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Instructor: Chenxi Wu (he/him)
Email: cwu367Q@Qwisc.edu
Lecture: 1-2:15pm Tu Th

Office Hours: 9-10 am Tuesday and Wednesday at Van Vleck 517, or by
appointment.

Grades: 10% weekly HW, 2% Quiz on prerequisites, 5% weekly quizzes,
2 x 25% Midterms, 33% Final Exam.

Do as much of the exercises as possible, but make sure you understand the
basic concepts first.

Why study probability:

e Foundation of statistics, Statistical Literacy
e Applications in other areas of mathematics
e Applications in science and engineering

Content colored in blue are materials that might help with understanding
but will not be covered in the exam.



1 Probability Spaces

1.1 Definition and Basic Properties

1.1-1.4 of textbook

One way to formulate the concept of probability is the Kolmogorov’s Ax-
ioms:

Definition 1.1. A probability space is a tuple (2, F, P), where:
1. Qs a set called the sample space, an element w € (2 is called a sample.

2. F is a subset of the set of subsets of 2. Elements of F are called events.
F is further required to be a o-algebra, which means that:
(a) D e F
(b) Ae F = A°e F
(c) Let {A,} be a countable sequence of elements of F, then | J,, A, € F

3. P is a function from F to R, called the probability, or probability
measure or probability distribution. It satisfies the following axioms:
(i) Forany Ae F,0< P(A) <1
(i) P(0) =0, P(X) =1
(iii) Let A; be a sequence of pairwise disjoint (i # j then A; N A; = 0)
events, then P(|J, 4;) = >, P(4).
Remark 1.2.

”

1. Elements of {2 denotes “possible outcomes of an experiment” or “possible
states of the world”. The set Q2 and its elements are usually unimportant.

2. Elements of F denotes events whose probability we care about. Let A € F,
w € A means “at state w the event A can be said to have happened”. The
assumptions on F means:

(a) There is an event that would never happen.
(b) If A is an event, “A does not happen” is an event as well.
(c) If we have a countable sequence of events {A,}, then “at least one

of the A; happens” is an event.

3. P is a function that assigns each event its probability. The axioms on P
means:
(i) The probability of an event must be a number between 0 and 1

(ii) If an event never happens, its probability is 0. If it always happens,
its probability is 1.



(iii) If there is a countable sequence of events, none of the two can happen
at the same time, then the probability that at least one happens is
the sum of the probabilities they happen.

Remark 1.3. In probability, we sometimes denote AN B as AB.

Example 1.4. A fair coin flip can be represented as the probability space
(Q,F, P), where
Q = {head, tail}

F = {0, {head}, {tail}, {head, tail} }
P(0) = 0, P({head}) = 1/2, P({tail}) = 1/2, P(Q) = 1

Example 1.5. More generally, an experiment with N possible outcomes with
equal probability can be represented by (Q, F, P), where Q is a finite set of N
elements, F is the set of subsets of Q, and P(A) = |A|/N where |- | is the
cardinality of finite set A.

Example 1.6. Similar probability spaces can be written down to represent
1. Fair dice
2. Multiple coin flips
3. Multiple dice rolls.

4. Random sampling of one object among finitely many objects with equal
chances

5. Random sampling of multiple objects among finitely many objects, with
and without put back, with or without order

Example 1.7. Sometimes {2 need to be infinite sets, for example

1. Infinitely many coin flips:

Q = {head, tail}", P({w = (wi) :wx = e, k= 1,...,m}) =27

2. Random point on interval [0, 1], with uniform distribution

Q=10,1], P((a,b)) =b—a

3. Random point on a disc (or other shape with finite and non-zero volume),
with uniform distribution

Remark 1.8. Axiom (iii) can be used to calculate the probability of an event,
after one decomposes it into simpler events. For example, for the model of
infinitely coin flips, the probability of getting a head at the 2k-th flip for some
keN,is1/4+1/42+-.-=1/3.

Below are some basic properties of probability:



Theorem 1.9.
1. P(A)+P(A°) =1
2. (Monotonicity) A C B then P(A) < P(B)

3. (Inclusion-Exclusion) A;, ¢ = 1,...n are events, then

P(AlumuAn):zn: (=177 Y P4, n-n4)

j=1 1<y <---<i;<n

Proof. 1. 1= P(Q) = P(A)+ P(A°).
2. P(B) = P(A) + P(B N A°) > P(A).

3. Induction on n.

Theorem 1.10. Let A; be a sequence of events, 4; C A; if ¢ < j, then

i=1
Proof.
=1 =1

Here A;11\A; = A; 11 N AS are events. Hence

0o n—1
i=1

=1

O

Example 1.11. N persons with distinct names drawing their own names with-
out put back, the number of possible outcomes is N!, all with same probability
due to symmetry. Let A be the event that at least one person get their own
name, A; be the event that the i-th person gets their own name, then A = | J, 4;,

and by inclusion-exclusion,

1 N 1 (—1)t
P =3 (3) v =X

i=1

Which, as N — oo, converges to 1 — e~ 1.



1.2 Random Variables
1.5 of textbook

Definition 1.12. A random variable X on the probability space (Q, F, P)
is a real valued function on Q such that X ~!((a,c0)) € F for all a € R.

Example 1.13.

1. Let (Q,F,P) be the probability space that represents throwing a fair
dice, Q ={1,2,3,4,5,6}, X is defined as X(n) = n, then X is a random
variable.

2. Let (Q,F, P) be the probability space that represents picking a real num-
ber uniformly at random from interval (0,1), then Q = (0,1), and X (x) =
x is a random variable.

Definition 1.14. When there are at most countable k; € R such that Px ({k;}) =
> ;. Px({ki}) =1, we say that X is a discrete random variable. The proba-
bility distribution Px now depends completely on the probability mass func-
tion (p.m.f) p(k;) = P(X~1({k;})). When there is only one k; we say that X
is called degenerate or almost surely constant.

Example 1.15.

1. Consider infinitely many fair coin flips (see Example , let X be the
number of flips needed to get a head, then the pmf is p(n) = 27", n € Z,
n > 0.

2. Consider picking a number from open interval (0, 1) uniformly at random,
X(z) = |1/z], then the pmf is p(n) = m, neZ,n>0.

Definition 1.16. Given a random variable X on a probability space (2, F, P),
one can define another probability space (R, B, Px), called the probability
distribution of X, as follows:

Here B is the Borel o-algebra, which is the smallest o-algebra containing all
the intervals.

Remark 1.17.

1. One can show that (R, Bx, Px) satisfies Definition In other words,
the probability distribution is well defined.

2. When X is discrete, Px(A) =3, 4 p(ki).



2 Conditional Probability and Independence

2.1 Conditional Probability
2.1-2.2 of textbook

Definition 2.1. Let (92, F, P) be a probability space. Let B € F, P(B) > 0,
then for any event A, the conditional probability of A given B is

P(ANB)

PAIB) = =55

Example 2.2. To see why this definition make sense, let’s consider the proba-
bility space in Example ie.

0= {wl,...,wN}
F =29
P(A) = |Al/N

Now suppose P(B) = k/N > 0, and we already know that B happened, then
each of the k experimental outcomes in B are equally likely to happen, while
the remaining experimental outcomes would definitly not happen. Hence,

1/k weB

P{}B) - {0 iy

and given this information, the probability that another event A would happen
should be

ANB| |ANB|/N P(ANB
ZP({“’}‘B):' k - k/z\y - (P(B))

weA

Theorem 2.3. If (2, F, P) is a probability space, P(B) > 0, then so is (2, F, P(:| B)).
Proof. We only need to check conditions (i)-(iii) in Definition
(i) By Theorem[L.9)Part 2, P(ANB) < P(B), by (i) of Definition [1.1}, P(AN

B) >0, hence
0<P(;1(;)B):P(A|B)<1
0 P(ONB
P(O|B) = fP(B)> 0
P(QIB) = P(;z(;)m —1



(iii) If {A,} is a countable sequence of mutually disjoint events, so is {A, N B}.

Hence
_ P, A0 B) _ P(U,(A. N B))

-y P = pas)

O

Definition 2.4. Let (2, F, P) be a probability space, a Partition is a finite
set of pairwise disjoint events By, ..., B, whose union is ).

Example 2.5. Let B € F, then {B, B¢} is a partition.

The followings are some basic properties of conditional probability, the proofs
are all very straightforward.

Proposition 2.6. Let (2, F, P) be a probability space, then:
1. If Ay,..., A, € F, then
P(AiN---NA,) = P(A1)P(A3|A1)P(A3|A1NAs) ... P(AL|A1N---NA,_1)
2. If By,..., B, is a partition, A € F, then
P(A) = 3 P(AIB)P(B)
In particular,
P(A) = P(A|B)P(B) + P(A|B°)P(B°)

3. (Bayer’s formula) If By,..., B, is a partition, A € F, P(A) > 0, then
P(A|By)P(By)

P(BIA) = 515 (5;)
In particular,
B P(A|B)P(B)
PO = paBPB) + PABIPE)

Proof.
1. This is done by repeatedly applying P(AN B) = P(A)P(B|A).
2. A=J,(ANB,;), and when i # j,
(ANB)N(ANBj)CB;NB; =10

Hence
P(A) = ZP(AO B;) = ZP(A|Bi)P(Bi)

7 7



_ P(BxnA) _ P(Bp)P(ABy)
P(BglA) = PIEA) - ZZ_P(Ii‘lle‘)P(sz’)

O

Remark 2.7. In the proposition above, the conditional probability might not
be well defined, but the identities are still valid if we use the convention that 0
times something undefined equals 0.

Example 2.8. If the prevalence of a disease in the population 0.001, a test has
false positive probability (the probability that the test result is positive while
there is no disease) and false negative probability (the probability that the test
result is negative while there is disease) 0.01, and a person is tested positive,
then the probability that they actually have the disease can be calculated as
follows:

Let A be the event that the person has the disease, B be the event that
the person get tested positive, then the assumption becomes P(A) = 0.001,
P(B|A) =0.99, P(B¢|A°) = 0.99. Hence

P(BJA)P(A)

(B|A)P(A) + P(B|A)P(A°)
0.99 x 0.001

~ 0.99 x 0.001 + 0.01 x 0.999

Basically, if we are testing for something really rare, the false positive rate
shouldn’t be too high, otherwise the positive tests will mostly come from false
positives and not true positives.

P(AB) =

~ 0.09

Example 2.9. If one draws 2 balls at random, from a box with 6 balls of
identical shape, 3 colored in red and 3 colored in green. And suppose we know
that at least one of the two balls are red. The probability that the other ball is
also red, given this information, would be

()
P(Getting 2 red balls) O
P(Getting at least one red ball) -6 4
()

If the first ball drawn is red, the probability that the second ball drawn is also
red is 2.
5

2.2 Independence
2.8, 2.5 of textbook

Definition 2.10. Let (2, F, P) be a probability space.
1. A, B € F, we say that they are independent if P(AN B) = P(A)P(B).

10



2. We say a sequence (or set) of events A; are mutually independent, if
for any 11 < - < g, P<Ai1 ﬂﬂAzk) :P<A11)P(Azk)

Example 2.11.

1. Consider a roll of a symmetrical cubical dice, with numbers 1,...,6 on its
faces. Then the event of getting an even number, and the event of getting
a number smaller than 3, are independent.

2. In example [I.7] Part 1, the events “the n-th flip gets a head” are all mu-
tually independent.

3. Let 2 be a square whose vertices are (0,0), (1,0), (0,1), (1,1). Pick a point
p = (z,y) uniformly at random from S, then z < 1/2 and 1/3 <y < 2/3
are independent.

4. Let D be the unit disc, which is a disc on R? centered at origin and has
radius 1. Pick a point p = (z,y) uniformly at random from D. Then

e > 0 and y > 0 are independent.
e x> 0.75 and y > 0.75 are not independent.
The followings are some basic properties of independence:
Theorem 2.12. Suppose A is an event, P(4) =0 or 1
1. For any event B, A and B are independent.

2. For any set of events {B,,} which are mutually independent, {A} U {B,}
is a set of events that are mutually independent.

Proof. For Part 1, if P(A) =0,

0< P(ANB) < P(A) =0
S0

P(ANnB)=0= P(A)P(B)

If P(A) =1, then
P(ANnB)=P(B)— P(A°NB)

0< P(A°NB) < P(A°) =1 — P(A) =0

Hence
P(ANB)=P(B)=P(A)P(B)

The proof for Part 2 is analogous. O

Theorem 2.13. If A and B are independent, so are A° and B, A and B¢, A¢
and B°. 1If {4;} is a set of events that are mutually independent, let B; be
either A; or A¢, then {B;} is a set of mutually independent events.

11



Proof. P(A°N B) = P(B) — P(AN B) = P(B)(1 — P(A)) = P(A°)P(B). The

remaining cases are analogous. O

Theorem shows that independence is preserved by taking complements.
Similarly, it is also preserved by taking countable disjoint unions:

Theorem 2.14. Let I be a non empty set, for each ¢ € I, let {A;;} be a set of
disjoint events, such that for any choice of j;, {A;j, : i € I} is a set of mutually
independent events. Then {{J; 4;;} is a set of mutually independent events.

Note that any set constructed from Ai,..., A, € 29 by finite union, finite
intersection and complement can always be written as a finite disjoint union of
the intersections of the various A; and their complements. Hence, by Theorems

[2:13] 2:14] and Definition [2.10] Part 2, we have

Theorem 2.15. Let {4;} be a set of mutually independent events. Let {B;}
be a set of events, each B, is constructed from elements in {A;} by complement,
finite intersection and finite union, and no A; appears in the expression of two
different B;s. Then B;s are mutually independent.

Example 2.16. If an event A is independent from itself, then P(A) = P(AN
A) = P(A)?, hence P(A) =0 or 1.

Definition 2.17. Let X; be a sequence of random variables. We say X; are
mutually independent if for any Borel sets B; in R, the events X; € B; (which
means {w € Q : X;(w) € B;}) are mutually independent. Or, equivalently, for
any x; € R, the events X; < z; are mutually independent.

Remark 2.18. When all X; are discrete random variables, they are mutually
independent iff for any distinct i1, ..., 4, any real numbers z1, ...z, we have

k
P(Xll :xlv"'ink :xk) - HP(XZ7 :xj)
j=1

Definition 2.19. Let (2, F, P) be a probability space, A; € F, B € F, P(B) >
0. We say A; are mutually conditionally independent given B, if they are
independent in (92, F, P(:|B)).

Example 2.20. In Example suppose we perform two consecutive tests, the
results are independent conditioning on whether the patient has or does not have
the disease. Let B;, i = 1,2, be the event that the i-th test is positive. Then if
someone get tested positive twice, the probability that the person actually has
the disease is

P(A)P(B1|A)P(Ba|A)

P(A|B1N By) = P(A)P(B1|A)P(By|A) + P(A°)P(B1|A°)P(B,|Ac)

0.001 x 0.992

= ~ 091
0.001 x 0.992 + 0.999 x 0.012

12



Also,
P(By) = P(By) = P(A)P(By|A) + P(A*)P(By|A°) = 0.01098
P(B1 N By) = P(A)P(B1]|A)P(B2|A) + P(A°)P(B1|A°)P(B2|A¢) = 0.00108
So without conditioning B; and By are not independent.
Remark 2.21. As seen in the example above, conditioning can turn indepen-

dence into dependence or dependence into independence.

2.3 Distributions from independent tests

2.4, 2.5 of textbook

The followings are some important discrete probability distributions (recall
Definition [1.16]):

1. Bernoulli distribution: It has pmf

p(1) =p,p(0) =1-p

where p € [0, 1] is a parameter. “X has Bernoulli distribution of parameter
p” is denoted as X ~ Ber(p)

2. Binomial distribution: The sum of n random variables with distribu-
tion Ber(p). The pmf is

. n i i .
p(Z)(/l)pZ(lp)n l’ZZO?]"""n
“X has Binomial distribution of parameters n,p” is denoted as X ~

Bin(n,p) (or Binom(n,p)).

3. Geometric distribution: It has pmf

p(i)=(1—-p) ' 'pi=1,23,...
“X has Geometric distribution of parameter p” is denoted as X ~ Geom(p).

4. Hypergeometric distribution: Pick n balls at random from N4 red
balls and N — N4 blue balls, the number of red balls satisfies this distri-
bution. The pmf is

Na\ (N-N
() )
N
(n)

“X has hypergeometric distribution of parameter N, N4, n” is denoted as

X ~ Hypergeom(N, Na,n).

p(i) =

,0=0,...,n

13



Example 2.22.
1. Flip a coin once, the number of heads one gets is Ber(1/2).
2. Flip a coin N times, the number of heads one get is Bin(N,1/2).
3. Flip a coin till we get head, the number of flips is Geom(1/2).

Example 2.23. Suppose two person takes turns rolling a dice, the first person
getting 4 wins. Then by the pmf of Geom(1/6), the probability that the game
ends at the k-th roll is
k—1
5 1
6 6

hence the probability that the first player wins is
i <5)2n+1—1 1 B E
= \6 6 11

If we change the rule, so that the first player wins if they get a 4 and the second
player wins if they get 1 or 2, then the probability that the game ends after
2n + 1 rolls, where n is a non negative integer, equals

) ()

6 3) 6

and the probability that the first player wins now becomes
NONORE:
~\6) \3) 6 8

2.4 Some Classic Examples in Probability

Example 2.24. (Birthday Problem) Let p persons each come up with a natural
number uniformly at random from 1 to n. The probability that none of them
pick the same number is

n-1 n-2 n-p+1 nl

n n n nPp!

Example 2.25. (Monty Hall Problem) Person A is given three identical boxes,
one with 1000 dollars, the other two empty. After A pick a box to open, B,
who knows where the money is, opens one of the other boxes showing that
it is empty. Should A keep the original choice or should A change?

1. Because the boxes are identical and A has no idea which has the money,
the probability that the initial choice is correct is 1/3. Let C be the event
that A made the right choice from the beginning.

2. If C happens, and A decides to change, then A gets nothing.

14



3. If C does not happen, and A decides to change, then A gets the money.
4. So the strategy of changing gets A money at probability 2/3.

If B does not know where the money is, and just opens one of the other
boxes at random, which happens to be empty. Then:

1. The probability that the box B picked is empty is 1/3x142/3x1/2 = 2/3.

2. The conditional probability that changing the box will get A the money

is
P(The box B picked is empty, and A gets the money)

P(The box B picked is empty)

_ P(The box B picked is empty, and the initial box A picked is empty)
P(The box B picked is empty)

C2/3x1/2

=55 =

1/2

15



3 Random Variables

3.1 cdf, pmf and pdf
8.1, 3.2 of textbook
Definition 3.1. Let X be a random variable, the cumulative distribution

function (c.d.f) is F(s) = P(X < s).

Remark 3.2. By measure theory, the cdf uniquely determines the probability
distribution of a real valued random variable.

Example 3.3. Suppose X is discrete with pmf p(z;) = P(X = z1) (see Defi-
nition [1.14)), then the cdf of X is F'(s) = >_, -, p(:).

Definition 3.4. If there is a real valued function f such that F(s) = f_goo f(t)dt,
we say that X is a continuous random variable, the function f is called the
probability density function (p.d.f).

Example 3.5. Let x be a point picked uniformly at random from some interval
[a,b], X = 2. Then the cdf of X is

0 s<a
F(s)=qF2 a<s<b
1 s>b
s t
:/ X[a,b]( )dt
o b—a
1 z€A . . :
Here xa(z) = , called the characteristic function. Hence X is
0 z¢€ A

a continuous random variable. We call the probability distribution of X the
Uniform Distribution, denoted as X ~ Unifla,b].

From the definition and properties of probability spaces and random vari-
ables, we can deduce some elementary properties of the cdf:

Theorem 3.6. Let X be a random variable, F' its cdf.
1. s < ¢ implies F(s) < F(s').
2. limyy o F(s) =0, limg_,o, F(s) = 1.
3. F is right continuous, i.e. F(s) = lim;_, + F(t).
Proof.
1.
F()=P(X<s)=P(X<s)+P(s<X<s)>P(X<s)

16



2. By Part 1 above, the limits exist. By Theorem |1.10

lim F(s)= lim P(X <n)=P(Q)=1

5— 00 n—oo

lim F(s)=1— lim P(X>-n)=1-P(Q)=0

§—r— 00 n— oo

3. By Theorem [1.10

1= F(s) = P(X > s) = lim P(X>s+711)

n— oo
Hence for any € > 0, there is some N such that if n > N,
1
P<X>s+) >P(X >s)—c¢
n
Hence

F(s) < F(s+1/(N+1)) < F(s) + ¢

So for any t € (s,s + 1/(N + 1)), |F(t) — F(s)| < €, hence F(s) =
limt_>s+ F(t)

The following is another consequence of Theorem [1.10

Theorem 3.7. Let F be the cdf of random variable X, then P(X < s) =
limt_>s— F(t).

When the random variable X is continuous, we can get various properties
on its cdf and pdf via properties of integrals we learned in calculus (definition,
mean value theorem, fundamental theorem of calculus etc). For example, the
follows can be shown by Theorem and properties of integrals:

Theorem 3.8. Let X be a continuous random variable, with cdf F' and pdf f.
Then

1. F' is continuous.

2. PX=5)=P(X<s)—P(X <s)=F(s) = limy_,,- F(t)=0

3. If f is continuous at a, P(a < X < a+¢€) = f;+e ft)dt = ef(a) + o(e).
4. If f1 and f differs on only finitely many points, f; is also a pdf of X.

5. f can not be negative on an interval with positive length. Actually, f can
always be chosen to be non negative.

6. [ f(t)dt=1.
Remark 3.9.

17



1. If a function F satisfies the conclusions of Theorem [3.6] it can be the cdf
of a random variable.

2. If f is a non negative integrable function on R, and ffooo f(t)dt =1 then
f can be the pdf of some continuous random variable.

3. If p is a non negative function on a countable set A C R, and }_ . 4 p(a) =
1, then p is the pmf of some discrete random variable.

For continuous random variables, one can recover pdf from cdf as below:

Theorem 3.10. Furthermore, if the cdf F' of some random variable X is con-
tinuous and piecewise differentiable, i.e. there are a,, a,,_1 < a, for all n,
such that F' is differentiable on the open interval (a,_1,a,) for all n, then X is
a continuous random variable, with pdf f = F”.

Proof. This is an immediate consequence of the fundamental theorem of calcu-
lus. U

Example 3.11. Let X be a random variable with cdf F(s) = L arctan(z) + 1,
then it is a continuous random variable with pdf f(s) = m

For some discrete random variables one can also recover pmf from cdf as
follows:

Theorem 3.12. Let F be the cdf of a random variable X. If F' is piecewise
constant, i.e. there are a,, a,_1 < a, for all n, such that F' is constant on the
open interval (a,—1,a,) for all n, then X is a discrete random variable, and the
pmf is
plan) = F(a,) — lim F(b)
b—a,

Remark 3.13.

e Not all discrete random variables have piecewise constant cdf. For exam-
ple, let {¢;},7=1,2,... be a sequence going through all rational numbers
without repetition, and let p(q;) = 27°.

e Some random variables are neither discrete nor continuous. For example,
if we flip a fair coin, and when we get tail pick a real number a uniformly
at random from [0, 1], and let

¥ - 0 Got Head
" Ja Got Tail

Or, if we do infinitely many coin flips, let X; = 0 if the i-th flip got tail,
X; =1 if the i-th flip got head, and let X = >, 47°X.

Example 3.14. Let X be a random variable with cdf F, b,a > 0 are real
numbers, then aX + b has cdf s — F((s —b)/a). If X is continuous with pdf f,

then the pdf of aX + b is s — L=/ What if a < 07
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3.2 Expectation and Variance

3.8, 3.4 of textbook

Definition 3.15. Let X be a discrete random variable taking values at count-
ably many x;, i.e. >, P(X = z;) = 1, and suppose

Z |z;|P(X = x;) < o0

K2

Then the Expectation of X is defined as

E(X) = inP(X = ;)

Definition 3.16.

1. Let X be a non negative random variable, the Expectation of X is
defined as

E(X) = sup E(Xy)
X1<X,X; is discrete

where F(X7) is defined as in Definition
2. Let X be a general random variable, the Expectation of X is defined as
E(X) = E(max{X,0}) — E(max{—X,0})
Where E(max{X,0}) and E(max{—X,0}) are defined as in Part 1 above.

The following follows from the definition of integration:

Theorem 3.17. If X is a continuous random variable with pdf f, and

/OO #1£(£)dt < oo

then

B(X) = /Oo tf(t)dt

Example 3.18.
1. If X ~ Ber(p), E(X) = p.
2. If X ~ Geom(p), E(X)=1/p.
3. If X ~ Unifla,b], BE(X) = 2ft.

4. Some random variables may not have expectations which are real numbers.
For example,
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(a) if X is a discrete random variable, with pmf p(2") = 27" n =
1,2,..., we say E(X) = o0

(b) if X is a continuous random variable with pdf f(z) = 57

1
(T Hanzr Ve

say E(X) does not exist.
Remark 3.19. Let A be an event, the Indicator random variable I, is
defined as
1 weAd
Ta(w) =
0 weA
Then I4 ~ Ber(P(A)), and E(I4) = P(A).

Remark 3.20. E(X) is sometimes also denoted as F[X]. If both E(max{X,0})
and F(max{—X,0}) are infinite we say F(X) is undefined, if only the former,
or only the latter is infinite, we say the expectation is positive infinity or
negative infinity, respectively.

Theorem 3.21.
1. If X >0, E(X) > 0.
22U PX=¢)=1,EX)=c
3. If E(X) exists, a € R, then E(aX) = aE(X).
4. f E(X) and E(Y) exists, E(X +Y) = E(X)+ E(Y)
5. If X <Y then E(X) < E(Y).

When X is discrete this follows from Definition [3.15] For example, to prove
part 4, if X takes one of the x; with probability 1, Y takes one of the y; with
probability 1, then

E(X+Y)= Z(xz‘ +y) P(X =2, Y = y;)

:Z xiZP(X:mi,Y:yj) +Z <ijP(X:xi,Y:yj)>

= Y P(X =) + 3y P(Y =) = B(X) + B(Y)

The proof for general X is by Definition [3.16
Example 3.22. If X ~ Bin(n,p) then E(X) = np.

Theorem 3.23. Let g : R — R be a function where the preimage of Borel sets
are Borel sets (called Borel measurable), X is a random variable.

1. If X is discrete with pmf p, g(X) is discrete, E(g(X)) = ", g(@i)p(x;).
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2. If X is continuous with pdf f, E(g(X)) = [ g(t)f(t)dt.

Part 1 follows from Definition [3.15] and Part 2 follows from the definition of
Lebesgue integrals.

Definition 3.24. Let X be a random variable, n > 0 a positive integer. The
nth moment of X is F(X™). When E(X) exists, we define the variance of X
as Var(X) = E((X — E(X))?).

Theorem 3.25. If X is a random variable, E(X) and Var(X) both exists,
then Var(X) = E(X?) — (E(X))?

Proof.
X?=(X-E(X))?+2E(X)X — (E(X))?

Hence, by Theorem |3.21
E(X?) =Var(X)+ (E(X))?
The conclusion follows. O

Example 3.26. Consider a continuous random variable X with pdf

f(x):{o z <0

Ae ™ x>0

Then E(X*) = kIA7F, hence Var(X) = 2A72 — (A71)2 = A=2. Such a random
variable is said to satisfy the Exponential Distribution, denoted as X ~
Exp(X).

Theorem 3.27. If X is a random variable, E(X) and Var(X) both exists,
then Var(X) =0 iff X is degenerate, i.e. P(X = F(X)) = 1.

Proof.

e If X is degenerate, it is a discrete random variable, and its variance can
be calculated via Theorem .23 Part 1.

e If X is not degenerate,

Mp(X;éE(X)):p(fj X — B(X)| > 1)
n=1

= lim P(|X — BE(X)| > 1/n)

So there is some N > 0 such that P(|X — E(X)| > 1/N) > 0. Now let

v — N2 |X-EX)|>1/N
0 otherwise

then (X — E(X))2 > Y, Var((X — E(X))?) > E(Y) > 0.
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Another immediate consequence of Theorem [3.21]is the following:

Theorem 3.28. Let X be a random variable with expectation and variance.
Then E(aX +b) = aE(X) + b, Var(aX + b) = a®*Var(X).

Example 3.29. Let X ~ Bin(n,p), then Var(X) = np(1 — p). To show
this, let X = Z?:l X; where X; are mutually independent random variables of
distribution Ber(p). Then

n 2
Var(X)=FE (Z Xi) - (B(X))?

_Y B 42 Y BXGX) - ()
i=1

1<i<j<n
=np +n(n—1)p* —n’p* = np(1 - p)

Example 3.30. Let P be a point picked uniformly at random from the unit
disc, and let X be the distance between P and the origin. Then the pdf is

f(s):{o s<Oors>1

2s O0<s<1

The expectation is 2/3 and variance is 1/18.

3.3 Gaussian Distribution

8.5 of textbook

By multivariable calculus,

oo 1/2 0 1/2
42 22 2
/ e v dt= </ e Y d;vdy) = </ 2rre dr)
oo R2 0

:ﬁ(/ome—ms):ﬁ

o
/ et 2qt =1

oo V2T

Hence

Definition 3.31. A random variable X with pdf
1

- 7x2/2
f(.l?) - \/ﬂe

is called a variable with standard normal distribution or standard Gaus-
sian distribution, denoted as X ~ A(0,1).
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Remark 3.32. If X ~ N (0,1), E(X) =0, Var(X) = 1.

Definition 3.33. A random variable X is said to satisfy the normal distri-
bution with mean . and variance o2, if it has pdf

F@) = (@ (20%)

2702

denoted as X ~ N (u,0?).
If X ~ N(p,0?),

P(X < s) = /S dx 67(1711«)2/(20'2)

N —oo V2102

If @ > 0, b are real numbers, then

s—b
s—b Ta dx 2 2
PaX+b§s—P<X§ >—/ e~ (@=n)7/(207)
( ) a —oo V2mo?

_ /S YW a0
—0 V271o2a?
So aX +b~ N(au+b,a?c?). When a < 0 we can calculate this similarly, hence

Theorem 3.34. If a, b are real numbers, a # 0, X ~ N (u,0?), then aX +b ~
N(ap + b, a%0?).
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4 Normal and Poisson approximation of bino-
mial distribution

4.1 Normal Approximation
4.1 of textbook

If X ~ Bin(n,p), then by Examples and 3.29] E(X) = np, Var(X) =
np(1 — p), hence % has expectation 0 and variance 1. Furthermore, we
np(1—p
have the following theorem which would be proved later in the semester:

Theorem 4.1 (Binomial Central Limit Theorem). Let X ~ Bin(n,p), then as
n — 0o, the cdf of —A="E_ converges to the cdf of N(0,1).

v/ np(l—p)

Remark 4.2. One can further show that, via e.g. Berry-Esseen theorem, the
error is bounded by ——S——, where C' < 1. Generally in practice when np(1 —
Y T " y inp when np(

p) > 10 we can do normal approximation.

Remark 4.3. To write down the cdf of Bin(n,p), we usually make use of the

continuity correction:
1/2 —
F(s)~® ls]+1/2—mp
np(l —p)
Where @ is the cdf of N(0,1), and |z] is the largest integer no more than

An interactive plot of the normal approximation of binomial distribution,
as well as an illustration of the continuity correction, can be found at https:
//wuchenxi.github.io/binomclt.html. The source code can be found in Ap-

pendix
4.2 Applications
Sections 4.2, 4.3 of textbook

1. Let n — oo in Theorem we get:

Theorem 4.4 (Law of Large Numbers). If S,, ~ Bin(n,p), then for any
e >0,asn — oo, P(|S,/n—p|>¢€) — 0.

2. Theorem can be used to provide the confidence interval of p. Here

Definition 4.5. Let X be a random variable, such that its probability
distribution X (6) has an unknown parameter 6.

(1) A point estimate is a function § from the range of X to R.
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(2) When X is discrete, the maximal likelihood estimate (MLE) is
f(z) = argmax P(Xy = z) where Xy ~ X(6)

(3) An interval estimate is a function from the range of X to open
intervals in R.

(4) We say an interval estimate x — (a(z),b(z)) is a confidence inter-
val with p-value p, if for any 6, if X ~ X(6), then

Pa(X) <0 <bX)>1-p
In practice we often let p = 0.05.
Now let X ~ Bin(n,#), where n is fixed, then

(a) 6(x) = /n is the MLE.
(b) Let (z/n —r,2/n+ r) be a confidence interval, then, when n >> 1,
by normal approximation, for any 6, if X ~ Bin(n,#), then

—rn
>PO>X/n+ 0<X/n—7r)x20 | ———
P @>X/n+rord<X/n—r) ( i 9))

nd(l —0)

When p =0.05, r > %.

3. When N, Ny — 00, No/N — p, 0 < p < 1, then hypergeometric distribu-
tion with parameters (N, N4,n) converges to binomial distribution with
parameters (n,p). This shows that we can use binomial distributions, and
their normal approximations, to analyze data from opinion polls.

o <_m> < 20 (—2r/n)

Remark 4.6. The cdf of A(0,1) is not an elementary function, but it can be
calculated numerically and is implemented by most programming languages.
For example in Python standard library:

import math
def gaussian_cdf(t):

return (l1+math.erf(t/2xx0.5))/2
print (gaussian_cdf(—1.96))

or in C standard library

#include <cstdio>

#include <cmath>

double cdf(double x){return (l1+erf(x/sqrt(2)))/2;}
int main(){printf("%g\n”, cdf(—1.96));return 0;}

Remark 4.7. In exams we will also provide tables for the values of this cdf.
Note that in the tables we only have positive numbers, but due to symmetry,
we have ®(—s) =1 — P(s).
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4.3 Poisson Distribution and Exponential distribution

Section 4.4 and 4.5 of textbook

Suppose we have a data center with a large amount of machines. To model
the number of malfunctions within a day, we can divide the day into hours,
minutes, seconds, milliseconds, etc, and find the number of hours, minutes,
seconds, milliseconds, etc with a malfunction. As the size of the time unit gets
smaller, it is increasingly unlikely that within that unit there are more than
one malfunctions; and as the size of the unit decreases the probability that
there is a malfunction within that time unit goes down as well and goes down
approximately linearly. Hence, the number of malfunctions in a day can be
described by the limiting distribution of Bin(n,A/n) as n — oo, here n is the
number of time units in a day. The limiting pmf would now be

k n—k
o\ [\ A PUN
=t () () (1-3) =
Aee=

Definition 4.8. The discrete random variable with pmf p(k) = 55—, where
k =10,1,2,..., is called the Poisson distribution with parameter A. If X
satisfies Poisson distribution with parameter A, we denote it as X ~ Poisson(\).

By calculation, we know that

Proposition 4.9. If X ~ Poisson()\), E(X) =Var(X) = .

Proof. . -
R e 2 e e N
k=0 k=1
oo 2V\k,— A\
Var(X) = B(X?) — (B(X))2 =S A€y
k!
k=0
o )\ke—)\ 0 )\ke—A ) ) )
2 Gt G M =224 A=A = )

O

Remark 4.10. Because the cdf of Bin(n,p) and Poisson()\) are both of the
form F(s) = > jcp<sp(s), the cdf of Bin(n,\/n) converges to the cdf of
Poisson()\) as well.

An interactive visualization of the Poisson approximation of binomial distri-
bution can be found at https://wuchenxi.github.io/poisson.html, source
code see Appendix

If we want to model the time when the next malfunction happens starting
at a specific time tg, we can do as follows: divide the time into segments of 1/n
days, when n >> 1, the probability that a malfunction happens in each segment
is approximately A/n. Then the number of time segment needed to get the first
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malfunction satisfies Geom(\/n). Now we show that if X,, ~ Geom(A/n), then
asn — 00, X,,/n — Y where Y ~ Exp()\) in distribution:
The cdf of X, /n is

Fo(s) 0 s<0
n\S) = sn

Ly 2)(a=-2" s>o0
And

lsn]+1
)

sn] k A
1-(1-2
lim - E (A> (1 )\) = lim i ( T
n— 00 = n n n—oo N 1— (]_ — 7)

n

=1—e

So the limiting cdf is the cdf of Exzp()\).

Remark 4.11. If instead of the time of the first malfunction we want the times
of all malfunctions, the result is called the Poisson point process.

A key property of exponential distributions is that they are memoryless:
Theorem 4.12. If X ~ Exp()), then for any s,t > 0,
PX>s+tX >s)=P(X >t)
Proof.

P(X t and X P(X t
P(X > s +1X > 5) = (X >s+tan >s): (X >s+1t)

P(X > s) P(X >s)
foit e Mdx g A(sHt) N e
— S g = e = AT - P X
T Ao Py e /t e dx (X >1)

O

Example 4.13. Suppose the accidents in a factory happens with a constant
possibility regardless of time and they all happen independently, and if the aver-
age time between two consecutive accidents is one day, what’s probability that
there will be more than 2 accidents in a day? How about 2 days?

Answer: The number of accidents in a day satisfies Poisson(A) and the time
between two consecutive accidents satisfies Fxp(\), here A is defined as

A= I&im N P(there is an accident in a time period of 1/N day)
—00

so A = 1, the probability is

Similarly, the number of accidents in 2 days satisfies Poisson(2)), and the
calculation can be done similarly.
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Remark 4.14. We say a sequence of random variables A,, converges in dis-
tribution to a random variable B, if the cdf of A, converges to the cdf of B.
Hence,

1. The normal approximation says that if X,, ~ Bin(n,p), Y, = =2-—F
then as n — oo, Y,, — N (0,p(1 — p)) in distribution.

2. The Poisson approximation says that if X,, ~ Bin(n,A/n), then X,, —
Poisson(A) in distribution (see Remark [4.10).

Remark 4.15. Let T; be mutually independent random variables of distribution
Exp()), then the Poisson point process of parameter A is {d_., T;}, and the
largest number n such that Y ;" | 7; < C is Poisson(C)\).
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5 Moment Generating Function

Sections 5.1 and 5.2 of textbook

Definition 5.1. Let X be a random variable. The moment generating func-
tion (MGF) of X is defined as

Mx (t) = E(e")
Remark 5.2. Let X be a random variable.
1. If X is discrete with pmf p(a;) = p;, then Mx (t) = Y, p;e'®.

2. If X is continuous with pdf f, then Mx (t) = [~°_e'* f(s)ds.

(&
—o0

Remark 5.3. The moment generating function, when exists around a neigh-
borhood of 0, encodes all the moment:

i tiEgXi)

M (t) = 7!

=0

The following Theorem is key to the proof of central limit theorem. The
proof is beyond the scope of this course.

Theorem 5.4. Let X and Y be two random variables. Suppose Mx = My on
a neighborhood of 0, then the cdf of X and Y are the same, which implies that
they have the same distribution (we call them equal in distribution).

Remark 5.5. A way to prove the theorem above is as follows (assume knowl-
edge of complex analysis): let ¢ € C, under the assumption E(e!X) add E(e'Y)
both exists and are analytic on a uniform neighborhood of the imaginary axis.
Since they are identical on an interval they are identical. Now recover cdf by
inverse Fourier transform.

Example 5.6. The followings are the calculation of MGF of some common
distributions:

1. X ~ Bin(n,p), then

M — ti, % _ n—i _ _ t\n
w0 =3 (1) s 1= o = (1 g et
=0

2. X ~ Geom(p), then

t

e . pe
Mx(t) =) e'p(1—p)'~' = T—(—pe
i=1
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3. X ~ Poisson(\), then

4. X ~ Exp(X), then

> ts ,—As A
Mx(t) = Aefe”¥ds = T3
0 _

5. X ~ N(p,0?), then

Mx (t) etse=(s=1)*/20% 4o _ out+o’t?/2

1
" V2re?

Example 5.7. Let X be a continuous random variable with pdf f. Then e*X

is the composition of X and a smooth function g(-) = e*".

1. When t > 0, ¢ is increasing, hence the cdf of !X is
log(s)/t
Fs) = P(¢"™ < 5) = P(X < log(s)/t) = / F(r)dr
when s > 0 and F(s) = 0 when s < 0. Hence the pdf is

log(s)/t o
6 =5 [ par = flog(s)/1) _ ()

T ds ) o ts A

where s > 0, g(y) = t.

2. When t < 0, g is decreasing, the cdf of e!¥ is

oo

F(s) = P(e!* < 5) = P(X > log(s)/t) = /1 o flr)dr

when s > 0 and F(s) = 0 when s < 0. Hence the pdf is

g~ Sese)/) S

f(s) =
() ds log(s)/t ts |g/(y)‘

where s > 0, g(y) = t.
By similar computation as above, we have:

Theorem 5.8. Let X be a discrete random variable with pmf p, g : R — R,
then g(X) is also a discrete random variable with pmf ¢(s) = >_,,)_,p(a).
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Theorem 5.9. Let X be a continuous random variable with pdf f, g : R —
R differentiable with finitely many critical points, then g(X) is a continuous
random variable, and its pdf equals

fax)(9) = /(@)

g(a)=s

If ¢ is one-to-one with inverse function g~!, then

i O))
l9'(971(s))]

Here the sum of an empty set of numbers is assumed to be 0.

fox)(3)

Example 5.10. Let X be a random variable with distribution Unif(0,2), Y =
sin(X), then the pdf of Y is

0 s>1lors<0
fr(s)=Q o= sin2)<s<1
2\/11_7 0 < s <sin(2)

Example 5.11. Let X ~ Unif(0,1), F a real valued function on R satisfying
the three properties in Theorem let

g(x) =inf{s: F(s) >z} =min{s: F(s) >z}
Then the cdf of g(X) is then
Fi(s) = P(9(X) < 5) = P(X < F(s)) = F(s)
Here, the second equality is because F' is non decreasing and right continuous.

1. If F is the cdf of some discrete random variable Y with pmf p(a;) = p;,
then g(z) = inf{a; : Zajga,i pj > x}.

2. If F is the cdf of some continuous random variable Y with positive pdf f,
then g(r) = F~!(z), and by Theorem the pdf of g(X) is indeed f.
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6 Joint Distributions

6.1 Definition and Examples
Section 6.1 and 6.2 of textbook

Recall that if X defined on a probability space (€2, F, P) is a random variable,
the probability distribution of X is the probability space

(R,B,A— P(X € A))
where B is the Borel o-algebra.

Definition 6.1. Let X1,..., X,, be random variables. The joint distribution
is the probability space

(R™",B,A— P((Xy,...,X,) € 4)
where B is the Borel o algebra. The distribution of each X; is called the
marginal distribution.
Remark 6.2. Just like probability distribution of random variables are deter-
mined by their cdfs, joint distributions are determined by the joint cdf
F(ay,...,an)=P(Xi1 <a1,...,Xn <ay)
Definition 6.3. Let X1,..., X,, be discrete random variables, A; C R countable

sets such that P(X; € A;) = 1, then the joint pmf is defined as p(a1,...,a,) =
P(X;=ay,...,X, =a,), where a; € A;.

The following facts are straightforward:

Theorem 6.4. Let X4, ..., X, be discrete random variables, A; C R countable
sets such that P(X; € A;) = 1, and p be the joint pmf. Then

1. The probability distribution is now

P((Xi,...,X,) € B) = > play, ... a,)
(a1,...,an)EB,a;€A; for all i

2. The marginal distributions are

P(X;eB)= Y > pla,... an)

a; EBNA; \a;€A; for all ij
3. The pmf of X, which is also called the marginal pmf, equals

px;(aj) = Z pla,...,an)

a; €A; for all i#j
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4. Let g : R™ — R be a function, then

B(g(X1,....Xn) = > glay,...,an)p(as, ... an)

a;€EA; for all ¢

Definition 6.5. Consider an experiment with r outcomes, with probabilities
P1s---,Pr, and p1+---+p, = 1. Now carry out experiment n times, the number
of each of the r outcomes are denoted as X1, ..., X, then their joint distribution
is called the multinomial distribution, denoted as

(Xla s 7X7L) ~ Multi(nﬂraplv s 7p7">
Where the joint pmf is

p(k1 k.) = #-!kr!pllﬁ”'pﬁr ki+ -+ k. =n,k; € L>o for all i
o 0 otherwise

Definition 6.6. We say Xi,...,X,, are called jointly continuous, if there is
a function f on R", called the joint density function, such that

P((Xl,,Xn) S B) = / f(Sl,...,Sn)dsldSQ...dSn
B

Definition 6.7. Let A C R™ be a region with finite volume. We say X;,..., X,
are uniformly distributed on A (see Example Part 3) if they are jointly

continuous with density function f(s1,...,8,) = %@’;”, where

1 (s1,...,8,) €A
0 otherwise

XA(S1,.-,8,) = {

Remark 6.8. X and Y both being continuous does not imply that they are
jointly continuous. For example, if X ~ Unif(0,1) and Y = X.

Example 6.9. Let Q be the triangle with vertices (0,0), (1,0), (0,1), (X,Y) ~
Unif(2). Then the cdf of X is
0 s <0
F(s)=41 s>1
1-(1-8)? 0<s<1

and the corresponding pdf is

f(s):{o s<Qors>1

2(1—-s) O0<s<1

Theorem 6.10. Let X;,..., X, be jointly continuous with joint density func-
tion f. Then each X; is continuous, with pdf (called marginal density func-
tion)

fx,(s) = / J(81,00,8i-1,8,8i11, -+, 8n)ds1 ... ds;_1dsiy1 ... dsy
Rnfl
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Proof. By Fubini,

s
:/ dt/ f(Sl,...7Si,1,t78i+1,...78n)d81...d8i71d8i+1...dSn
— 00 Rn—1

Take % we get the desired formula. O
This is a generalization of Theorem [3.23

Theorem 6.11. Let g be a measurable function, X1, ..., X, be jointly contin-
uous with joint density function f, then

Elg(X1,...,X,)] = /ng(sl,...,sn)f(sl,...,sn)dsl...dsn

Example 6.12. Let X,Y be uniformly distributed on the unit disc. Z =
max{X,Y} Then

1. The marginal pdfs are

s>lors<—1

fX(S)ZfY(S):{ Vies?2 —1<s<l1

o O

1
E[Z] = - (/ xdxdy +/ ydxdy)
™ z24+y2<l, x>y 24y2<l,y>z

1 1 ﬂ'/4 571'/4 2 2
== / rdr / rcos(6)df + / rsin(0)do | = 2v2
T Jo —3n/4 /4 3

Remark 6.13. The analogy of Remark for multiple random variables is
also true.

1. Let A C R™ be a countable subset, p : A — R a non negative function,
> acaP(a) = 1. Then there are discrete random variables Xi,..., X,
with joint pmf p.

To show this, consider probability space (4,24, B +— 3,5 p(b)), and X;
are defined as a = (ay,...,a,) — a;.

2. Let f be a non negative integrable function on R™, then fRn fdxy ... dx, =
1 iff there are random variables Xy, ..., X,, which are jointly continuous
with joint pdf f.

To show the “only if” part, consider probability space

(R",B,B»—)/fdxl...dmn)
B

and X; are defined as (x1,...,2,) — x;. The “if” part follows from the
fact that P(Q) = 1.
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6.2 Independence
Section 6.3 of textbook

Remark [2.18 can be restated as

Theorem 6.14. Let Xq,..., X, be discrete, with pmf pq,...,p, respectively,
then they are mutually independent iff their joint pmf is

p(alv ce 7an) = pl(al) .. pn(an)
Similarly, for continuous random variables, we have:

Theorem 6.15. Let X1, ..., X, be continuous random variables with pdf fi,..., fn
respectively. Then they are mutually independent iff they are jointly continuous
with joint pdf

f(slv ceey Sn) = fl(sl) s fn(sn)

Proof. The “if” part follows from Fubini’s theorem. To show the “only if”, note
that by measure theory, a Borel measure on R” is completely determined by its
value on sets of the form Ay x --- x A,,. O

An immediate consequence of Theorem [2.13]is:

Theorem 6.16. Let X;, i € I be a set of mutually independent random vari-
ables, Y; are obtained by composing the various X; with some Borel measurable
functions, such that no X; appears in the expression of two distinct Y;s, then
the Y;s are mutually independent as well.

Example 6.17. Let X, Y be random variables with pdf f and ¢ and cdf F
and G respectively. Z = min{X,Y}

1. The joint distribution function is fx y(s,s’) = f(s)g(s’).
2. The cdf of Z is

Fz(s)=1—-P(X >sY >s)= 1—/Oof(r)d7‘/oog(r)dr

and the pdf is

fz(S):%Fz(S):f(S)/S dr + gs /f

3. Let
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the pmf is

P(I:l): f t)dsdt = / (s

P(I:O): f t)dsdt = / F(t

4. From definition [2.17] Z and I are independent iff
P(ZeB)P(I=1)=P(ZeB,I=1)

which means that

[ 60 =66+ - P ds- [ s

/ fwm@@ﬁ:/’gmumeMt
teB,s>t teB

which is equivalent to the fact that there is a constant C' independent of
s, such that

f(s)(1=G(s)) = Cg(s)(1 = F(s))

So, for example, if F' and G are both exponential distributions, this would
be true.

Example 6.18. If X and Y are independent, and both are standard normal,
let X = rcos(d), Y = rsin(f), where r > 0, § € [0,27), then r and 6 are
independent and r? ~ Exp(1/2), § ~ Unif[0,1). To show this one can make
use of Definition as in the previous example. This gives a way to generate
normal distribution from uniform distribution without calculating inverse of the
pdf of normal distribution, and is called the Box-Muller algorithm.

6.3 Sums and convolutions

Section 7.1 of textbook

The following follows from Theorem and and Fubini:

Theorem 6.19. Let X and Y be two independent random variables, Z =
X+Y.

1. If both X and Y are discrete, with pmf px and py respectively, then so
is Z. The pmf of Z is

=Y px(@)py(z =)
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2. If X and Y are both continuous with pdf fx and fy, then Z is continuous
with pdf

F2) = [ x0vs = nat
which is also called the convolution of fx and fy, denoted as fx * fy.
Example 6.20. X and Y are independent, Z = X + Y.
1. X ~ Bin(n,p), Y ~ Bin(m,p), then Z ~ Bin(m + n,p).
2. X ~ Poisson()), Y ~ Poisson(u), then Z ~ Poisson(\ + p).
3. X ~ Geom(p), Y ~ Geom(p), Z has pmf pz(n) = (n — 1)p?(1 — p)" 2.
4. X ~ N(p,0%), Y ~ N/, 0"?), then Z ~ (u+ ', 0 + 0'2). []
5. X ~ Exp(A\), Y ~ Exp()\), Z has pdf
fz(s) = {O =0

Age ™ s> 0

Definition 6.21. The sum of n mutually independent random variables of
distribution Geom(p) is said to satisfy the (n,p)-negative binomial distri-
bution, denoted as Z ~ Negbin(n,p). Its pmf is

s = (2 -

n—1

where k > n are integers. To see this, when n = 1 this is the same pmf as
Geom(p). If X and Y are independent and with pmf

k-1
n—2

px (k) = ( >pn1(1 _ p)En

202

/001,M1,M

fz(s) = (fx = fy)(s) = —e e 20’2 dt
—oo V2mo? V2mwo'?
1 0 g t-—p)24o?(s—t—p")?
= 2 ; e 202572 dt
oo o
o 2Pute (i) \? (Put o (s —p? | o2k o2 (s—u)?
o202 (c24072)2 o2 4o/2
o 552572
R / e EERNE dt
2wo0’ J_ o
1 02072 (P40 (s=p)2) (2 +0"?) (0" uto? (s—p'))?
_ - e 202072 (a2 +072)
2roo’ 02 + 0’2
1 _(s—pu—p)?
_ e 2(02+0'2)
2m (02 + o'2)
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where £ > n — 1, and
py (k) =p(1 —p)*~*

where k£ > 1, then the pmfof Z =X +Y is

K1\ . . e
pz(k) = Z <<n_2>pn 1(17p)k +1,p(17p)k k 1)
n—1<k'<k—1

= (k - 1)1)"’(1 -p)"

n—1

Definition 6.22. The sum of n mutually independent random variables of
distribution Exp(A) is said to satisfy the (n,\)-Gamma distribution (see
Remark [4.15)), denoted as Z ~ Gamma(n, A). Its pdf is

0 s <0
f(s) = {yLsnl s

WG_ : s> 0
6.4 Exchangability, iid
Section 7.2 of textbook

Definition 6.23. Let Xi,...,X, be random variables. If for any bijection
o {l...,n} = {1,...,n}, Xy,..., X, and X,1,..., Xon have the same
distribution, we say these random variables are exchangable.

These follow immediately from definition:
Theorem 6.24.
1. If X; = X3 =--- = X,,, then they are exchangable.

2. If X; are all discrete, then they are exchangable iff the joint pmf is a
symmetric function.

3. If they are jointly continuous, they are exchangable iff the joint pdf is a
symmetric function.

Theorem 6.25. If X;,...,X,, are exchangable.
1. The marginal distributions of X; are all identical.

2. Let G : R™ — R be any Borel measurable function, then for any permu-
tation g, E(G(Xl, ces ,Xn>> = E(G(Xg(l), ces 7Xa(n)))~

3. Let g : R — R be any Borel measurable function, then g(X1),...,g(X,)
are exchangable.
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Example 6.26. Let N identical balls be each labeled a number, draw n balls
without replacement from these balls, let X; be the label of the ball obtained
in the i-th draw. Then X; are not mutually independent, but they are still
exchangable.

As an application, we have:

Example 6.27. Suppose there are 10 red balls and 10 green balls, draw 10
from the 20 without replacement, then the probability that we get green at the
6th draw, red at the 9th, equals the probability that we get green at the first
draw, red at the second, which equals 10/20 x 10/19 = 5/19. Similarly, the
conditional probability of the 6th being green given that the 9th is red is 10/19.

Example 6.28. If X;,..., X, are mutually independent with the same distri-
bution (called independent and identically distributed, or i.i.d., then they
are exchangable.

As an application, we have:

Example 6.29. Let X,Y,Z be i.i.d. continuous random variables. Then by
Theorem they are jointly continuous, hence the probability that any two
of the three are identical equals 0. Because they are exchangable,

PX>Y,X>Z)=PY>X,Y>2Z)=P(Z>X,Z>Y)=1/3

Similarly, the probability that X <Y < Z is 1/6.

6.5 Indicator Method
Section 8.1 of textbook

By Remark given any event A, its probability is the expectation of the
indicator random variable I4. Now we can make use of the properties of the
expectation of random variables to calculate P(A), or use P(A) to calculate
E[I4]. This is called the indicator method.

Remark 6.30. Indicator method gives a simple proof for the inclusion-exclusion
formula.

Example 6.31. Suppose there are 20 identical balls, 5 red 15 green. Draw
8 randomly without replacement, what’s the expectation of the number of red
balls drawn?

Answer: Let A; be the event “the j-th ball drawn is red”. Then the expec-
tation of number of red balls drawn is

8 8
E (ZIAi> = E(l4,)=8-1/4=2
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Example 6.32. Roll a dice 100 times, what’s the expected number of sequences
of consecutive 4s with length exactly 47

Answer: Let A;, j = 1,...,97, be the event that “there is a sequence of
consecutive 4s with length exactly 4 beginning at the j-th roll”. Then the
required expectation is

E

ZIAi] =2-(5/6)-(1/6)* +95-(5/6)2 - (1/6)*

Example 6.33. Suppose there are n individuals, whether or not any two of
them know one another are independent and has probability 1/2. Then the
expected number of groups of k ppl where any two in the group know each
other, would be, due to the same argument as the previous example, (2)2_"'.

6.6 Expectation of Products
Section 8.2 and 8.3 of textbook

Theorem 6.34. Let X;, i = 1,...,n, be mutually independent random vari-
ables, then F[X;... X, ] = E[Xi]...E[X,].

The case when X; are discrete (or continuous) can be proved by computa-
tion. The general case can be shown via Definition |[3.16

Combining the above with Theorem [6.16] we have:

Theorem 6.35. If g; are functions where preimages of Borel sets are Borel, X
and Y be independent random variables, then

Elg1(X1) ... gn(Xn)] = Elg1(X1)] ... E[gn(Xy)]

As applications, we have the following:

Theorem 6.36. Let X1,...,X,, be mutually independent random variables.
Z=7%.X.

1. If their variances are o%,...,02

Z'L 01‘2-
2. If their MGFs are M, (t), ..., M, (t) respectively, the MGF of Z is [ [, M;(t).

respectively, then the variance of Z is

Proof. Part 2 above follows immediately from Theorem To show part 1,

Var(Z) = E((Z — E(Z))?)

9 2
=E (Z X, — ZE(XJ) =F (Z(Xv - E(Xl))>

%
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=Y E((Xi - B(X)))*) + Y E((X; — E(X:)(X; — E(X;)))
i i£j
=Y 02+ BE(X, - E(X))E(X; - E(X;)) =Y _ o?
i i#j] i
O

Example 6.37. Let X1,..., X, be iid random variables, each with expectation

p and variance o2

1. Let X = 1% X;, which we call the sample mean. Then E(X) = p
(which we say “X is an unbiased estimator of y”), Var(X) = %2

2. Let s2 = 1= 3" (X; — X)? be called the sample variance. Then

2

B(s2) = — Y E "_1XZ-—Z%X]-

n—1 n e
e e e S O

So s2 is an unbiased estimator of o2.

Example 6.38. Parts 1, 2, and 4 of Example [6.20] follows from Part 2 of
Theorem [6.36] and Theorem [5.4]

Example 6.39. Suppose an experiment has n equally likely outcomes. Let T),
be the number of independent experiments needed to get all n outcomes. Now
let Si be the number of experiments needed to go from getting k — 1 outcomes
to getting k outcomes, we have T,, = Y " | S, the Sy are all independent, and
Sy ~ Geom ("’T’“H)

So
B(T,) = Y B(S) =n)
k=1 Jj=1
- k—1)n? i
Var(T,) = 3 n(§1 —k )+ 12~ 2 52 :
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6.7 Covariance and Correlation

Section 8.4 of the textbook

Definition 6.40. Let X and Y be two random variables on the same probability
space. The covariance between them is

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
The correlation between them is

Cov(X,Y)
Var(X)Var(Y)

Corr(X,Y) =

When Cov(X,Y) > 0 we say they are positively correlated. When Cov(X,Y) <
0 we say they are negatively correlated. When Cov(X,Y) = 0 we say they are
uncorrelated.

The followings are some of their basic properties:

Theorem 6.41. Let X, X,, Y, Y; be random variables on the same probability
space, a;,a,b;,b € R.

1. Coo(X,Y) = BE(XY) - E(X)E(Y)
2. Cov(X,Y) = Cov(Y, X)
3. Cov(a, X) = Cov(X,a) = 0, Cov(X, X) = Var(X)
4. Cou(Y, aiXi, Y0,0:Yi) = X, aib;Cov(X;, Y)

(

5. Var(y, aiXi) = Y, aiVar(X;) + 23, Cov(X;, X;)

6. (Cov(X,Y))? < Var(X)Var(Y), and if Var(X) # 0, they are equal iff
Y =aX + b a. s. (aka. with probability 1) for some a, b.

7. |Corr(X,Y)| < 1. f Var(X) # 0, Corr(X,Y)=1if Y =aX + b a. s.
for some a > 0

8. When a > 0, Corr(aX +b,Y) = Corr(X,Y); when a < 0, Corr(aX +
b,Y)=—Corr(X,Y)

Proof. Parts 2 and 3 follows from definition. Part 1 is due to
Cov(X,Y)=E(X —EX))(Y - EY)))
=FEXY)-EEX)Y)-EEY)X)-EEX)EY)) =EXY)-EX)E®Y)

Part 4 follows from Part 1 and the fact that expectation is linear. Part 5 follows
from Part 3 and 4. Part 6 is due to the fact that for any t € R,

BE((t(X - E(X)) = (Y = E(Y)))*) > 0
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Hence
t*Var(X) — 2tCov(X,Y) + Var(Y) >0

And the inquality follows. When equal sign is reached, there is some ¢ such that
0=FEt(X -EX))—- (Y -EY))?) =Var(tX —-Y)

Hence by Theorem Y = tX + C with probability 1. Part 7 follows from
Part 6, Part 8 is due to Parts 2 and 3. O

Example 6.42. Let X = [4, Y = I, then they are uncorrelated iff A and B
are independent.

Example 6.43. Let Q = {(z,y) : |z| < 1,|y| < 1,|y| < |z|}, X, Y ~ Unif(2),
then Cov(X,Y) = Corr(X,Y) =0 but X and Y are not independent.

Example 6.44. Let X ~ HyperGeom(n,m,k), then X is the sum of k£ random
m(m—n)
n2(n—1) "
So by Part 5 above, Var(X) = kmnom) _ k(k=Dmn-m) _ k(n—k)m(n—m)

n? n2(n—1) n2(n—1)

variables with Ber(m/n) distribution. The covariance between them is

Example 6.45. Suppose X, Y have joint pdf proportional to e~ (a2 +2bzy+ey?)
where a > 0,ac > b?>. Then by calculation, the variance of X and Y are
ey and 5ty respectively, and Cou(X,Y) = E(XY) = —%%Lbz) So

the correlation between X and Y equals — \/%
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7 LLN and CLT

7.1 Tail Bounds and Applications
Sections 9.1 and 9.2 of textbook

A generalization of Theorem [3.27]is the following Chebyshev’s inequality:
Theorem 7.1. Let X be a random variable.

1. (Markov’s inequality) If X > 0, E[X] = C, then for any y > 0, P(X >
y) <<

2. (Chebyshev’s inequality) If X has finite first and second moment (i.e.
Var(X) is finite), then for any y > 0, P(|X — E(X)| > y) < V%g){)

vy X@ 2y g x, < x,

0 X(w)<y

hence C' = E(X) > E(X;) = yP(X > y). Divide y on both sides we get

the inequality.

Proof. 1. Consider random variable X3 (w) = {

2. Apply Part 1 to (X — E(X))%

An immediate application is the following (weak) law of large number:

Theorem 7.2. Let X; be i.i.d. with finite finite expectation and variance.
Then for any € > 0,
> 6) =0

Proof. By Chebyshev’s inequality (Theorem and Theorem m

P(‘Z%fxi—ﬂxl) >e> Vet

n—oo

noX,
lim P <‘Z—1 — B(X))
n

which goes to 0 as n — oo. O

7.2 Central Limit Theorem
Section 9.3 of textbook

Theorem 7.3 (Central Limit Theorem). Let X; be i.i.d. with finite expectation
and variance. Then for any s € R,

lim P (Z?—l X; —nB(X)) < s) = d(s)

n—00 nVar(X)

where ® is the cdf of (0, 1).
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Remark 7.4. WLOG assume that F(X;) =0 and Var(X;) = 1. Consider the
MGF of X;, denoted as M(t), then M’(0) = 0, M"(0) = 1. Now the MGF
of ZL#X is M(t/\/n)". Since M(t) ~ 1+ t2/2, as n — oo the limit we get
approaches e!’/2 which is the MGF of (0, 1).

The proof of the central limit theorem would follow if one consider ¢ a com-
plex number, i.e. replace MGF with “characteristic functions”.

Remark 7.5. The X; being uncorrelated and identical in distribution is insuf-
ficient for getting the conclusion of CLT. For example, let X; be i.i.d. Ber(1/2),
Y, = X1(2Xi41 — 1).

Example 7.6. The theorem above implies the normal approximation of bi-
nomial distribution (Theorem [4.1)) and the Poisson distribution as A — oo: if
Y,, ~ Poisson(n\), then as n — oo, Z, = Y%n’;\)‘ converges in distribution to

N(0,1).
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8 Conditional Distribution and Conditional Ex-
pectation

Section 10.1-10.3 of textbook

When X and Y are random variables, the conditional distribution of Y
given X = x can not always be defined as in Definition The reason is that
P(X = x) may be 0. However, the Disintegration theorem in measure theory
tells us that there is a almost everywhere uniquely defined family of probability
spaces (R, B, P,) such that for any Borel set A C R?,

P((X,Y) € A) = Elga(X)]

where
ga(z) = Po({y : (z,y) € A})

P,(-) are called the probability distribution, denoted as P(:|X = x), and
the expectation of Y in this conditional distribution is called the conditional
expectation.

Remark 8.1.

1. One can define conditional probability distribution and conditional expec-
tation for more than 2 random variables.

2. When X and Y are independent, the conditional distribution equals the
marginal distribution.

3. When Y = g(X), the conditional distribution of Y given X = x is degen-
erate, with P(Y = g(z)|X = z) = 1.
8.1 Discrete Case

When X is discrete, we can use Definition In particular, if both X and Y
are discrete, P(X = a) > 0, then the conditional pmf of YV is

pla,y)
px(a)

pY|X(y\a) =
and the conditional expectation is:

E(g()|X =a) =Y g(y)pyx (yla)

Example 8.2. Let Xq,...,X, be ii.d. Bernoulli distribution with param-
eter p = 1/2. Let Y = >, X;,, X = > "  X;, where m < n. Then
X ~ Bin(n,1/2).
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1. The joint pmf is
<ZX S ) (’”>2m.<n—m>2n+m
1=m-+1 Yy r—Yy
where 0 <y <z <n,y<m.

2. The conditional pmfis, for 0 <y <z <n,y<m

() G2

prix i) = <205
3. When m = 1’ )
PX;=1X=x)= (?n;) :2

So the conditional expectation of Y given X is

E[Y|X =] = mE[X;|X = 2] = —

8.2 Jointly Continuous Case

If X, Y are jointly continuous with joint pdf f, then the conditional pdf of Y
is
f(z,y)
xT) =
fY|X(y‘ ) fX(x)

and the conditional expectation is

Blgv)x =) = [~ 2SI,

Example 8.3. Suppose X ~ Unif(0,1), and when X =z, Y ~ Unif(0,x).

1. The joint pdf is now

I/x O0<y<z<l
:E7 = .
f@.y) { 0 otherwise

2. Suppose Y = 1/2, the conditional pdf of X is

T, 1/2<e <]
Ixpy (x|1/2) = f1/2 Tix /2<z
otherwise

1
_ e L /2<x<1
0 otherwise

B(X|Y =1/2) =

1
2log(2)
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A Midterm I Review

1. Probability spaces

(a) Examples:
i. Experiments with finitely many outcomes with equal probability
ii. “uniformly at random” on geometric shapes
iii. Infinite sequence of repeated experiments

(b) Inclusion-Exclusion

[\

. Independence of events

w

. Conditional Probability

(a) Conditional Independence

(b) Bayersian Theorem

W~

. Random Variables

(a) CDF and Probability Distribution. Properties of CDF:
i. Limits at oo
ii. Non decreasing
iii. Right continuity
(b) Independence of random variables
(¢c) Special kinds of random variables:

i. Discrete random variables, PMF
ii. Continuous random variables, PDF
iii. Properties of PMF and PDF

(i) PMF: Non-zero on countable set, non negative, sum equals
1

(ii) PDF: Non negative, integrable, integral equals 1
iv. Recovery of PMF and PDF from CDF
(d) Expectation and Variance
i. Expectation and Variance for discrete random variables
ii. Expectation and Variance for continuous random variables

5. Normal Approximation of Binomial Distribution

The old midterm I and solution have been uploaded to this Overleaf project.

Practice Problems:

1. Consider the probability space corresponding to rolling a pair of fair dices,
or when one picks a number uniformly at random from [0, 1]. Find three
events A, B and C, such that they are pairwise independent but not
mutually independent.
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Show that if f; and fo are pdf of some random variables, then % is

also the pdf of some random variable.

Let X be a random variable. If X is independent with X2, what do we
know about X?

. Flip a coin, if we get head, flip the coin again, and let X = 1 if we get

head in the second flip, 0 if otherwise. If the first flip gets a tail, let X be
a number chosen uniformly at random from interval [0,1]. Now suppose
we know that X > 0.9, what’s the probability that we got head in the
first flip?

Let X be a random variable such that P(X = —1)+ P(X =0)+ P(X =
1) = 1. What’s the largest possible expectation of X7 What’s the largest
possible variance of X?

Let X and Y be two independent random variables, with distribution
Geom(1/2). Find the conditional distribution of max(X,Y") when
min(X,Y) > 2.

Let A;, i = 1,2,3 be 3 real numbers chosen independently and uniformly
at random from interval [0,1]. Let X be the maximal number of points
among A; where the pairwise distance is no more than 0.1. Find the pmf
and expectation of X.

8. Let X be a continuous random variable with pdf f. Find the cdf and pdf
of Y = |X]|.

Answer

1. For the 2 dices case, we can let A be rolling a 1 in the first dice, B be

rolling a 2 in the second dice, and C be getting the same number on both
dices. For the picking a point uniformly at random from [0, 1] case, let A
be the point being in [0, 1/2], B be the point being in [1/4,3/4] and C be
the point being in [0,1/4] U [1/2,3/4].

fi+f:
- Because f >0, fo >0, so L52 > 0.

it fe _1/°° 1/°° B
/_OO godi=g [ hditg [ pdi=

For any a > 0, —a < X < a and X? < a? are indentical events which
are independent of one another, hence the cdf of X? takes value at only
0 or 1. Hence there is some a > 0 such that P(X? = a?) = 1. If a > 0,
P(X = —-a) =p, P(X =a) =1—p, where 0 < p < 1. If a = 0,
P(X=0)=1.
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4. Let B be the event where we get head in the first flip, and A be the event
that we get X > 0.9. Then by Bayer’s theorem,
P(A|B)P(B) 1/2x1/2 5

PBIA) = 5 ABPB) + PLAIB)PET ~ 12x1/2+01x12 6

5. Let P(X = -1)=a, P(X =0)=b, P(X =1) =¢, then 0 < a <1,
0<b<1,0<¢c<1l,a+b+c=1 E(X)=—a+c, so it is maximized
when ¢ = 1 and @ = b = 0, and the maximum is 1. Var(X) = E(X?) —
(E(X))? = (a+c) — (c—a)? which is maximized when b =0, a = ¢ = 1/2,
so the maximal possible variance is 1.

6. It is easy to see that when min(X,Y") > 2, max(X,Y) > 2.

P(min(X,Y) >2)=P(X >2,Y >2) = (P(X >2))?

= <Oo 2—k> =1/4
k=2

P(max(X,Y) =m,min(X,Y) > 2)

For any integer m > 2,

=PX=m2<Y<m)+PY¥Y =m2<X<m)—P(X=m,Y=m)

m
— 9x9—m ZQ_k—Q_mXQ_m — 21—m(2—1_2—m)_2—2m — 2—m_3><2—2m
k=2

So
P(max(X,Y) = m|min(X,Y) > 2) = 227™ — 3 x 2272m

7. Pick a point uniformly at random from the unit cube
{(z,9,2) ER?*:0<2<1,0<y<1,0<2< 1}

Let the three coordinates be A;, then these A; are indeed mutually in-
dependent and all have uniform distribution on [0,1]. X can take only 3
possible values, 1, 2 or 3.

P(X=3)=) P(Ai<A; <A +01forall j # i)

K2

0.9 1
=3 (/ 0.1%dt +/ (1-— t)2dt> =0.028
0 0.9

P(X = 1) = 3'P(A2 > Ay +O.1,A3 > Ay +01)

0.8 1
=6 (/ ~(0.8 - t)2dt> =0.512
O 2
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P(X =2)=P(X <2)— P(X =3)
=3P(A; —0.1< Ay <A +0.1) —3P(A; — 0.1 < Ay < Ay +0.1,
A —01<A3< A +0.1)+ P(X =3)— P(X =3)

0.1 0.9 1
=3 (/ (t+0.1)dt +/ 0.2dt +/ (11— t)dt>
0 0.1 0.9

0.1 0.9 1
-3 </ (t+0.1)2dt+/ 0.22dt+/ (1.1 t)zdt>
0 0.1 0.9
=0.57 — 0.11 = 0.46

8. The cdf of Y is

F@zpmm<@:{}f@ﬁj§8

Hence the pdf of Y is
d 0 s<0
“@:@F@:{ﬂ@+ﬂs>szo

Remark A.1. There would not be complicated multiple integrals in the exams
like in Problem 7 above. But the inclusion-exclusion idea we used to set up the

integrals would be in the exam.
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B Midterm II Review

1. Confidence Intervals
2. Exponential and Poisson Distibutions

3. Moment Generating Function and its applications (e.g. moments from
mgf)

4. pmf and pdf of g(X)
5. Joint probability distributions

(a) Joint pmf and joint pdf, relationship with independence
(b

(c
(d

Multinomial and uniform distribution on regions

Sums of independent random variables

—_— — —

Exchangable random variables
Practice Problems:

1. Let Xq,...,Xg be ii.d. normal with a variance of 4 and unknown expec-

tation p. Find C such that Z’TX -C, Z%Xi +C| is a 95% (p = 0.05)

confidence interval for p.

2. Roll a dice 10 times, let X be the number of times getting 1, Y the number
of times getting 2, Z the number of times getting 3 or above. What’s the
joint distribution of X,Y,Z? What’s the marginal distribution of Y7
What’s the variance of 2Y — 17

3. Suppose the moment generating function of a random variable X is Mx (t) =
t

e%;* . Find E[X], E[X?], Var(X) and the cdf of X.

4. Suppose X ~ Poisson(l), Y ~ Ezp(l) are independent. What’s the
probability that X < Y?

5. Pick a point P = (X,Y) uniformly at random from a disc of radius 1
centered at (1,1). Are X and Y independent?

6. Suppose X ~ AN(0,4), Y ~ A(0,9) are independent. Find ¢ € R such
that the variance of tX + (1 —¢)Y is minimized.

Answer
1. C= —@@‘1(0.025) where @ is the cdf of standard normal distribution.

2. The joint distribution is Mwlti(10,3,1/6,1/6,2/3), and the marginal dis-

tribution of Y is Bin(10,1/6). Var(2Y —1) = 4Var(Y) = 2
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0 s<—1

. X is discrete with pmf p(1) = p(—1) =1/2. Socdfis F(s) = ¢1/2 —-1<s<1,
1 s>1

E(X)=0,Var(X) = E(X?) =1.

CPX<Y)=Y PX=kY >k) =),2, ek;'l R
. No. One can verify by multiplying the marginal pdfs.

. The variance of tX + (1 — t)Y equals 4t + 9(1 — ¢)?, so it is mininized
when ¢ =9/13.

93



C Final Review

C.1 Common Distributions

Distribution Expectation Variance
Ber(p) p p(l —p)
Bin(n,p) np np(1 —p)
Geom(p) 1/p (1-p)/p°
HyperGeom(n,m, k) km/n k(n —Ek)ym(n —m)/((n — 1)n?)
Negbin(n,p) n/p n(L—p)/p’°
Poisson(\) A A
Unif(a,b) (a+0b)/2 (b—a)?/12
Exp(\) 1/A 1/X2
N(u,0?) u o?
Multi(n,r,p1,...,pr) | E[X;] = np; Var(X;) = npi(1 — p;)
Cov(X;, X;) = —npipj, i # 5 ©
(a) X ~ Geom(p), then
tX - k—1_kt pe’
MX(t) E[e ]:kz::lp(l_p) e :1_(1_p)€f
’ . pet _ ’ _ P _ 1
MX(t)_(17(17p)6t)27E[X]_(MX) (O>_p2_p
7 _ pet(l + (1 _p)et) 21 _ gl _ 2—p
MX(t) - (1 7 (1 — p)et)3 7E[X ] - MX(O) - pg
Var(X) = E[X?] — E[X]? = 1p—2p

(b) Negbin(n,p) is the sum of n i.i.d. Geom(p).

(c) X;X; is the number of ordered pairs (k,) such that k # [, and the k-th
experiment gets outcome i, the I-th outcome j, hence E[X;X;] = n(n —

)pip;,

Cov(X;,X;) = E[X;X;] — E[X;]E[X;] = n(n —1)p;p; — nQpipj = —np;pj

C.2 Topics
1. Probability Spaces

(a) Inclusion-Exclusion
(b) Independence of events
(¢) Conditional Probability

i. Conditional Independence
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ii. Bayesian Theorem
2. Random Variables

(a) Probability Distribution, CDF
(b) Discrete RV, PMF
(¢) Continuous RV, PDF
(d) Expectation
i. Linearility
ii. Indicator RV and Indicator Method
iii. Variance
(e) Transformations, MGF
3. Joint Distribution

(a) Discrete Case, joint PMF
(b) Jointly Continuous Case, Joint PDF
(¢) Marginal Distribution, marginal cdf/pmf/pdf
(d) Conditional distribution
i. Conditional expectation
(e) Independece of RV
i. pdf of sum and convolution
ii. Expectation of product

iii. MGF of sum
iv. Variance of sum

(f) Exchangability of RV
(g) 1ID

(h) Covariance and correlation
4. Tail bounds and CLT

(a) Markov’s inequality
i. Chebyshev’s inequality
ii. Weak LLN

(b) CLT
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C.3 Practice Problems

1. Let X and Y be jointly continuous with joint pdf f(z,y). Find the joint
pdf of X, kX +Y for k € R.

2. Let X4,...,X, beii.d. continuous random variables. Let Y be the num-
ber of j such that X; > X;.

(a) Find the pmf of Y, E[Y] and Var(Y).
(b) Let Z be the number of j such that X; > Xs. Find Cov(Y, Z).

3. Suppose there is a group of drivers, half of them gets on average one ticket
per year, the other half one ticket every 2 years. Suppose someone in the
group did not get any traffic ticket in 2025. What’s the probability that
the same person would not get a traffic ticket in 20267

4. Roll a dice 100 times, let X be the sum of the points. Use Chebyshev’s
identity and CLT to estimate the probability that X > 400.

5. Let (X,Y) be chosen uniformly at random from the unit disc, find the
expectation and variance of X and Y, Cov(X,Y), and the conditional
distribution of X given Y = 0.

6. Let X and Y be jointly continuous. Suppose the conditional expectation
of Y is a constant that does not depend on the value of X. Is it true that
X and Y are uncorrelated?

7. Let X and Y be i.i.d. N(0,1).

(a) For any real number s, find P(X < s|X +Y <0).
(b) Find the conditional pdf of X given X +Y < 0.
Answer:
1. Let the new pdf be h, F: (z,y) — (z,kz + y), then

/ h(s,t)dsdt = P((X,kX +Y) € A) = P((X,Y) € F~(A))
A

- / F(,y)dady
F-1(A)

By change of variable formula in multivariable calculus,
/ h(s,t)dsdt = / ho F(z,y)|det(F")|dxdy
A F-1(A)

Here F' is the derivative, or the Jacobian matrix. Since det(F') = 1, we
have

f(z,y) = hoF(z,y) = h(z, kr +y)
So h(s,t) = f(s,t — ks).
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2. Because they are continuous and iid, they are exchangable and jointly
continuous, hence for any bijection o from {1,...,n} to itself, P(X,(1) <
< Xomy) = %, hence for 0 <k <n-—1,

P(Y:k)z1'<n;1>-k!-(n—l—k)!:i

So E[Y] = 251,

B 1 (n=1n@n-1) (n-12 n?-1
Var(Y) = E[Y?] - E[Y)? = ~ c R T

By exchangability, Z has the same distribution of Y, and the joint pmf
can be similarly calculated as

1
p(i,j):mwhereogi,jgn—l,i;ﬁj

Hence
9 1 n—1
BYZ)=——— S ij=——— | Y i3
n(n - 1) 0<i<j<n—1 TL(TL - 1) 0<4,7<n—1 1=0
_ 3’42
- 12
1
Cov(Y,Z)=E(YZ)-E(Y)E(Z) = 7n1+2

3. Call the first kind bad drivers, the second kind good drivers. Then for
bad drivers the number of ticket each year ~ Poisson(1), for good drivers
~ Poisson(1/2). Let the driver be a, then P(a is good) = 1/2,

P(a is good|a gets no ticket in 2025)

-1 1
€ ) e

el i4e2.1 T 1te
P(a gets no ticket in 2026|a gets no ticket in 2025)
-1 € —|—6_2- 1 :1+€_2

1+e 1+e 1+e

4. BE[X] =350, Var(X) = 2%, by Chebyshev’s identity,

=€

1 85 7

P(X > 400) = = P(|X — < -

(X > 400) = 5 P(IX = 350] > 50) < 5~y = oo

By CLT,
50
P(X >400) ~1— ~ 1 — B(2.928)

875
3

Where @ is the cdf of A(0,1).
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5. The marginal pdf of X and Y are

0 r<—lorxz>1
f(s){1—82 1<z<1

s

So their expectation is 0, variance is %.

Cou(X,)Y) = / ﬁdzdy =0

z24y2<1 m
When Y = 0, the conditional distribution of X is Unif(—1,1).

_ o1 v Lyfl@ydy
6. Yes. Suppose E[Y|X =z]=C = }1 o)

Cov(X,Y) = /

R2

/]R2 xy f(x,y)drdy = /]R (:UC/Rf(%y)dy> dz = CE[X]

/Rz yf(x,y)dedy = /R (CAf(x7y)dy) dy =C

So Cov(X,Y) =0

vy f(x,y)drdy — E[X] /R yf(z,y)dxdy
and

7. The joint pdf is f(x,y) = ie*#

(a)

P(X<s,X4Y <0
P(X+Y <0)

P(X <s|X+Y <0)=

1

22442
= —/ e dedy =1 — ®?(—s) = 28(s) — B?(s)
m z<s,z+y<0

where @ is the cdf of (0, 1).

(b) The conditional pdf is now 2f(s)(1 — ®(s)) where f is the pdf of
N(0,1), and ® its cdf.
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D JS code for visualizing the normal approxi-
mation and continuity correction

<!DOCTYPE html>
<html>
<head>
<meta name="viewport” content="width=device—width, -
initial —scale=1.0">
<script src=https://cdnjs.cloudflare.com/ajax/libs/mathjs
/14.8.1/math.min. js></script>
</head>
<h1>Normal Approximation of Binomial Distribution</hl>
<body>
<p>N: <input type="text” id="n” value="10"></p>
<p>p: <input type="text” id="p” value="0.5"></p>
<p><button type="button” onclick="plotCDF () ;”>Plot CDF</
button></p>
<canvas id="myCanvas” width="500" height="500"
style="border:1px-solid -#000000;”>
</canvas>
<script>
function plotCDF () {
var n=parselnt (document. getElementByld (”n”).value);
var p=parseFloat (document.getElementById (”p”).value
)
var cvs=document.getElementByld (”myCanvas”) ;
var ctx=cvs.getContext(”72d”);
ctx.clearRect (0, 0, cvs.width, cvs.height);
ctx . beginPath () ;
ctx.strokeStyle="#0000FF” ;
function line(a, b, ¢, d){

ctx .moveTo(a, b);
ctx.lineTo(c, d);
ctx . stroke () ;

}

var x=0;

var y=500;

for(let i=0;i<n;i++){
var xn=x+500/n;
var cp=math.combinations(n, i)*Math.pow(p, 1i)=*
Math.pow(l—p, n—i);
var yn=y—>500%cp;
line (x, y, x, yn);
line (x, yn, xn, yn);
X=Xn;
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y=yn;
}
line (500, y, 500, 0);
ctx.strokeStyle="#FF0000” ;
ctx.beginPath () ;
var ny=|];
for (let i=0;i<=500;i+=5){
var k=ixn/500;
var x=(k-nxp)/Math.pow(nxpx(1—p), 0.5);
ny.push ([i, 500%(0.5—0.5%math. erf(x/Math.pow (2,
0.5)))1);
}

for (let i=0;i<100;i++){
line (ny [1][0], ny[i][1], ny[i+1][0], ny[i+1][1]);

ctx.strokeStyle="#FFO0FF” ;
ctx.beginPath () ;
var ny=[];
for (let 1=0;i<=500;i+=5){
var k=ixn/500+0.5;
var x=(k-nxp)/Math.pow(nxpx(1—p), 0.5);
ny.push ([i, 500%(0.5—0.5+*math.erf(x/Math.pow (2,
0.5)))1);

for(let i=0;i<100;i++){
line (ny[1][0], ny[i][1], ny[i+1][0], ny[i+1][1]);

}
</script>
</body>
</html>
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E Python code for calculating probabilies with
normal approximation and continuity correc-
tion

import math
def cdf(t):
return (1+math.erf(t/2%%0.5))/2

def choose(n, k):
r=1
for j in range(k):
r*=n—j
v/ /=j+1
return r

#binomial probability distribution
def binom(n, p, k1, k2):
r=0
for j in range(kl, k2+41):
r=choose (n, j)*(pesi)*((1—p)+s(ni))
return r

#normal approximation without continuity correction
def approx(n, p, kl, k2):

sigma=(n*px*(1—p))*%0.5

return cdf ((k2-nx*p)/sigma)—cdf ((kl—1-n%p)/sigma)

#normal approximation with continuity correction
def approx_cc(n, p, kl, k2):
sigma=(n*p*(1—p) ) *%0.5
return cdf ((k240.5—nxp)/sigma)—cdf ((k1—0.5—nx*p) /sigma
)

print (binom (100, 1/6, 20, 25))
print (approx (100, 1/6, 20, 25))
print (approx_cc (100, 1/6, 20, 25))
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F JS code for visualizing Poisson approximation

<!DOCTYPE html>
<html>
<head>
<meta name="viewport” content="width=device—width , -
initial —scale=1.0">
<script src=https://cdnjs.cloudflare.com/ajax/libs/mathjs
/14.8.1/math.min. js></script>
</head>
<h1>Poisson Approximation of Binomial Distribution</h1>
<body>
<p>N: <input type="text” id="n” value="10"></p>
<p>lambda: <input type="text” id="lambda” value="4"></p>
<p><button type="button” onclick="plotPMF () ;”>Plot PMF</
button></p>
<canvas id="myCanvas” width="500" height="500"
style="border:1px-solid -#000000;”>
</canvas>
<script>
function plotPMF (){
var n=parselnt (document.getElementById (”n”).value);
var lam=parseFloat (document.getElementById (”lambda”
). value);
var cvs=document.getElementByld (”"myCanvas”) ;
var ctx=cvs.getContext (”2d”);
ctx.clearRect (0, 0, cvs.width, cvs.height);
ctx . beginPath () ;
ctx.strokeStyle="#0000FF” ;
function line(a, b, ¢, d){

ctx .moveTo(a, b);
ctx.lineTo(c, d);
ctx.stroke () ;

}
for (let i=0;i<20;i++){
var x=i*25+2;
var cp=0;
if (i<=n){
cp=math.combinations(n, 1i)*Math.pow(lam/n, i)=*
Math.pow(l—lam/n, n—i);
}
line (x, 500, x, 500—500xcp) ;
}
ctx.strokeStyle="#FF0000” ;
ctx.beginPath () ;
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for (let i=0;i<20;i++){
var x=i*25+4;
var cp=Math.pow(lam, i)/math.factorial (i)*Math.
exp(—lam) ;
line (x, 500, x, 500—500%cp);
}
}
</script>
</body>
</html>
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