(I>ClX; —Xa|) = P(IX1 — Xo| < L), s0
C=1/1- ya).
2. X1 = Xo| > 1 — Va.



True or false:

> Let Z be a test statistics, Hy, H} two disjoint null hypothesis,
if the significance level of Z € C as a test for Hy is 0.05, the
significance level of Z € C’ as a test for H] is 0.05, then
Z € CN(C as a test for Hy U Hy is no more than 0.05

> If X; i.i.d., 0 is a parameter of the distribution of X;, /, a
1 — a-Cl for 6 such that the maximal length goes to 0 as n
goes to infinity, then the midpoint of /, is a consistent
estimator for 6.



HW 10
Suppose X1 ~ N(0,02), Xo ~ N(0,20?), X1, X2 independent,
Ho : 0% = ¢, Hi : 0% > ¢, where ¢ > 0. Recall that the one sided
X2 test for the null hypothesis Z ~ x?(d) is Z > F 2%d)( —a),
here F is the c.d.f. of x?(d), and « is the significance level.
1. Find a numbers a and b such that under Hp,
aX? + bXZ ~ x2(2).
2. Use the one-sided x? test described above to write down a
statistical test of Hy against Hj.
3. Find the one-sided confidence interval using the test you
found above.

Answer:
1 _ 1
1. a== = 5¢-
X2 X2 1
2. 45> FX2(2)(1 —a)
3. X2+X2/2 ,00), or ( X2+X2/2 )

T 1-a)’ FLI (1-a)’
FX2(2)(1 ) F2(2)(1 a)
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