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Instructor: Chenxi Wu (he/him)

Email: cwu367@wisc.edu

Lecture: 1-2:15pm Tu Th

Office Hours: 9-10 am Tuesday and Wednesday at Van Vleck 517, or by
appointment.

Grades: 10% weekly HW, 2% Quiz on prerequisites, 5% weekly quizzes,
2 × 25% Midterms, 33% Final Exam.

Do as much of the exercises as possible, but make sure you understand the
basic concepts first.

Why study probability:

• Foundation of statistics, Statistical Literacy

• Applications in other areas of mathematics

• Applications in science and engineering

Content colored in blue are materials that might help with understanding
but will not be covered in the exam.
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1 Probability Spaces

1.1 Definition and Basic Properties

1.1-1.4 of textbook

One way to formulate the concept of probability is the Kolmogorov’s Ax-
ioms:

Definition 1.1. A probability space is a tuple (Ω,F , P ), where:

1. Ω is a set called the sample space, an element ω ∈ Ω is called a sample.

2. F is a subset of the set of subsets of Ω. Elements of F are called events.
F is further required to be a σ-algebra, which means that:

(a) ∅ ∈ F
(b) A ∈ F =⇒ Ac ∈ F
(c) Let {An} be a countable sequence of elements of F , then

⋃
n An ∈ F

3. P is a function from F to R, called the probability, or probability
measure or probability distribution. It satisfies the following axioms:

(i) For any A ∈ F , 0 ≤ P (A) ≤ 1

(ii) P (∅) = 0, P (X) = 1

(iii) Let Ai be a sequence of pairwise disjoint (i ̸= j then Ai ∩ Aj = ∅)
events, then P (

⋃
i Ai) =

∑
i P (Ai).

Remark 1.2.

1. Elements of Ω denotes “possible outcomes of an experiment” or “possible
states of the world”. The set Ω and its elements are usually unimportant.

2. Elements of F denotes events whose probability we care about. Let A ∈ F ,
ω ∈ A means “at state ω the event A can be said to have happened”. The
assumptions on F means:

(a) There is an event that would never happen.

(b) If A is an event, “A does not happen” is an event as well.

(c) If we have a countable sequence of events {An}, then “at least one
of the Ai happens” is an event.

3. P is a function that assigns each event its probability. The axioms on P
means:

(i) The probability of an event must be a number between 0 and 1

(ii) If an event never happens, its probability is 0. If it always happens,
its probability is 1.
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(iii) If there is a countable sequence of events, none of the two can happen
at the same time, then the probability that at least one happens is
the sum of the probabilities they happen.

Remark 1.3. In probability, we sometimes denote A ∩B as AB.

Example 1.4. A fair coin flip can be represented as the probability space
(Ω,F , P ), where

Ω = {head, tail}

F = {∅, {head}, {tail}, {head, tail}}

P (∅) = 0, P ({head}) = 1/2, P ({tail}) = 1/2, P (Ω) = 1

Example 1.5. More generally, an experiment with N possible outcomes with
equal probability can be represented by (Ω,F , P ), where Ω is a finite set of N
elements, F is the set of subsets of Ω, and P (A) = |A|/N where | · | is the
cardinality of finite set A.

Example 1.6. Similar probability spaces can be written down to represent

1. Fair dice

2. Multiple coin flips

3. Multiple dice rolls.

4. Random sampling of one object among finitely many objects with equal
chances

5. Random sampling of multiple objects among finitely many objects, with
and without put back, with or without order

Example 1.7. Sometimes Ω need to be infinite sets, for example

1. Infinitely many coin flips:

Ω = {head, tail}N, P ({ω = (ωi) : ωk = ck, k = 1, . . . ,m}) = 2−m

2. Random point on interval [0, 1], with uniform distribution

Ω = [0, 1], P ((a, b)) = b− a

3. Random point on a disc (or other shape with finite and non-zero volume),
with uniform distribution

Remark 1.8. Axiom (iii) can be used to calculate the probability of an event,
after one decomposes it into simpler events. For example, for the model of
infinitely coin flips, the probability of getting a head at the 2k-th flip for some
k ∈ N, is 1/4 + 1/42 + · · · = 1/3.

Below are some basic properties of probability:
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Theorem 1.9.

1. P (A) + P (Ac) = 1

2. (Monotonicity) A ⊆ B then P (A) ≤ P (B)

3. (Inclusion-Exclusion) Ai, i = 1, . . . n are events, then

P (A1 ∪ · · · ∪An) =

n∑
j=1

(−1)j−1
∑

1≤i1<···<ij≤n

P (Ai1 ∩ · · · ∩Aij )


Proof. 1. 1 = P (Ω) = P (A) + P (Ac).

2. P (B) = P (A) + P (B ∩Ac) ≥ P (A).

3. Induction on n.

Theorem 1.10. Let Ai be a sequence of events, Ai ⊆ Aj if i < j, then

P

( ∞⋃
i=1

Ai

)
= lim

n→∞
An

Proof.

P

( ∞⋃
i=1

Ai

)
= P (A1) +

∞∑
i=1

P (Ai+1\Ai)

Here Ai+1\Ai = Ai+1 ∩Ac
i are events. Hence

P

( ∞⋃
i=1

Ai

)
= lim

n→∞

(
P (A1) +

n−1∑
i=1

P (Ai+1\Ai)

)
= lim

n→∞
An

Example 1.11. N persons with distinct names drawing their own names with-
out put back, the number of possible outcomes is N !, all with same probability
due to symmetry. Let A be the event that at least one person get their own
name, Ai be the event that the i-th person gets their own name, then A =

⋃
i Ai,

and by inclusion-exclusion,

P (A) = N × 1

N
−
(
N

2

)
1

N(N − 1)
+ · · · =

N∑
i=1

(−1)i−1

i!

Which, as N → ∞, converges to 1 − e−1.
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1.2 Random Variables

1.5 of textbook

Definition 1.12. A random variable X on the probability space (Ω,F , P )
is a real valued function on Ω such that X−1((a,∞)) ∈ F for all a ∈ R.

Example 1.13.

1. Let (Ω,F , P ) be the probability space that represents throwing a fair
dice, Ω = {1, 2, 3, 4, 5, 6}, X is defined as X(n) = n, then X is a random
variable.

2. Let (Ω,F , P ) be the probability space that represents picking a real num-
ber uniformly at random from interval (0, 1), then Ω = (0, 1), and X(x) =
x is a random variable.

Definition 1.14. When there are at most countable ki ∈ R such that PX({ki}) =∑
i PX({ki}) = 1, we say that X is a discrete random variable. The proba-

bility distribution PX now depends completely on the probability mass func-
tion (p.m.f) p(ki) = P (X−1({ki})). When there is only one ki we say that X
is called degenerate or almost surely constant.

Example 1.15.

1. Consider infinitely many fair coin flips (see Example 1.7), let X be the
number of flips needed to get a head, then the pmf is p(n) = 2−n, n ∈ Z,
n > 0.

2. Consider picking a number from open interval (0, 1) uniformly at random,
X(x) = ⌊1/x⌋, then the pmf is p(n) = 1

n(n+1) , n ∈ Z, n > 0.

Definition 1.16. Given a random variable X on a probability space (Ω,F , P ),
one can define another probability space (R,B, PX), called the probability
distribution of X, as follows:

PX(A) = P (X−1(A))

Here B is the Borel σ-algebra, which is the smallest σ-algebra containing all
the intervals.

Remark 1.17.

1. One can show that (R,BX , PX) satisfies Definition 1.1. In other words,
the probability distribution is well defined.

2. When X is discrete, PX(A) =
∑

ki∈A p(ki).
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2 Conditional Probability and Independence

2.1 Conditional Probability

2.1-2.2 of textbook

Definition 2.1. Let (Ω,F , P ) be a probability space. Let B ∈ F , P (B) > 0,
then for any event A, the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

Example 2.2. To see why this definition make sense, let’s consider the proba-
bility space in Example 1.5, i.e.

Ω = {ω1, . . . , ωN}

F = 2Ω

P (A) = |A|/N

Now suppose P (B) = k/N > 0, and we already know that B happened, then
each of the k experimental outcomes in B are equally likely to happen, while
the remaining experimental outcomes would definitly not happen. Hence,

P ({ω}|B) =

{
1/k ω ∈ B

0 ω ̸∈ B

and given this information, the probability that another event A would happen
should be ∑

ω∈A

P ({ω}|B) =
|A ∩B|

k
=

|A ∩B|/N
k/N

=
P (A ∩B)

P (B)

Theorem 2.3. If (Ω,F , P ) is a probability space, P (B) > 0, then so is (Ω,F , P (·|B)).

Proof. We only need to check conditions (i)-(iii) in Definition 1.1:

(i) By Theorem 1.9 Part 2, P (A∩B) ≤ P (B), by (i) of Definition 1.1, P (A∩
B) ≥ 0, hence

0 ≤ P (A ∩B)

P (B)
= P (A|B) ≤ 1

(ii)

P (∅|B) =
P (∅ ∩B)

P (B)
= 0

P (Ω|B) =
P (Ω ∩B)

P (B)
= 1
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(iii) If {An} is a countable sequence of mutually disjoint events, so is {An∩B}.
Hence

P (
⋃
n

An|B) =
P ((
⋃

n An) ∩B)

P (B)
=

P (
⋃

n(An ∩B))

P (B)

=
∑
n

P (An ∩B)

P (B)
=
∑
n

P (An|B)

Definition 2.4. Let (Ω,F , P ) be a probability space, a Partition is a finite
set of pairwise disjoint events B1, . . . , Bn whose union is Ω.

Example 2.5. Let B ∈ F , then {B,Bc} is a partition.

The followings are some basic properties of conditional probability, the proofs
are all very straightforward.

Proposition 2.6. Let (Ω,F , P ) be a probability space, then:

1. If A1, . . . , An ∈ F , then

P (A1∩· · ·∩An) = P (A1)P (A2|A1)P (A3|A1∩A2) . . . P (An|A1∩· · ·∩An−1)

2. If B1, . . . , Bn is a partition, A ∈ F , then

P (A) =
∑
i

P (A|Bi)P (B)

In particular,

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

3. (Bayer’s formula) If B1, . . . , Bn is a partition, A ∈ F , P (A) > 0, then

P (Bk|A) =
P (A|Bk)P (Bk)∑
j P (A|Bj)P (Bj)

In particular,

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)

Proof.

1. This is done by repeatedly applying P (A ∩B) = P (A)P (B|A).

2. A =
⋃

i(A ∩Bi), and when i ̸= j,

(A ∩Bi) ∩ (A ∩Bj) ⊆ Bi ∩Bj = ∅

Hence
P (A) =

∑
i

P (A ∩Bi) =
∑
i

P (A|Bi)P (Bi)
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3.

P (Bk|A) =
P (Bk ∩A)

P (A)
=

P (Bk)P (A|Bk)∑
i P (A|Bi)P (Bi)

Remark 2.7. In the proposition above, the conditional probability might not
be well defined, but the identities are still valid if we use the convention that 0
times something undefined equals 0.

Example 2.8. If the prevalence of a disease in the population 0.001, a test has
false positive probability (the probability that the test result is positive while
there is no disease) and false negative probability (the probability that the test
result is negative while there is disease) 0.01, and a person is tested positive,
then the probability that they actually have the disease can be calculated as
follows:

Let A be the event that the person has the disease, B be the event that
the person get tested positive, then the assumption becomes P (A) = 0.001,
P (B|A) = 0.99, P (Bc|Ac) = 0.99. Hence

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

=
0.99 × 0.001

0.99 × 0.001 + 0.01 × 0.999
≈ 0.09

Basically, if we are testing for something really rare, the false positive rate
shouldn’t be too high, otherwise the positive tests will mostly come from false
positives and not true positives.

Example 2.9. If one draws 2 balls at random, from a box with 6 balls of
identical shape, 3 colored in red and 3 colored in green. And suppose we know
that at least one of the two balls are red. The probability that the other ball is
also red, given this information, would be

P (Getting 2 red balls)

P (Getting at least one red ball)
=

(3
2)

(6
2)

1 − (3
2)

(6
2)

=
1

4

If the first ball drawn is red, the probability that the second ball drawn is also
red is 2

5 .

2.2 Independence

2.3, 2.5 of textbook

Definition 2.10. Let (Ω,F , P ) be a probability space.

1. A,B ∈ F , we say that they are independent if P (A ∩B) = P (A)P (B).
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2. We say a sequence (or set) of events Ai are mutually independent, if
for any i1 < · · · < ik, P (Ai1 ∩ · · · ∩Aik) = P (Ai1) . . . P (Aik).

Example 2.11.

1. Consider a roll of a symmetrical cubical dice, with numbers 1, . . . , 6 on its
faces. Then the event of getting an even number, and the event of getting
a number smaller than 3, are independent.

2. In example 1.7 Part 1, the events “the n-th flip gets a head” are all mu-
tually independent.

3. Let Ω be a square whose vertices are (0, 0), (1, 0), (0, 1), (1, 1). Pick a point
p = (x, y) uniformly at random from S, then x < 1/2 and 1/3 < y < 2/3
are independent.

4. Let D be the unit disc, which is a disc on R2 centered at origin and has
radius 1. Pick a point p = (x, y) uniformly at random from D. Then

• x > 0 and y > 0 are independent.

• x > 0.75 and y > 0.75 are not independent.

The followings are some basic properties of independence:

Theorem 2.12. Suppose A is an event, P (A) = 0 or 1

1. For any event B, A and B are independent.

2. For any set of events {Bn} which are mutually independent, {A} ∪ {Bn}
is a set of events that are mutually independent.

Proof. For Part 1, if P (A) = 0,

0 ≤ P (A ∩B) ≤ P (A) = 0

so
P (A ∩B) = 0 = P (A)P (B)

If P (A) = 1, then
P (A ∩B) = P (B) − P (Ac ∩B)

0 ≤ P (Ac ∩B) ≤ P (Ac) = 1 − P (A) = 0

Hence
P (A ∩B) = P (B) = P (A)P (B)

The proof for Part 2 is analogous.

Theorem 2.13. If A and B are independent, so are Ac and B, A and Bc, Ac

and Bc. If {Ai} is a set of events that are mutually independent, let Bi be
either Ai or Ac

i , then {Bi} is a set of mutually independent events.

11



Proof. P (Ac ∩ B) = P (B) − P (A ∩ B) = P (B)(1 − P (A)) = P (Ac)P (B). The
remaining cases are analogous.

Theorem 2.13 shows that independence is preserved by taking complements.
Similarly, it is also preserved by taking countable disjoint unions:

Theorem 2.14. Let I be a non empty set, for each i ∈ I, let {Aij} be a set of
disjoint events, such that for any choice of ji, {Aiji : i ∈ I} is a set of mutually
independent events. Then {

⋃
j Aij} is a set of mutually independent events.

Note that any set constructed from A1, . . . , An ∈ 2Ω by finite union, finite
intersection and complement can always be written as a finite disjoint union of
the intersections of the various Ai and their complements. Hence, by Theorems
2.13, 2.14 and Definition 2.10 Part 2, we have

Theorem 2.15. Let {Ai} be a set of mutually independent events. Let {Bj}
be a set of events, each Bj is constructed from elements in {Ai} by complement,
finite intersection and finite union, and no Ai appears in the expression of two
different Bjs. Then Bjs are mutually independent.

Example 2.16. If an event A is independent from itself, then P (A) = P (A ∩
A) = P (A)2, hence P (A) = 0 or 1.

Definition 2.17. Let Xi be a sequence of random variables. We say Xi are
mutually independent if for any Borel sets Bi in R, the events Xi ∈ Bi (which
means {ω ∈ Ω : Xi(ω) ∈ Bi}) are mutually independent. Or, equivalently, for
any xi ∈ R, the events Xi ≤ xi are mutually independent.

Remark 2.18. When all Xi are discrete random variables, they are mutually
independent iff for any distinct i1, . . . , ik, any real numbers x1, . . . , xk, we have

P (Xi1 = x1, . . . , Xik = xk) =

k∏
j=1

P (Xij = xj)

Definition 2.19. Let (Ω,F , P ) be a probability space, Ai ∈ F , B ∈ F , P (B) >
0. We say Ai are mutually conditionally independent given B, if they are
independent in (Ω,F , P (·|B)).

Example 2.20. In Example 2.8, suppose we perform two consecutive tests, the
results are independent conditioning on whether the patient has or does not have
the disease. Let Bi, i = 1, 2, be the event that the i-th test is positive. Then if
someone get tested positive twice, the probability that the person actually has
the disease is

P (A|B1 ∩B2) =
P (A)P (B1|A)P (B2|A)

P (A)P (B1|A)P (B2|A) + P (Ac)P (B1|Ac)P (B2|Ac)

=
0.001 × 0.992

0.001 × 0.992 + 0.999 × 0.012
≈ 0.91
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Also,

P (B2) = P (B1) = P (A)P (B1|A) + P (Ac)P (B1|Ac) = 0.01098

P (B1 ∩B2) = P (A)P (B1|A)P (B2|A) + P (Ac)P (B1|Ac)P (B2|Ac) = 0.00108

So without conditioning B1 and B2 are not independent.

Remark 2.21. As seen in the example above, conditioning can turn indepen-
dence into dependence or dependence into independence.

2.3 Distributions from independent tests

2.4, 2.5 of textbook

The followings are some important discrete probability distributions (recall
Definition 1.16):

1. Bernoulli distribution: It has pmf

p(1) = p, p(0) = 1 − p

where p ∈ [0, 1] is a parameter. “X has Bernoulli distribution of parameter
p” is denoted as X ∼ Ber(p)

2. Binomial distribution: The sum of n random variables with distribu-
tion Ber(p). The pmf is

p(i) =

(
n

i

)
pi(1 − p)n−i, i = 0, 1, . . . , n

“X has Binomial distribution of parameters n, p” is denoted as X ∼
Bin(n, p) (or Binom(n, p)).

3. Geometric distribution: It has pmf

p(i) = (1 − p)i−1p, i = 1, 2, 3, . . .

“X has Geometric distribution of parameter p” is denoted as X ∼ Geom(p).

4. Hypergeometric distribution: Pick n balls at random from NA red
balls and N −NA blue balls, the number of red balls satisfies this distri-
bution. The pmf is

p(i) =

(
NA

k

)(
N−NA

n−k

)(
N
n

) , i = 0, . . . , n

“X has hypergeometric distribution of parameter N,NA, n” is denoted as
X ∼ Hypergeom(N,NA, n).
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Example 2.22.

1. Flip a coin once, the number of heads one gets is Ber(1/2).

2. Flip a coin N times, the number of heads one get is Bin(N, 1/2).

3. Flip a coin till we get head, the number of flips is Geom(1/2).

Example 2.23. Suppose two person takes turns rolling a dice, the first person
getting 4 wins. Then by the pmf of Geom(1/6), the probability that the game
ends at the k-th roll is (

5

6

)k−1
1

6

hence the probability that the first player wins is

∞∑
n=0

(
5

6

)2n+1−1
1

6
=

6

11

If we change the rule, so that the first player wins if they get a 4 and the second
player wins if they get 1 or 2, then the probability that the game ends after
2n + 1 rolls, where n is a non negative integer, equals(

5

6

)n(
2

3

)n
1

6

and the probability that the first player wins now becomes

∞∑
n=0

(
5

6

)n(
2

3

)n
1

6
=

3

8

2.4 Some Classic Examples in Probability

Example 2.24. (Birthday Problem) Let p persons each come up with a natural
number uniformly at random from 1 to n. The probability that none of them
pick the same number is

n− 1

n
· n− 2

n
. . .

n− p + 1

n
=

n!

npp!

Example 2.25. (Monty Hall Problem) Person A is given three identical boxes,
one with 1000 dollars, the other two empty. After A pick a box to open, B,
who knows where the money is, opens one of the other boxes showing that
it is empty. Should A keep the original choice or should A change?

1. Because the boxes are identical and A has no idea which has the money,
the probability that the initial choice is correct is 1/3. Let C be the event
that A made the right choice from the beginning.

2. If C happens, and A decides to change, then A gets nothing.

14



3. If C does not happen, and A decides to change, then A gets the money.

4. So the strategy of changing gets A money at probability 2/3.

If B does not know where the money is, and just opens one of the other
boxes at random, which happens to be empty. Then:

1. The probability that the box B picked is empty is 1/3×1+2/3×1/2 = 2/3.

2. The conditional probability that changing the box will get A the money
is

P (The box B picked is empty, and A gets the money)

P (The box B picked is empty)

=
P (The box B picked is empty, and the initial box A picked is empty)

P (The box B picked is empty)

=
2/3 × 1/2

2/3
= 1/2
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3 Random Variables

3.1 cdf, pmf and pdf

3.1, 3.2 of textbook

Definition 3.1. Let X be a random variable, the cumulative distribution
function (c.d.f) is F (s) = P (X ≤ s).

Remark 3.2. By measure theory, the cdf uniquely determines the probability
distribution of a real valued random variable.

Example 3.3. Suppose X is discrete with pmf p(xi) = P (X = x1) (see Defi-
nition 1.14), then the cdf of X is F (s) =

∑
xi≤s p(xi).

Definition 3.4. If there is a real valued function f such that F (s) =
∫ s

−∞ f(t)dt,
we say that X is a continuous random variable, the function f is called the
probability density function (p.d.f).

Example 3.5. Let x be a point picked uniformly at random from some interval
[a, b], X = x. Then the cdf of X is

F (s) =


0 s ≤ a
x−a
b−a a < s < b

1 s ≥ b

=

∫ s

−∞

χ[a,b](t)

b− a
dt

Here χA(x) =

{
1 x ∈ A

0 x ̸∈ A
, called the characteristic function. Hence X is

a continuous random variable. We call the probability distribution of X the
Uniform Distribution, denoted as X ∼ Unif [a, b].

From the definition and properties of probability spaces and random vari-
ables, we can deduce some elementary properties of the cdf:

Theorem 3.6. Let X be a random variable, F its cdf.

1. s < s′ implies F (s) ≤ F (s′).

2. lims→−∞ F (s) = 0, lims→∞ F (s) = 1.

3. F is right continuous, i.e. F (s) = limt→s+ F (t).

Proof.

1.
F (s′) = P (X ≤ s′) = P (X ≤ s) + P (s < X ≤ s′) ≥ P (X ≤ s)

16



2. By Part 1 above, the limits exist. By Theorem 1.10,

lim
s→∞

F (s) = lim
n→∞

P (X ≤ n) = P (Ω) = 1

lim
s→−∞

F (s) = 1 − lim
n→∞

P (X > −n) = 1 − P (Ω) = 0

3. By Theorem 1.10,

1 − F (s) = P (X > s) = lim
n→∞

P

(
X > s +

1

n

)
Hence for any ϵ > 0, there is some N such that if n > N ,

P

(
X > s +

1

n

)
> P (X > s) − ϵ

Hence
F (s) ≤ F (s + 1/(N + 1)) < F (s) + ϵ

So for any t ∈ (s, s + 1/(N + 1)), |F (t) − F (s)| < ϵ, hence F (s) =
limt→s+ F (t).

The following is another consequence of Theorem 1.10:

Theorem 3.7. Let F be the cdf of random variable X, then P (X < s) =
limt→s− F (t).

When the random variable X is continuous, we can get various properties
on its cdf and pdf via properties of integrals we learned in calculus (definition,
mean value theorem, fundamental theorem of calculus etc). For example, the
follows can be shown by Theorem 3.6, 3.7 and properties of integrals:

Theorem 3.8. Let X be a continuous random variable, with cdf F and pdf f .
Then

1. F is continuous.

2. P (X = s) = P (X ≤ s) − P (X < s) = F (s) − limt→s− F (t) = 0

3. If f is continuous at a, P (a < X < a + ϵ) =
∫ a+ϵ

a
f(t)dt = ϵf(a) + o(ϵ).

4. If f1 and f differs on only finitely many points, f1 is also a pdf of X.

5. f can not be negative on an interval with positive length. Actually, f can
always be chosen to be non negative.

6.
∫∞
−∞ f(t)dt = 1.

Remark 3.9.
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1. If a function F satisfies the conclusions of Theorem 3.6, it can be the cdf
of a random variable.

2. If f is a non negative integrable function on R, and
∫∞
−∞ f(t)dt = 1 then

f can be the pdf of some continuous random variable.

3. If p is a non negative function on a countable set A ⊆ R, and
∑

a∈A p(a) =
1, then p is the pmf of some discrete random variable.

For continuous random variables, one can recover pdf from cdf as below:

Theorem 3.10. Furthermore, if the cdf F of some random variable X is con-
tinuous and piecewise differentiable, i.e. there are an, an−1 < an for all n,
such that F is differentiable on the open interval (an−1, an) for all n, then X is
a continuous random variable, with pdf f = F ′.

Proof. This is an immediate consequence of the fundamental theorem of calcu-
lus.

Example 3.11. Let X be a random variable with cdf F (s) = 1
π arctan(x) + 1

2 ,
then it is a continuous random variable with pdf f(s) = 1

π(1+s2) .

For some discrete random variables one can also recover pmf from cdf as
follows:

Theorem 3.12. Let F be the cdf of a random variable X. If F is piecewise
constant, i.e. there are an, an−1 < an for all n, such that F is constant on the
open interval (an−1, an) for all n, then X is a discrete random variable, and the
pmf is

p(an) = F (an) − lim
b→a−

n

F (b)

Remark 3.13.

• Not all discrete random variables have piecewise constant cdf. For exam-
ple, let {qi}, i = 1, 2, . . . be a sequence going through all rational numbers
without repetition, and let p(qi) = 2−i.

• Some random variables are neither discrete nor continuous. For example,
if we flip a fair coin, and when we get tail pick a real number a uniformly
at random from [0, 1], and let

X =

{
0 Got Head

a Got Tail

Or, if we do infinitely many coin flips, let Xi = 0 if the i-th flip got tail,
Xi = 1 if the i-th flip got head, and let X =

∑
i 4−iXi.

Example 3.14. Let X be a random variable with cdf F , b, a > 0 are real
numbers, then aX + b has cdf s 7→ F ((s− b)/a). If X is continuous with pdf f ,

then the pdf of aX + b is s 7→ f((s−b)/a)
a . What if a < 0?

18



3.2 Expectation and Variance

3.3, 3.4 of textbook

Definition 3.15. Let X be a discrete random variable taking values at count-
ably many xi, i.e.

∑
i P (X = xi) = 1, and suppose∑

i

|xi|P (X = xi) < ∞

Then the Expectation of X is defined as

E(X) =
∑
i

xiP (X = xi)

Definition 3.16.

1. Let X be a non negative random variable, the Expectation of X is
defined as

E(X) = sup
X1≤X,X1 is discrete

E(X1)

where E(X1) is defined as in Definition 3.15.

2. Let X be a general random variable, the Expectation of X is defined as

E(X) = E(max{X, 0}) − E(max{−X, 0})

Where E(max{X, 0}) and E(max{−X, 0}) are defined as in Part 1 above.

The following follows from the definition of integration:

Theorem 3.17. If X is a continuous random variable with pdf f , and∫ ∞

−∞
|t|f(t)dt < ∞

then

E(X) =

∫ ∞

−∞
tf(t)dt

Example 3.18.

1. If X ∼ Ber(p), E(X) = p.

2. If X ∼ Geom(p), E(X) = 1/p.

3. If X ∼ Unif [a, b], E(X) = a+b
2 .

4. Some random variables may not have expectations which are real numbers.
For example,
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(a) if X is a discrete random variable, with pmf p(2n) = 2−n, n =
1, 2, . . . , we say E(X) = ∞

(b) if X is a continuous random variable with pdf f(x) = 1
2(1+|x|)2 , we

say E(X) does not exist.

Remark 3.19. Let A be an event, the Indicator random variable IA is
defined as

IA(ω) =

{
1 ω ∈ A

0 ω ̸∈ A

Then IA ∼ Ber(P (A)), and E(IA) = P (A).

Remark 3.20. E(X) is sometimes also denoted as E[X]. If both E(max{X, 0})
and E(max{−X, 0}) are infinite we say E(X) is undefined, if only the former,
or only the latter is infinite, we say the expectation is positive infinity or
negative infinity, respectively.

Theorem 3.21.

1. If X ≥ 0, E(X) ≥ 0.

2. If P (X = c) = 1, E(X) = c.

3. If E(X) exists, a ∈ R, then E(aX) = aE(X).

4. If E(X) and E(Y ) exists, E(X + Y ) = E(X) + E(Y )

5. If X ≤ Y then E(X) ≤ E(Y ).

When X is discrete this follows from Definition 3.15. For example, to prove
part 4, if X takes one of the xi with probability 1, Y takes one of the yi with
probability 1, then

E(X + Y ) =
∑
i,j

(xi + yj)P (X = xi, Y = yj)

=
∑
i

xi

∑
j

P (X = xi, Y = yj)

+
∑
j

(
yj
∑
i

P (X = xi, Y = yj)

)

=
∑
i

xiP (X = xi) +
∑
j

yjP (Y = yj) = E(X) + E(Y )

The proof for general X is by Definition 3.16.

Example 3.22. If X ∼ Bin(n, p) then E(X) = np.

Theorem 3.23. Let g : R → R be a function where the preimage of Borel sets
are Borel sets (called Borel measurable), X is a random variable.

1. If X is discrete with pmf p, g(X) is discrete, E(g(X)) =
∑

i g(xi)p(xi).
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2. If X is continuous with pdf f , E(g(X)) =
∫∞
−∞ g(t)f(t)dt.

Part 1 follows from Definition 3.15, and Part 2 follows from the definition of
Lebesgue integrals.

Definition 3.24. Let X be a random variable, n > 0 a positive integer. The
nth moment of X is E(Xn). When E(X) exists, we define the variance of X
as V ar(X) = E((X − E(X))2).

Theorem 3.25. If X is a random variable, E(X) and V ar(X) both exists,
then V ar(X) = E(X2) − (E(X))2

Proof.
X2 = (X − E(X))2 + 2E(X)X − (E(X))2

Hence, by Theorem 3.21,

E(X2) = V ar(X) + (E(X))2

The conclusion follows.

Example 3.26. Consider a continuous random variable X with pdf

f(x) =

{
0 x < 0

λe−λx x ≥ 0

Then E(Xk) = k!λ−k, hence V ar(X) = 2λ−2 − (λ−1)2 = λ−2. Such a random
variable is said to satisfy the Exponential Distribution, denoted as X ∼
Exp(λ).

Theorem 3.27. If X is a random variable, E(X) and V ar(X) both exists,
then V ar(X) = 0 iff X is degenerate, i.e. P (X = E(X)) = 1.

Proof.

• If X is degenerate, it is a discrete random variable, and its variance can
be calculated via Theorem 3.23 Part 1.

• If X is not degenerate,

0 < P (X ̸= E(X)) = P

( ∞⋃
n=1

|X − E(X)| > 1

n

)

= lim
n→∞

P (|X − E(X)| > 1/n)

So there is some N > 0 such that P (|X − E(X)| > 1/N) > 0. Now let

Y =

{
N−2 |X − E(X)| > 1/N

0 otherwise

then (X − E(X))2 ≥ Y , V ar((X − E(X))2) ≥ E(Y ) > 0.
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Another immediate consequence of Theorem 3.21 is the following:

Theorem 3.28. Let X be a random variable with expectation and variance.
Then E(aX + b) = aE(X) + b, V ar(aX + b) = a2V ar(X).

Example 3.29. Let X ∼ Bin(n, p), then V ar(X) = np(1 − p). To show
this, let X =

∑n
i=1 Xi where Xi are mutually independent random variables of

distribution Ber(p). Then

V ar(X) = E

( n∑
i=1

Xi

)2
− (E(X))2

=

n∑
i=1

E(X2
i ) + 2

∑
1≤i<j≤n

E(XiXj) − (np)2

= np + n(n− 1)p2 − n2p2 = np(1 − p)

Example 3.30. Let P be a point picked uniformly at random from the unit
disc, and let X be the distance between P and the origin. Then the pdf is

f(s) =

{
0 s ≤ 0 or s ≥ 1

2s 0 < s < 1

The expectation is 2/3 and variance is 1/18.

3.3 Gaussian Distribution

3.5 of textbook

By multivariable calculus,∫ ∞

−∞
e−t2dt =

(∫
R2

e−x2−y2

dxdy

)1/2

=

(∫ ∞

0

2πre−r2dr

)1/2

=
√
π

(∫ ∞

0

e−sds

)2

=
√
π

Hence ∫ ∞

−∞

1√
2π

e−t2/2dt = 1

Definition 3.31. A random variable X with pdf

f(x) =
1√
2π

e−x2/2

is called a variable with standard normal distribution or standard Gaus-
sian distribution, denoted as X ∼ N (0, 1).
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Remark 3.32. If X ∼ N (0, 1), E(X) = 0, V ar(X) = 1.

Definition 3.33. A random variable X is said to satisfy the normal distri-
bution with mean µ and variance σ2, if it has pdf

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

denoted as X ∼ N (µ, σ2).

If X ∼ N (µ, σ2),

P (X ≤ s) =

∫ s

−∞

dx√
2πσ2

e−(x−µ)2/(2σ2)

If a > 0, b are real numbers, then

P (aX + b ≤ s) = P

(
X ≤ s− b

a

)
=

∫ s−b
a

−∞

dx√
2πσ2

e−(x−µ)2/(2σ2)

=

∫ s

−∞

dy√
2πσ2a2

e−(y−aµ−b)2/(2σ2a2)

So aX +b ∼ N (aµ+b, a2σ2). When a < 0 we can calculate this similarly, hence

Theorem 3.34. If a, b are real numbers, a ̸= 0, X ∼ N (µ, σ2), then aX + b ∼
N (aµ + b, a2σ2).
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4 Normal and Poisson approximation of bino-
mial distribution

4.1 Normal Approximation

4.1 of textbook

If X ∼ Bin(n, p), then by Examples 3.22 and 3.29, E(X) = np, V ar(X) =
np(1 − p), hence X−np√

np(1−p)
has expectation 0 and variance 1. Furthermore, we

have the following theorem which would be proved later in the semester:

Theorem 4.1 (Binomial Central Limit Theorem). Let X ∼ Bin(n, p), then as
n → ∞, the cdf of X−np√

np(1−p)
converges to the cdf of N (0, 1).

Remark 4.2. One can further show that, via e.g. Berry-Esseen theorem, the
error is bounded by C√

np(1−p)
, where C < 1. Generally in practice when np(1−

p) > 10 we can do normal approximation.

Remark 4.3. To write down the cdf of Bin(n, p), we usually make use of the
continuity correction:

F (s) ≈ Φ

(
⌊s⌋ + 1/2− np√

np(1 − p)

)
Where Φ is the cdf of N (0, 1), and ⌊x⌋ is the largest integer no more than

x.

An interactive plot of the normal approximation of binomial distribution,
as well as an illustration of the continuity correction, can be found at https:

//wuchenxi.github.io/binomclt.html. The source code can be found in Ap-
pendix D.

4.2 Applications

Sections 4.2, 4.3 of textbook

1. Let n → ∞ in Theorem 4.1, we get:

Theorem 4.4 (Law of Large Numbers). If Sn ∼ Bin(n, p), then for any
ϵ > 0, as n → ∞, P (|Sn/n− p| > ϵ) → 0.

2. Theorem 4.1 can be used to provide the confidence interval of p. Here

Definition 4.5. Let X be a random variable, such that its probability
distribution X(θ) has an unknown parameter θ.

(1) A point estimate is a function θ̂ from the range of X to R.
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(2) When X is discrete, the maximal likelihood estimate (MLE) is

θ̂(x) = arg maxP (Xθ = x) where Xθ ∼ X(θ)

(3) An interval estimate is a function from the range of X to open
intervals in R.

(4) We say an interval estimate x 7→ (a(x), b(x)) is a confidence inter-
val with p-value p, if for any θ, if X ∼ X(θ), then

P (a(X) < θ < b(X)) ≥ 1 − p

In practice we often let p = 0.05.

Now let X ∼ Bin(n, θ), where n is fixed, then

(a) θ̂(x) = x/n is the MLE.

(b) Let (x/n− r, x/n + r) be a confidence interval, then, when n >> 1,
by normal approximation, for any θ, if X ∼ Bin(n, θ), then

p > P (θ ≥ X/n + r or θ ≤ X/n− r) ≈ 2Φ

(
−rn√

nθ(1 − θ)

)

Φ

(
−rn√

nθ(1 − θ)

)
≤ 2Φ(−2r

√
n)

When p = 0.05, r ≥ 0.98√
n

.

3. When N , NA → ∞, NA/N → p, 0 < p < 1, then hypergeometric distribu-
tion with parameters (N,NA, n) converges to binomial distribution with
parameters (n, p). This shows that we can use binomial distributions, and
their normal approximations, to analyze data from opinion polls.

Remark 4.6. The cdf of N (0, 1) is not an elementary function, but it can be
calculated numerically and is implemented by most programming languages.
For example in Python standard library:

import math
def g a u s s i a n c d f ( t ) :

return (1+math . e r f ( t /2∗∗0 .5 ) ) /2
print ( g a u s s i a n c d f ( −1.96) )

or in C standard library

#include <c s td io>
#include <cmath>
double cd f (double x ) {return (1+ e r f ( x/ s q r t (2 ) ) ) /2 ;}
int main ( ) { p r i n t f ( ”%g\n” , cd f ( −1.96) ) ; return 0 ;}

Remark 4.7. In exams we will also provide tables for the values of this cdf.
Note that in the tables we only have positive numbers, but due to symmetry,
we have Φ(−s) = 1 − Φ(s).
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4.3 Poisson Distribution and Exponential distribution

Section 4.4 and 4.5 of textbook
Suppose we have a data center with a large amount of machines. To model

the number of malfunctions within a day, we can divide the day into hours,
minutes, seconds, milliseconds, etc, and find the number of hours, minutes,
seconds, milliseconds, etc with a malfunction. As the size of the time unit gets
smaller, it is increasingly unlikely that within that unit there are more than
one malfunctions; and as the size of the unit decreases the probability that
there is a malfunction within that time unit goes down as well and goes down
approximately linearly. Hence, the number of malfunctions in a day can be
described by the limiting distribution of Bin(n, λ/n) as n → ∞, here n is the
number of time units in a day. The limiting pmf would now be

p(k) = lim
n→∞

(
n

k

)(
λ

n

)k (
1 − λ

n

)n−k

=
λk

k!
e−λ

Definition 4.8. The discrete random variable with pmf p(k) = λke−λ

k! , where
k = 0, 1, 2, . . . , is called the Poisson distribution with parameter λ. If X
satisfies Poisson distribution with parameter λ, we denote it as X ∼ Poisson(λ).

By calculation, we know that

Proposition 4.9. If X ∼ Poisson(λ), E(X) = V ar(X) = λ.

Proof.

E(X) =

∞∑
k=0

kλke−λ

k!
=

∞∑
k=1

λke−λ

(k − 1)!
= λeλe−λ = λ

V ar(X) = E(X2) − (E(X))2 =

∞∑
k=0

k2λke−λ

k!
− λ2

=

∞∑
k=2

λke−λ

(k − 2)!
+

∞∑
k=1

λke−λ

(k − 1)!
− λ2 = λ2 + λ− λ2 = λ

Remark 4.10. Because the cdf of Bin(n, p) and Poisson(λ) are both of the
form F (s) =

∑
0≤k≤s p(s), the cdf of Bin(n, λ/n) converges to the cdf of

Poisson(λ) as well.

An interactive visualization of the Poisson approximation of binomial distri-
bution can be found at https://wuchenxi.github.io/poisson.html, source
code see Appendix F.

If we want to model the time when the next malfunction happens starting
at a specific time t0, we can do as follows: divide the time into segments of 1/n
days, when n >> 1, the probability that a malfunction happens in each segment
is approximately λ/n. Then the number of time segment needed to get the first
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malfunction satisfies Geom(λ/n). Now we show that if Xn ∼ Geom(λ/n), then
as n → ∞, Xn/n → Y where Y ∼ Exp(λ) in distribution:

The cdf of Xn/n is

Fn(s) =

{
0 s < 0
1
n ·
∑⌊sn⌋

k=0

(
λ
n

) (
1 − λ

n

)k
s ≥ 0

And

lim
n→∞

·
⌊sn⌋∑
k=0

(
λ

n

)(
1 − λ

n

)k

= lim
n→∞

λ

n

1 −
(
1 − λ

n

)⌊sn⌋+1

1 −
(
1 − λ

n

) = 1 − e−λs

So the limiting cdf is the cdf of Exp(λ).

Remark 4.11. If instead of the time of the first malfunction we want the times
of all malfunctions, the result is called the Poisson point process.

A key property of exponential distributions is that they are memoryless:

Theorem 4.12. If X ∼ Exp(λ), then for any s, t ≥ 0,

P (X > s + t|X > s) = P (X > t)

Proof.

P (X > s + t|X > s) =
P (X > s + t and X > s)

P (X > s)
=

P (X > s + t)

P (X > s)

=

∫∞
s+t

λe−λxdx∫∞
s

λe−λxdx
=

e−λ(s+t)

e−λs
= e−λt =

∫ −∞

t

λe−λxdx = P (X > t)

Example 4.13. Suppose the accidents in a factory happens with a constant
possibility regardless of time and they all happen independently, and if the aver-
age time between two consecutive accidents is one day, what’s probability that
there will be more than 2 accidents in a day? How about 2 days?

Answer: The number of accidents in a day satisfies Poisson(λ) and the time
between two consecutive accidents satisfies Exp(λ), here λ is defined as

λ = lim
N→∞

NP (there is an accident in a time period of 1/N day)

so λ = 1, the probability is

∞∑
i=3

λi

i!
e−1 = 1 − 5

2e

Similarly, the number of accidents in 2 days satisfies Poisson(2λ), and the
calculation can be done similarly.
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Remark 4.14. We say a sequence of random variables An converges in dis-
tribution to a random variable B, if the cdf of An converges to the cdf of B.
Hence,

1. The normal approximation says that if Xn ∼ Bin(n, p), Yn = Xn−np√
n

,

then as n → ∞, Yn → N (0, p(1 − p)) in distribution.

2. The Poisson approximation says that if Xn ∼ Bin(n, λ/n), then Xn →
Poisson(λ) in distribution (see Remark 4.10).

Remark 4.15. Let Ti be mutually independent random variables of distribution
Exp(λ), then the Poisson point process of parameter λ is {

∑n
i=1 Ti}, and the

largest number n such that
∑n

i=1 Ti < C is Poisson(Cλ).
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5 Moment Generating Function

Sections 5.1 and 5.2 of textbook

Definition 5.1. Let X be a random variable. The moment generating func-
tion (MGF) of X is defined as

MX(t) = E(etX)

Remark 5.2. Let X be a random variable.

1. If X is discrete with pmf p(ai) = pi, then MX(t) =
∑

i pie
tai .

2. If X is continuous with pdf f , then MX(t) =
∫∞
−∞ etsf(s)ds.

Remark 5.3. The moment generating function, when exists around a neigh-
borhood of 0, encodes all the moment:

MX(t) =

∞∑
i=0

tiE(Xi)

i!

The following Theorem is key to the proof of central limit theorem. The
proof is beyond the scope of this course.

Theorem 5.4. Let X and Y be two random variables. Suppose MX = MY on
a neighborhood of 0, then the cdf of X and Y are the same, which implies that
they have the same distribution (we call them equal in distribution).

Remark 5.5. A way to prove the theorem above is as follows (assume knowl-
edge of complex analysis): let t ∈ C, under the assumption E(etX) add E(etY )
both exists and are analytic on a uniform neighborhood of the imaginary axis.
Since they are identical on an interval they are identical. Now recover cdf by
inverse Fourier transform.

Example 5.6. The followings are the calculation of MGF of some common
distributions:

1. X ∼ Bin(n, p), then

MX(t) =

n∑
i=0

(
n

i

)
etipi(1 − p)n−i = (1 − p + pet)n

2. X ∼ Geom(p), then

MX(t) =

∞∑
i=1

etip(1 − p)i−1 =
pet

1 − (1 − p)et
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3. X ∼ Poisson(λ), then

MX(t) =

∞∑
i=0

etiλi

i!
e−λ = ee

tλ−λ

4. X ∼ Exp(λ), then

MX(t) =

∫ ∞

0

λetse−λsds =
λ

λ− t

5. X ∼ N (µ, σ2), then

MX(t) =
1√

2πσ2

∫ ∞

−∞
etse−(s−µ)2/2σ2

ds = eµt+σ2t2/2

Example 5.7. Let X be a continuous random variable with pdf f . Then etX

is the composition of X and a smooth function g(·) = et·.

1. When t > 0, g is increasing, hence the cdf of etX is

F (s) = P (etX ≤ s) = P (X ≤ log(s)/t) =

∫ log(s)/t

−∞
f(r)dr

when s > 0 and F (s) = 0 when s ≤ 0. Hence the pdf is

f(s) =
d

ds

∫ log(s)/t

−∞
f(r)dr =

f(log(s)/t)

ts
=

f(y)

g′(y)

where s > 0, g(y) = t.

2. When t < 0, g is decreasing, the cdf of etX is

F (s) = P (etX ≤ s) = P (X ≥ log(s)/t) =

∫ ∞

log(s)/t

f(r)dr

when s > 0 and F (s) = 0 when s ≤ 0. Hence the pdf is

f(s) =
d

ds

∫ ∞

log(s)/t

f(r)dr = −f(log(s)/t)

ts
=

f(y)

|g′(y)|

where s > 0, g(y) = t.

By similar computation as above, we have:

Theorem 5.8. Let X be a discrete random variable with pmf p, g : R → R,
then g(X) is also a discrete random variable with pmf q(s) =

∑
g(a)=s p(a).
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Theorem 5.9. Let X be a continuous random variable with pdf f , g : R →
R differentiable with finitely many critical points, then g(X) is a continuous
random variable, and its pdf equals

fg(X)(s) =
∑

g(a)=s

f(a)

|g′(a)|

If g is one-to-one with inverse function g−1, then

fg(X)(s) =
f(g−1(s))

|g′(g−1(s))|

Here the sum of an empty set of numbers is assumed to be 0.

Example 5.10. Let X be a random variable with distribution Unif(0, 2), Y =
sin(X), then the pdf of Y is

fY (s) =


0 s > 1 or s < 0

1√
1−s2

sin(2) ≤ s ≤ 1
1

2
√
1−s2

0 ≤ s < sin(2)

Example 5.11. Let X ∼ Unif(0, 1), F a real valued function on R satisfying
the three properties in Theorem 3.6, let

g(x) = inf{s : F (s) ≥ x} = min{s : F (s) ≥ x}

Then the cdf of g(X) is then

F1(s) = P (g(X) ≤ s) = P (X ≤ F (s)) = F (s)

Here, the second equality is because F is non decreasing and right continuous.

1. If F is the cdf of some discrete random variable Y with pmf p(ai) = pi,
then g(x) = inf{ai :

∑
aj≤ai

pj ≥ x}.

2. If F is the cdf of some continuous random variable Y with positive pdf f ,
then g(x) = F−1(x), and by Theorem 5.9 the pdf of g(X) is indeed f .
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6 Joint Distributions

6.1 Definition and Examples

Section 6.1 and 6.2 of textbook

Recall that if X defined on a probability space (Ω,F , P ) is a random variable,
the probability distribution of X is the probability space

(R,B, A 7→ P (X ∈ A))

where B is the Borel σ-algebra.

Definition 6.1. Let X1, . . . , Xn be random variables. The joint distribution
is the probability space

(Rn,B, A 7→ P ((X1, . . . , Xn) ∈ A)

where B is the Borel σ algebra. The distribution of each Xi is called the
marginal distribution.

Remark 6.2. Just like probability distribution of random variables are deter-
mined by their cdfs, joint distributions are determined by the joint cdf

F (a1, . . . , aN ) = P (X1 ≤ a1, . . . , Xn ≤ an)

Definition 6.3. Let X1, . . . , Xn be discrete random variables, Ai ⊆ R countable
sets such that P (Xi ∈ Ai) = 1, then the joint pmf is defined as p(a1, . . . , an) =
P (X1 = a1, . . . , Xn = an), where ai ∈ Ai.

The following facts are straightforward:

Theorem 6.4. Let X1, . . . , Xn be discrete random variables, Ai ⊆ R countable
sets such that P (Xi ∈ Ai) = 1, and p be the joint pmf. Then

1. The probability distribution is now

P ((X1, . . . , Xn) ∈ B) =
∑

(a1,...,an)∈B,ai∈Ai for all i

p(a1, . . . , an)

2. The marginal distributions are

P (Xj ∈ B) =
∑

aj∈B∩Aj

 ∑
ai∈Ai for all i ̸=j

p(a1, . . . , an)


3. The pmf of Xj , which is also called the marginal pmf, equals

pXj
(aj) =

∑
ai∈Ai for all i ̸=j

p(a1, . . . , an)
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4. Let g : Rn → R be a function, then

E(g(X1, . . . , Xn)) =
∑

ai∈Ai for all i

g(a1, . . . , an)p(a1, . . . , an)

Definition 6.5. Consider an experiment with r outcomes, with probabilities
p1, . . . , pr, and p1+ · · ·+pr = 1. Now carry out experiment n times, the number
of each of the r outcomes are denoted as X1, . . . , Xr, then their joint distribution
is called the multinomial distribution, denoted as

(X1, . . . , Xn) ∼ Multi(n, r, p1, . . . , pr)

Where the joint pmf is

p(k1, . . . , kr) =

{
n!

k1!...kr!
pk1
1 . . . pkr

r k1 + · · · + kr = n, ki ∈ Z≥0 for all i

0 otherwise

Definition 6.6. We say X1, . . . , Xn are called jointly continuous, if there is
a function f on Rn, called the joint density function, such that

P ((X1, . . . , Xn) ∈ B) =

∫
B

f(s1, . . . , sn)ds1ds2 . . . dsn

Definition 6.7. Let A ⊆ Rn be a region with finite volume. We say X1, . . . , Xn

are uniformly distributed on A (see Example 1.7 Part 3) if they are jointly

continuous with density function f(s1, . . . , sn) = χA(s1,...,sn)
V ol(A) , where

χA(s1, . . . , sn) =

{
1 (s1, . . . , sn) ∈ A

0 otherwise

Remark 6.8. X and Y both being continuous does not imply that they are
jointly continuous. For example, if X ∼ Unif(0, 1) and Y = X.

Example 6.9. Let Ω be the triangle with vertices (0, 0), (1, 0), (0, 1), (X,Y ) ∼
Unif(Ω). Then the cdf of X is

F (s) =


0 s ≤ 0

1 s ≥ 1

1 − (1 − s)2 0 < s < 1

and the corresponding pdf is

f(s) =

{
0 s ≤ 0 or s ≥ 1

2(1 − s) 0 < s < 1

Theorem 6.10. Let X1, . . . , Xn be jointly continuous with joint density func-
tion f . Then each Xi is continuous, with pdf (called marginal density func-
tion)

fXi
(s) =

∫
Rn−1

f(s1, . . . , si−1, s, si+1, . . . , sn)ds1 . . . dsi−1dsi+1 . . . dsn
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Proof. By Fubini,
FXi(s) = P (Xi ≤ s)

=

∫ s

−∞
dt

∫
Rn−1

f(s1, . . . , si−1, t, si+1, . . . , sn)ds1 . . . dsi−1dsi+1 . . . dsn

Take d
ds we get the desired formula.

This is a generalization of Theorem 3.23:

Theorem 6.11. Let g be a measurable function, X1, . . . , Xn be jointly contin-
uous with joint density function f , then

E[g(X1, . . . , Xn)] =

∫
Rn

g(s1, . . . , sn)f(s1, . . . , sn)ds1 . . . dsn

Example 6.12. Let X,Y be uniformly distributed on the unit disc. Z =
max{X,Y } Then

1. The marginal pdfs are

fX(s) = fY (s) =

{
0 s > 1 or s < −1
2
π

√
1 − s2 −1 ≤ s ≤ 1

2.

E[Z] =
1

π

(∫
x2+y2<1,x>y

xdxdy +

∫
x2+y2<1,y>x

ydxdy

)

=
1

π

∫ 1

0

rdr

(∫ π/4

−3π/4

r cos(θ)dθ +

∫ 5π/4

π/4

r sin(θ)dθ

)
=

2
√

2

3π

Remark 6.13. The analogy of Remark 3.9 for multiple random variables is
also true.

1. Let A ⊆ Rn be a countable subset, p : A → R a non negative function,∑
a∈A p(a) = 1. Then there are discrete random variables X1, . . . , Xn

with joint pmf p.

To show this, consider probability space (A, 2A, B 7→
∑

b∈B p(b)), and Xi

are defined as a = (a1, . . . , an) 7→ ai.

2. Let f be a non negative integrable function on Rn, then
∫
Rn fdx1 . . . dxn =

1 iff there are random variables X1, . . . , Xn which are jointly continuous
with joint pdf f .

To show the “only if” part, consider probability space

(Rn,B, B 7→
∫
B

fdx1 . . . dxn)

and Xi are defined as (x1, . . . , xn) 7→ xi. The “if” part follows from the
fact that P (Ω) = 1.
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6.2 Independence

Section 6.3 of textbook

Remark 2.18 can be restated as

Theorem 6.14. Let X1, . . . , Xn be discrete, with pmf p1, . . . , pn respectively,
then they are mutually independent iff their joint pmf is

p(a1, . . . , an) = p1(a1) . . . pn(an)

Similarly, for continuous random variables, we have:

Theorem 6.15. Let X1, . . . , Xn be continuous random variables with pdf f1, . . . , fn
respectively. Then they are mutually independent iff they are jointly continuous
with joint pdf

f(s1, . . . , sn) = f1(s1) . . . fn(sn)

Proof. The “if” part follows from Fubini’s theorem. To show the “only if”, note
that by measure theory, a Borel measure on Rn is completely determined by its
value on sets of the form A1 × · · · ×An.

An immediate consequence of Theorem 2.13 is:

Theorem 6.16. Let Xi, i ∈ I be a set of mutually independent random vari-
ables, Yj are obtained by composing the various Xi with some Borel measurable
functions, such that no Xi appears in the expression of two distinct Yjs, then
the Yjs are mutually independent as well.

Example 6.17. Let X, Y be random variables with pdf f and g and cdf F
and G respectively. Z = min{X,Y }

1. The joint distribution function is fX,Y (s, s′) = f(s)g(s′).

2. The cdf of Z is

FZ(s) = 1 − P (X > s, Y > s) = 1 −
∫ ∞

s

f(r)dr

∫ ∞

s

g(r)dr

and the pdf is

fZ(s) =
d

ds
FZ(s) = f(s)

∫ ∞

s

g(r)dr + g(s)

∫ ∞

s

f(r)dr

= f(s)(1 −G(s)) + g(s)(1 − F (s))

3. Let

I = IX≥Y =

{
1 X ≥ Y

0 X < Y
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the pmf is

P (I = 1) =

∫
s≥t

f(s)g(t)dsdt =

∫ ∞

−∞
f(s)G(s)ds

P (I = 0) =

∫
s<t

f(s)g(t)dsdt =

∫ ∞

−∞
F (t)g(t)dt

4. From definition 2.17, Z and I are independent iff

P (Z ∈ B)P (I = 1) = P (Z ∈ B, I = 1)

which means that∫
s∈B

(f(s)(1 −G(s)) + g(s)(1 − F (s))) ds ·
∫ ∞

−∞
f(s)G(s)ds =

∫
t∈B,s≥t

f(s)g(t)dsdt =

∫
t∈B

g(t)(1 − F (t))dt

which is equivalent to the fact that there is a constant C independent of
s, such that

f(s)(1 −G(s)) = Cg(s)(1 − F (s))

So, for example, if F and G are both exponential distributions, this would
be true.

Example 6.18. If X and Y are independent, and both are standard normal,
let X = r cos(θ), Y = r sin(θ), where r ≥ 0, θ ∈ [0, 2π), then r and θ are
independent and r2 ∼ Exp(1/2), θ ∼ Unif [0, 1). To show this one can make
use of Definition 2.17 as in the previous example. This gives a way to generate
normal distribution from uniform distribution without calculating inverse of the
pdf of normal distribution, and is called the Box-Muller algorithm.

6.3 Sums and convolutions

Section 7.1 of textbook

The following follows from Theorem 6.14 and 6.15 and Fubini:

Theorem 6.19. Let X and Y be two independent random variables, Z =
X + Y .

1. If both X and Y are discrete, with pmf pX and pY respectively, then so
is Z. The pmf of Z is

p(x) =
∑
a

pX(a)pY (x− b)
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2. If X and Y are both continuous with pdf fX and fY , then Z is continuous
with pdf

fZ(s) =

∫ ∞

−∞
fX(t)fY (s− t)dt

which is also called the convolution of fX and fY , denoted as fX ∗ fY .

Example 6.20. X and Y are independent, Z = X + Y .

1. X ∼ Bin(n, p), Y ∼ Bin(m, p), then Z ∼ Bin(m + n, p).

2. X ∼ Poisson(λ), Y ∼ Poisson(µ), then Z ∼ Poisson(λ + µ).

3. X ∼ Geom(p), Y ∼ Geom(p), Z has pmf pZ(n) = (n− 1)p2(1 − p)n−2.

4. X ∼ N (µ, σ2), Y ∼ N (µ′, σ′2), then Z ∼ (µ + µ′, σ2 + σ′2). 1

5. X ∼ Exp(λ), Y ∼ Exp(λ), Z has pdf

fZ(s) =

{
0 s ≤ 0

λ2se−λs s > 0

Definition 6.21. The sum of n mutually independent random variables of
distribution Geom(p) is said to satisfy the (n, p)-negative binomial distri-
bution, denoted as Z ∼ Negbin(n, p). Its pmf is

p(k) =

(
k − 1

n− 1

)
pn(1 − p)k−n

where k ≥ n are integers. To see this, when n = 1 this is the same pmf as
Geom(p). If X and Y are independent and with pmf

pX(k) =

(
k − 1

n− 2

)
pn−1(1 − p)k−n+1

1

fZ(s) = (fX ∗ fY )(s) =

∫ ∞

−∞

1
√
2πσ2

e
− (t−µ)2

2σ2
1

√
2πσ′2

e
− (s−t−µ′)2

2σ′2 dt

=
1

2πσσ′

∫ ∞

−∞
e
−σ′2(t−µ)2+σ2(s−t−µ′)2

2σ2σ′2 dt

=
1

2πσσ′

∫ ∞

−∞
e

−

(
t−σ′2µ+σ2(s−µ′)

σ2+σ′2

)2

− (σ′2µ+σ2(s−µ′))2

(σ2+σ′2)2
+

σ′2µ2+σ2(s−µ′)2

σ2+σ′2

2σ2σ′2
σ2+σ′2 dt

=
1

2πσσ′ ·

√
2π

σ2σ′2

σ2 + σ′2 e
− (σ′2µ2+σ2(s−µ′)2)(σ2+σ′2)−(σ′2µ+σ2(s−µ′))2

2σ2σ′2(σ2+σ′2)

=
1√

2π(σ2 + σ′2)
e
− (s−µ−µ′)2

2(σ2+σ′2)
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where k ≥ n− 1, and
pY (k) = p(1 − p)k−1

where k ≥ 1, then the pmf of Z = X + Y is

pZ(k) =
∑

n−1≤k′≤k−1

((
k′ − 1

n− 2

)
pn−1(1 − p)k

′−n+1 · p(1 − p)k−k′−1

)

=

(
k − 1

n− 1

)
pn(1 − p)k−n

Definition 6.22. The sum of n mutually independent random variables of
distribution Exp(λ) is said to satisfy the (n, λ)-Gamma distribution (see
Remark 4.15), denoted as Z ∼ Gamma(n, λ). Its pdf is

f(s) =

{
0 s ≤ 0
λnsn−1

(n−1)! e
−λs s > 0

6.4 Exchangability, iid

Section 7.2 of textbook

Definition 6.23. Let X1, . . . , Xn be random variables. If for any bijection
σ : {1, . . . , n} → {1, . . . , n}, X1, . . . , Xn and Xσ(1), . . . , Xσn have the same
distribution, we say these random variables are exchangable.

These follow immediately from definition:

Theorem 6.24.

1. If X1 = X2 = · · · = Xn, then they are exchangable.

2. If Xi are all discrete, then they are exchangable iff the joint pmf is a
symmetric function.

3. If they are jointly continuous, they are exchangable iff the joint pdf is a
symmetric function.

Theorem 6.25. If X1, . . . , Xn are exchangable.

1. The marginal distributions of Xi are all identical.

2. Let G : Rn → R be any Borel measurable function, then for any permu-
tation σ, E(G(X1, . . . , Xn)) = E(G(Xσ(1), . . . , Xσ(n))).

3. Let g : R → R be any Borel measurable function, then g(X1), . . . , g(Xn)
are exchangable.
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Example 6.26. Let N identical balls be each labeled a number, draw n balls
without replacement from these balls, let Xi be the label of the ball obtained
in the i-th draw. Then Xi are not mutually independent, but they are still
exchangable.

As an application, we have:

Example 6.27. Suppose there are 10 red balls and 10 green balls, draw 10
from the 20 without replacement, then the probability that we get green at the
6th draw, red at the 9th, equals the probability that we get green at the first
draw, red at the second, which equals 10/20 × 10/19 = 5/19. Similarly, the
conditional probability of the 6th being green given that the 9th is red is 10/19.

Example 6.28. If X1, . . . , Xn are mutually independent with the same distri-
bution (called independent and identically distributed, or i.i.d., then they
are exchangable.

As an application, we have:

Example 6.29. Let X,Y, Z be i.i.d. continuous random variables. Then by
Theorem 6.15, they are jointly continuous, hence the probability that any two
of the three are identical equals 0. Because they are exchangable,

P (X > Y,X > Z) = P (Y > X, Y > Z) = P (Z > X,Z > Y ) = 1/3

Similarly, the probability that X < Y < Z is 1/6.

6.5 Indicator Method

Section 8.1 of textbook

By Remark 3.19, given any event A, its probability is the expectation of the
indicator random variable IA. Now we can make use of the properties of the
expectation of random variables to calculate P (A), or use P (A) to calculate
E[IA]. This is called the indicator method.

Remark 6.30. Indicator method gives a simple proof for the inclusion-exclusion
formula.

Example 6.31. Suppose there are 20 identical balls, 5 red 15 green. Draw
8 randomly without replacement, what’s the expectation of the number of red
balls drawn?

Answer: Let Aj be the event “the j-th ball drawn is red”. Then the expec-
tation of number of red balls drawn is

E

(
8∑

i=1

IAi

)
=

8∑
i=1

E(IAi) = 8 · 1/4 = 2
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Example 6.32. Roll a dice 100 times, what’s the expected number of sequences
of consecutive 4s with length exactly 4?

Answer: Let Aj , j = 1, . . . , 97, be the event that “there is a sequence of
consecutive 4s with length exactly 4 beginning at the j-th roll”. Then the
required expectation is

E

[
97∑
i=1

IAi

]
= 2 · (5/6) · (1/6)4 + 95 · (5/6)2 · (1/6)4

Example 6.33. Suppose there are n individuals, whether or not any two of
them know one another are independent and has probability 1/2. Then the
expected number of groups of k ppl where any two in the group know each
other, would be, due to the same argument as the previous example,

(
n
k

)
2−k.

6.6 Expectation of Products

Section 8.2 and 8.3 of textbook

Theorem 6.34. Let Xi, i = 1, . . . , n, be mutually independent random vari-
ables, then E[X1 . . . Xn] = E[X1] . . . E[Xn].

The case when Xi are discrete (or continuous) can be proved by computa-
tion. The general case can be shown via Definition 3.16.

Combining the above with Theorem 6.16, we have:

Theorem 6.35. If gi are functions where preimages of Borel sets are Borel, X
and Y be independent random variables, then

E[g1(X1) . . . gn(Xn)] = E[g1(X1)] . . . E[gn(Xn)]

As applications, we have the following:

Theorem 6.36. Let X1, . . . , Xn be mutually independent random variables.
Z =

∑
i Xi.

1. If their variances are σ2
1 , . . . , σ

2
n respectively, then the variance of Z is∑

i σ
2
i .

2. If their MGFs are M1(t), . . . ,Mn(t) respectively, the MGF of Z is
∏

i Mi(t).

Proof. Part 2 above follows immediately from Theorem 6.16. To show part 1,

V ar(Z) = E((Z − E(Z))2)

= E

(∑
i

Xi −
∑
i

E(Xi)

)2
 = E

(∑
i

(Xi − E(Xi))

)2

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=
∑
i

E((Xi − E(Xi))
2) +

∑
i ̸=j

E((Xi − E(Xi))(Xj − E(Xj)))

=
∑
i

σ2
i +

∑
i ̸=j

E(Xi − E(Xi))E(Xj − E(Xj)) =
∑
i

σ2
i

Example 6.37. Let X1, . . . , Xn be iid random variables, each with expectation
µ and variance σ2.

1. Let X = 1
n

∑
i Xi, which we call the sample mean. Then E(X) = µ

(which we say “X is an unbiased estimator of µ”), V ar(X) = σ2

n .

2. Let s2n = 1
n−1

∑
i(Xi −X)2 be called the sample variance. Then

E(s2n) =
1

n− 1

∑
i

E


n− 1

n
Xi −

∑
j ̸=i

1

n
Xj

2


=
n

n− 1

((
(n− 1)2

n2
+ (n− 1) · 1

n2

)
E(X2

i )

−
(

2 · (n− 1) · (n− 1)

n2
+

(n− 1)(n− 2)

n2

)
E(Xi)

2

)
= σ2

So s2n is an unbiased estimator of σ2.

Example 6.38. Parts 1, 2, and 4 of Example 6.20 follows from Part 2 of
Theorem 6.36 and Theorem 5.4.

Example 6.39. Suppose an experiment has n equally likely outcomes. Let Tn

be the number of independent experiments needed to get all n outcomes. Now
let Sk be the number of experiments needed to go from getting k − 1 outcomes
to getting k outcomes, we have Tn =

∑n
i=1 Sk, the Sk are all independent, and

Sk ∼ Geom
(
n−k+1

n

)
.

So

E(Tn) =

n∑
k=1

E(Sk) = n

n∑
j=1

1

j

V ar(Tn) =

n∑
k=1

(k − 1)n2

n(n− k + 1)2
= n

n−1∑
j=1

n− j

j2
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6.7 Covariance and Correlation

Section 8.4 of the textbook

Definition 6.40. Let X and Y be two random variables on the same probability
space. The covariance between them is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

The correlation between them is

Corr(X,Y ) =
Cov(X,Y )√

V ar(X)V ar(Y )

When Cov(X,Y ) > 0 we say they are positively correlated. When Cov(X,Y ) <
0 we say they are negatively correlated. When Cov(X,Y ) = 0 we say they are
uncorrelated.

The followings are some of their basic properties:

Theorem 6.41. Let X, Xi, Y , Yi be random variables on the same probability
space, ai, a, bi, b ∈ R.

1. Cov(X,Y ) = E(XY ) − E(X)E(Y )

2. Cov(X,Y ) = Cov(Y,X)

3. Cov(a,X) = Cov(X, a) = 0, Cov(X,X) = V ar(X)

4. Cov(
∑

i aiXi,
∑

i biYi) =
∑

i,j aibjCov(Xi, Yj)

5. V ar(
∑

i aiXi) =
∑

i a
2
iV ar(Xi) + 2

∑
i<j Cov(Xi, Xj)

6. (Cov(X,Y ))2 ≤ V ar(X)V ar(Y ), and if V ar(X) ̸= 0, they are equal iff
Y = aX + b a. s. (aka. with probability 1) for some a, b.

7. |Corr(X,Y )| ≤ 1. If V ar(X) ̸= 0, Corr(X,Y ) = 1 iff Y = aX + b a. s.
for some a > 0

8. When a > 0, Corr(aX + b, Y ) = Corr(X,Y ); when a < 0, Corr(aX +
b, Y ) = −Corr(X,Y )

Proof. Parts 2 and 3 follows from definition. Part 1 is due to

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )−E(E(X)Y )−E(E(Y )X)−E(E(X)E(Y )) = E(XY )−E(X)E(Y )

Part 4 follows from Part 1 and the fact that expectation is linear. Part 5 follows
from Part 3 and 4. Part 6 is due to the fact that for any t ∈ R,

E((t(X − E(X)) − (Y − E(Y )))2) ≥ 0
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Hence
t2V ar(X) − 2tCov(X,Y ) + V ar(Y ) ≥ 0

And the inquality follows. When equal sign is reached, there is some t such that

0 = E(t((X − E(X)) − (Y − E(Y )))2) = V ar(tX − Y )

Hence by Theorem 3.27, Y = tX + C with probability 1. Part 7 follows from
Part 6, Part 8 is due to Parts 2 and 3.

Example 6.42. Let X = IA, Y = IB , then they are uncorrelated iff A and B
are independent.

Example 6.43. Let Ω = {(x, y) : |x| < 1, |y| < 1, |y| < |x|}, X,Y ∼ Unif(Ω),
then Cov(X,Y ) = Corr(X,Y ) = 0 but X and Y are not independent.

Example 6.44. Let X ∼ HyperGeom(n,m, k), then X is the sum of k random

variables with Ber(m/n) distribution. The covariance between them is m(m−n)
n2(n−1) .

So by Part 5 above, V ar(X) = km(n−m)
n2 − k(k−1)m(n−m)

n2(n−1) = k(n−k)m(n−m)
n2(n−1)

Example 6.45. Suppose X,Y have joint pdf proportional to e−(ax2+2bxy+cy2),
where a > 0, ac > b2. Then by calculation, the variance of X and Y are

c
2(ac−b2) and a

2(ac−b2) respectively, and Cov(X,Y ) = E(XY ) = − b
2(ac−b2) So

the correlation between X and Y equals − b√
ac
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7 LLN and CLT

7.1 Tail Bounds and Applications

Sections 9.1 and 9.2 of textbook

A generalization of Theorem 3.27 is the following Chebyshev’s inequality:

Theorem 7.1. Let X be a random variable.

1. (Markov’s inequality) If X ≥ 0, E[X] = C, then for any y ≥ 0, P (X ≥
y) ≤ C

y .

2. (Chebyshev’s inequality) If X has finite first and second moment (i.e.

V ar(X) is finite), then for any y ≥ 0, P (|X − E(X)| ≥ y) ≤ V ar(X)
y2 .

Proof. 1. Consider random variable X1(ω) =

{
y X(ω) ≥ y

0 X(ω) < y
, then X1 ≤ X,

hence C = E(X) ≥ E(X1) = yP (X ≥ y). Divide y on both sides we get
the inequality.

2. Apply Part 1 to (X − E(X))2.

An immediate application is the following (weak) law of large number:

Theorem 7.2. Let Xi be i.i.d. with finite finite expectation and variance.
Then for any ϵ > 0,

lim
n→∞

P

(∣∣∣∣∑n
i=1 Xi

n
− E(X1)

∣∣∣∣ > ϵ

)
= 0

Proof. By Chebyshev’s inequality (Theorem 7.1) and Theorem 6.36,

P

(∣∣∣∣∑n
i=1 Xi

n
− E(X1)

∣∣∣∣ > ϵ

)
≤ V ar(X1)/n

ϵ2

which goes to 0 as n → ∞.

7.2 Central Limit Theorem

Section 9.3 of textbook

Theorem 7.3 (Central Limit Theorem). Let Xi be i.i.d. with finite expectation
and variance. Then for any s ∈ R,

lim
n→∞

P

(∑n
i=1 Xi − nE(X1)√

nV ar(X)
≤ s

)
= Φ(s)

where Φ is the cdf of N (0, 1).
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Remark 7.4. WLOG assume that E(Xi) = 0 and V ar(Xi) = 1. Consider the
MGF of Xi, denoted as M(t), then M ′(0) = 0, M ′′(0) = 1. Now the MGF

of
∑n

i=1 Xi√
n

is M(t/
√
n)n. Since M(t) ≈ 1 + t2/2, as n → ∞ the limit we get

approaches et
2/2 which is the MGF of N (0, 1).

The proof of the central limit theorem would follow if one consider t a com-
plex number, i.e. replace MGF with “characteristic functions”.

Remark 7.5. The Xi being uncorrelated and identical in distribution is insuf-
ficient for getting the conclusion of CLT. For example, let Xi be i.i.d. Ber(1/2),
Yi = X1(2Xi+1 − 1).

Example 7.6. The theorem above implies the normal approximation of bi-
nomial distribution (Theorem 4.1) and the Poisson distribution as λ → ∞: if
Yn ∼ Poisson(nλ), then as n → ∞, Zn = Yn−nλ√

nλ
converges in distribution to

N (0, 1).
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8 Conditional Distribution and Conditional Ex-
pectation

Section 10.1-10.3 of textbook

When X and Y are random variables, the conditional distribution of Y
given X = x can not always be defined as in Definition 2.1. The reason is that
P (X = x) may be 0. However, the Disintegration theorem in measure theory
tells us that there is a almost everywhere uniquely defined family of probability
spaces (R,B, Px) such that for any Borel set A ⊆ R2,

P ((X,Y ) ∈ A) = E[gA(X)]

where
gA(x) = Px({y : (x, y) ∈ A})

Px(·) are called the probability distribution, denoted as P (·|X = x), and
the expectation of Y in this conditional distribution is called the conditional
expectation.

Remark 8.1.

1. One can define conditional probability distribution and conditional expec-
tation for more than 2 random variables.

2. When X and Y are independent, the conditional distribution equals the
marginal distribution.

3. When Y = g(X), the conditional distribution of Y given X = x is degen-
erate, with P (Y = g(x)|X = x) = 1.

8.1 Discrete Case

When X is discrete, we can use Definition 2.1. In particular, if both X and Y
are discrete, P (X = a) > 0, then the conditional pmf of Y is

pY |X(y|a) =
p(a, y)

pX(a)

and the conditional expectation is:

E(g(Y )|X = a) =
∑
y

g(y)pY |X(y|a)

Example 8.2. Let X1, . . . , Xn be i.i.d. Bernoulli distribution with param-
eter p = 1/2. Let Y =

∑m
i=1 Xi, X =

∑n
i=1 Xi, where m < n. Then

X ∼ Bin(n, 1/2).
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1. The joint pmf is

p(x, y) = P

(
m∑
i=1

Xi = x,

n∑
i=m+1

Xi = y − x

)
=

(
m

y

)
2−m·

(
n−m

x− y

)
2−n+m

where 0 ≤ y ≤ x ≤ n, y ≤ m.

2. The conditional pmf is, for 0 ≤ y ≤ x ≤ n, y ≤ m

pY |X(y|x) =

(
m
y

)(
n−m
x−y

)(
n
x

)
3. When m = 1,

P (X1 = 1|X = x) =

(
n−1
x−1

)(
n
x

) =
x

n

So the conditional expectation of Y given X is

E[Y |X = x] = mE[X1|X = x] =
xm

n

8.2 Jointly Continuous Case

If X, Y are jointly continuous with joint pdf f , then the conditional pdf of Y
is

fY |X(y|x) =
f(x, y)

fX(x)

and the conditional expectation is

E[g(Y )|X = x] =

∫ ∞

−∞

g(y)f(x, y)

fX(x)
dy

Example 8.3. Suppose X ∼ Unif(0, 1), and when X = x, Y ∼ Unif(0, x).

1. The joint pdf is now

f(x, y) =

{
1/x 0 < y < x < 1

0 otherwise

2. Suppose Y = 1/2, the conditional pdf of X is

fX|Y (x|1/2) =


1
x∫ 1

1/2
1
xdx

1/2 < x < 1

0 otherwise

=

{
1

x log(2) 1/2 < x < 1

0 otherwise

3. E(X|Y = 1/2) = 1
2 log(2)
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A Midterm I Review

1. Probability spaces

(a) Examples:

i. Experiments with finitely many outcomes with equal probability

ii. “uniformly at random” on geometric shapes

iii. Infinite sequence of repeated experiments

(b) Inclusion-Exclusion

2. Independence of events

3. Conditional Probability

(a) Conditional Independence

(b) Bayersian Theorem

4. Random Variables

(a) CDF and Probability Distribution. Properties of CDF:

i. Limits at ±∞
ii. Non decreasing

iii. Right continuity

(b) Independence of random variables

(c) Special kinds of random variables:

i. Discrete random variables, PMF

ii. Continuous random variables, PDF

iii. Properties of PMF and PDF

(i) PMF: Non-zero on countable set, non negative, sum equals
1

(ii) PDF: Non negative, integrable, integral equals 1

iv. Recovery of PMF and PDF from CDF

(d) Expectation and Variance

i. Expectation and Variance for discrete random variables

ii. Expectation and Variance for continuous random variables

5. Normal Approximation of Binomial Distribution

The old midterm I and solution have been uploaded to this Overleaf project.

Practice Problems:

1. Consider the probability space corresponding to rolling a pair of fair dices,
or when one picks a number uniformly at random from [0, 1]. Find three
events A, B and C, such that they are pairwise independent but not
mutually independent.
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2. Show that if f1 and f2 are pdf of some random variables, then f1+f2
2 is

also the pdf of some random variable.

3. Let X be a random variable. If X is independent with X2, what do we
know about X?

4. Flip a coin, if we get head, flip the coin again, and let X = 1 if we get
head in the second flip, 0 if otherwise. If the first flip gets a tail, let X be
a number chosen uniformly at random from interval [0, 1]. Now suppose
we know that X > 0.9, what’s the probability that we got head in the
first flip?

5. Let X be a random variable such that P (X = −1) + P (X = 0) + P (X =
1) = 1. What’s the largest possible expectation of X? What’s the largest
possible variance of X?

6. Let X and Y be two independent random variables, with distribution
Geom(1/2). Find the conditional distribution of max(X,Y ) when
min(X,Y ) ≥ 2.

7. Let Ai, i = 1, 2, 3 be 3 real numbers chosen independently and uniformly
at random from interval [0, 1]. Let X be the maximal number of points
among Ai where the pairwise distance is no more than 0.1. Find the pmf
and expectation of X.

8. Let X be a continuous random variable with pdf f . Find the cdf and pdf
of Y = |X|.

Answer

1. For the 2 dices case, we can let A be rolling a 1 in the first dice, B be
rolling a 2 in the second dice, and C be getting the same number on both
dices. For the picking a point uniformly at random from [0, 1] case, let A
be the point being in [0, 1/2], B be the point being in [1/4, 3/4] and C be
the point being in [0, 1/4] ∪ [1/2, 3/4].

2. Because f1 ≥ 0, f2 ≥ 0, so f1+f2
2 ≥ 0.∫ ∞

−∞

f1 + f2
2

dt =
1

2

∫ ∞

−∞
f1dt +

1

2

∫ ∞

−∞
f2dt = 1

3. For any a ≥ 0, −a ≤ X ≤ a and X2 ≤ a2 are indentical events which
are independent of one another, hence the cdf of X2 takes value at only
0 or 1. Hence there is some a ≥ 0 such that P (X2 = a2) = 1. If a > 0,
P (X = −a) = p, P (X = a) = 1 − p, where 0 ≤ p ≤ 1. If a = 0,
P (X = 0) = 1.
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4. Let B be the event where we get head in the first flip, and A be the event
that we get X > 0.9. Then by Bayer’s theorem,

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
=

1/2 × 1/2

1/2 × 1/2 + 0.1 × 1/2
=

5

6

5. Let P (X = −1) = a, P (X = 0) = b, P (X = 1) = c, then 0 ≤ a ≤ 1,
0 ≤ b ≤ 1, 0 ≤ c ≤ 1, a + b + c = 1. E(X) = −a + c, so it is maximized
when c = 1 and a = b = 0, and the maximum is 1. V ar(X) = E(X2) −
(E(X))2 = (a+ c)− (c−a)2 which is maximized when b = 0, a = c = 1/2,
so the maximal possible variance is 1.

6. It is easy to see that when min(X,Y ) ≥ 2, max(X,Y ) ≥ 2.

P (min(X,Y ) ≥ 2) = P (X ≥ 2, Y ≥ 2) = (P (X ≥ 2))2

=

( ∞∑
k=2

2−k

)2

= 1/4

For any integer m ≥ 2,

P (max(X,Y ) = m,min(X,Y ) ≥ 2)

= P (X = m, 2 ≤ Y ≤ m) + P (Y = m, 2 ≤ X ≤ m) − P (X = m,Y = m)

= 2×2−m
m∑

k=2

2−k−2−m×2−m = 21−m(2−1−2−m)−2−2m = 2−m−3×2−2m

So
P (max(X,Y ) = m|min(X,Y ) ≥ 2) = 22−m − 3 × 22−2m

7. Pick a point uniformly at random from the unit cube

{(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

Let the three coordinates be Ai, then these Ai are indeed mutually in-
dependent and all have uniform distribution on [0, 1]. X can take only 3
possible values, 1, 2 or 3.

P (X = 3) =
∑
i

P (Ai ≤ Aj ≤ Ai + 0.1 for all j ̸= i)

= 3

(∫ 0.9

0

0.12dt +

∫ 1

0.9

(1 − t)2dt

)
= 0.028

P (X = 1) = 3!P (A2 > A1 + 0.1, A3 > A2 + 0.1)

= 6

(∫ 0.8

0

1

2
(0.8 − t)2dt

)
= 0.512
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P (X = 2) = P (X ≤ 2) − P (X = 3)

= 3P (A1 − 0.1 ≤ A2 ≤ A1 + 0.1) − 3P (A1 − 0.1 ≤ A2 ≤ A1 + 0.1,

A1 − 0.1 ≤ A3 ≤ A1 + 0.1) + P (X = 3) − P (X = 3)

= 3

(∫ 0.1

0

(t + 0.1)dt +

∫ 0.9

0.1

0.2dt +

∫ 1

0.9

(1.1 − t)dt

)
−3

(∫ 0.1

0

(t + 0.1)2dt +

∫ 0.9

0.1

0.22dt +

∫ 1

0.9

(1.1 − t)2dt

)
= 0.57 − 0.11 = 0.46

8. The cdf of Y is

F (s) = P (|X| ≤ s) =

{
0 s < 0∫ s

−s
f(t)dt s ≥ 0

Hence the pdf of Y is

f(s) =
d

ds
F (s) =

{
0 s < 0

f(s) + f(−s) s ≥ 0

Remark A.1. There would not be complicated multiple integrals in the exams
like in Problem 7 above. But the inclusion-exclusion idea we used to set up the
integrals would be in the exam.
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B Midterm II Review

1. Confidence Intervals

2. Exponential and Poisson Distibutions

3. Moment Generating Function and its applications (e.g. moments from
mgf)

4. pmf and pdf of g(X)

5. Joint probability distributions

(a) Joint pmf and joint pdf, relationship with independence

(b) Multinomial and uniform distribution on regions

(c) Sums of independent random variables

(d) Exchangable random variables

Practice Problems:

1. Let X1, . . . , X6 be i.i.d. normal with a variance of 4 and unknown expec-

tation µ. Find C such that
[∑

i Xi

6 − C,
∑

i Xi

6 + C
]

is a 95% (p = 0.05)

confidence interval for µ.

2. Roll a dice 10 times, let X be the number of times getting 1, Y the number
of times getting 2, Z the number of times getting 3 or above. What’s the
joint distribution of X,Y, Z? What’s the marginal distribution of Y ?
What’s the variance of 2Y − 1?

3. Suppose the moment generating function of a random variable X is MX(t) =
et+e−t

2 . Find E[X], E[X2], V ar(X) and the cdf of X.

4. Suppose X ∼ Poisson(1), Y ∼ Exp(1) are independent. What’s the
probability that X < Y ?

5. Pick a point P = (X,Y ) uniformly at random from a disc of radius 1
centered at (1, 1). Are X and Y independent?

6. Suppose X ∼ N (0, 4), Y ∼ N (0, 9) are independent. Find t ∈ R such
that the variance of tX + (1 − t)Y is minimized.

Answer

1. C = −
√

2
3Φ−1(0.025) where Φ is the cdf of standard normal distribution.

2. The joint distribution is Multi(10, 3, 1/6, 1/6, 2/3), and the marginal dis-
tribution of Y is Bin(10, 1/6). V ar(2Y − 1) = 4V ar(Y ) = 50

9
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3. X is discrete with pmf p(1) = p(−1) = 1/2. So cdf is F (s) =


0 s < −1

1/2 −1 ≤ s < 1

1 s ≥ 1

,

E(X) = 0, V ar(X) = E(X2) = 1.

4. P (X < Y ) =
∑∞

k=0 P (X = k, Y > k) =
∑∞

k=0
e−1

k! · e−k = ee
−1−1.

5. No. One can verify by multiplying the marginal pdfs.

6. The variance of tX + (1 − t)Y equals 4t2 + 9(1 − t)2, so it is mininized
when t = 9/13.
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C Final Review

C.1 Common Distributions

Distribution Expectation Variance
Ber(p) p p(1 − p)

Bin(n, p) np np(1 − p)

Geom(p) (a) 1/p (1 − p)/p2

HyperGeom(n,m, k) km/n k(n− k)m(n−m)/((n− 1)n2)

Negbin(n, p) (b) n/p n(1 − p)/p2

Poisson(λ) λ λ
Unif(a, b) (a + b)/2 (b− a)2/12
Exp(λ) 1/λ 1/λ2

N (µ, σ2) µ σ2

Multi(n, r, p1, . . . , pr) E[Xi] = npi V ar(Xi) = npi(1 − pi)
Cov(Xi, Xj) = −npipj , i ̸= j (c)

(a) X ∼ Geom(p), then

MX(t) = E[etX ] =

∞∑
k=1

p(1 − p)k−1ekt =
pet

1 − (1 − p)et

M ′
X(t) =

pet

(1 − (1 − p)et)2
, E[X] = (MX)′(0) =

p

p2
=

1

p

M ′′
X(t) =

pet(1 + (1 − p)et)

(1 − (1 − p)et)3
, E[X2] = M ′′

X(0) =
2 − p

p2

V ar(X) = E[X2] − E[X]2 =
1 − p

p2

(b) Negbin(n, p) is the sum of n i.i.d. Geom(p).

(c) XiXj is the number of ordered pairs (k, l) such that k ̸= l, and the k-th
experiment gets outcome i, the l-th outcome j, hence E[XiXj ] = n(n −
1)pipj ,

Cov(Xi, Xj) = E[XiXj ] −E[Xi]E[Xj ] = n(n− 1)pipj − n2pipj = −npipj

C.2 Topics

1. Probability Spaces

(a) Inclusion-Exclusion

(b) Independence of events

(c) Conditional Probability

i. Conditional Independence
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ii. Bayesian Theorem

2. Random Variables

(a) Probability Distribution, CDF

(b) Discrete RV, PMF

(c) Continuous RV, PDF

(d) Expectation

i. Linearility

ii. Indicator RV and Indicator Method

iii. Variance

(e) Transformations, MGF

3. Joint Distribution

(a) Discrete Case, joint PMF

(b) Jointly Continuous Case, Joint PDF

(c) Marginal Distribution, marginal cdf/pmf/pdf

(d) Conditional distribution

i. Conditional expectation

(e) Independece of RV

i. pdf of sum and convolution

ii. Expectation of product

iii. MGF of sum

iv. Variance of sum

(f) Exchangability of RV

(g) IID

(h) Covariance and correlation

4. Tail bounds and CLT

(a) Markov’s inequality

i. Chebyshev’s inequality

ii. Weak LLN

(b) CLT
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C.3 Practice Problems

1. Let X and Y be jointly continuous with joint pdf f(x, y). Find the joint
pdf of X, kX + Y for k ∈ R.

2. Let X1, . . . , Xn be i.i.d. continuous random variables. Let Y be the num-
ber of j such that Xj > X1.

(a) Find the pmf of Y , E[Y ] and V ar(Y ).

(b) Let Z be the number of j such that Xj > X2. Find Cov(Y,Z).

3. Suppose there is a group of drivers, half of them gets on average one ticket
per year, the other half one ticket every 2 years. Suppose someone in the
group did not get any traffic ticket in 2025. What’s the probability that
the same person would not get a traffic ticket in 2026?

4. Roll a dice 100 times, let X be the sum of the points. Use Chebyshev’s
identity and CLT to estimate the probability that X > 400.

5. Let (X,Y ) be chosen uniformly at random from the unit disc, find the
expectation and variance of X and Y , Cov(X,Y ), and the conditional
distribution of X given Y = 0.

6. Let X and Y be jointly continuous. Suppose the conditional expectation
of Y is a constant that does not depend on the value of X. Is it true that
X and Y are uncorrelated?

7. Let X and Y be i.i.d. N (0, 1).

(a) For any real number s, find P (X ≤ s|X + Y < 0).

(b) Find the conditional pdf of X given X + Y < 0.

Answer:

1. Let the new pdf be h, F : (x, y) 7→ (x, kx + y), then∫
A

h(s, t)dsdt = P ((X, kX + Y ) ∈ A) = P ((X,Y ) ∈ F−1(A))

=

∫
F−1(A)

f(x, y)dxdy

By change of variable formula in multivariable calculus,∫
A

h(s, t)dsdt =

∫
F−1(A)

h ◦ F (x, y)|det(F ′)|dxdy

Here F ′ is the derivative, or the Jacobian matrix. Since det(F ′) = 1, we
have

f(x, y) = h ◦ F (x, y) = h(x, kx + y)

So h(s, t) = f(s, t− ks).
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2. Because they are continuous and iid, they are exchangable and jointly
continuous, hence for any bijection σ from {1, . . . , n} to itself, P (Xσ(1) <

· · · < Xσ(n)) = 1
n! , hence for 0 ≤ k ≤ n− 1,

P (Y = k) =
1

n!
·
(
n− 1

k

)
· k! · (n− 1 − k)! =

1

n

So E[Y ] = n−1
2 ,

V ar(Y ) = E[Y 2] − E[Y ]2 =
1

n
· (n− 1)n(2n− 1)

6
− (n− 1)2

4
=

n2 − 1

12

By exchangability, Z has the same distribution of Y , and the joint pmf
can be similarly calculated as

p(i, j) =
1

n(n− 1)
where 0 ≤ i, j ≤ n− 1, i ̸= j

Hence

E(Y Z) =
2

n(n− 1)

∑
0≤i<j≤n−1

ij =
1

n(n− 1)

 ∑
0≤i,j≤n−1

ij −
n−1∑
i=0

i2


=

3n2 − 7n + 2

12

Cov(Y, Z) = E(Y Z) − E(Y )E(Z) = −n + 1

12

3. Call the first kind bad drivers, the second kind good drivers. Then for
bad drivers the number of ticket each year ∼ Poisson(1), for good drivers
∼ Poisson(1/2). Let the driver be a, then P (a is good) = 1/2,

P (a is good|a gets no ticket in 2025)

=
e−1 · 1

2

e−1 · 1
2 + e−2 · 1

2

=
e

1 + e

P (a gets no ticket in 2026|a gets no ticket in 2025)

= e−1 · e

1 + e
+ e−2 · 1

1 + e
=

1 + e−2

1 + e

4. E[X] = 350, V ar(X) = 875
3 , by Chebyshev’s identity,

P (X > 400) =
1

2
P (|X − 350| > 50) ≤

875
3

2 × 502
=

7

120

By CLT,

P (X > 400) ≈ 1 − Φ

 50√
875
3

 ≈ 1 − Φ(2.928)

Where Φ is the cdf of N (0, 1).
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5. The marginal pdf of X and Y are

f(s) =

{
0 x < −1 or x > 1
√
1−s2

π −1 ≤ x ≤ 1

So their expectation is 0, variance is 1
8 .

Cov(X,Y ) =

∫
x2+y2≤1

xy

π
dxdy = 0

When Y = 0, the conditional distribution of X is Unif(−1, 1).

6. Yes. Suppose E[Y |X = x] = C =
∫
R yf(x,y)dy∫
R f(x,y)dy

Cov(X,Y ) =

∫
R2

xyf(x, y)dxdy − E[X]

∫
R2

yf(x, y)dxdy

∫
R2

xyf(x, y)dxdy =

∫
R

(
xC

∫
R
f(x, y)dy

)
dx = CE[X]

and ∫
R2

yf(x, y)dxdy =

∫
R

(
C

∫
R
f(x, y)dy

)
dy = C

So Cov(X,Y ) = 0

7. The joint pdf is f(x, y) = 1
2π e

− x2+y2

2 .

(a)

P (X ≤ s|X + Y < 0) =
P (X ≤ s,X + Y < 0)

P (X + Y < 0)

=
1

π

∫
x≤s,x+y<0

e−
x2+y2

2 dxdy = 1 − Φ2(−s) = 2Φ(s) − Φ2(s)

where Φ is the cdf of N (0, 1).

(b) The conditional pdf is now 2f(s)(1 − Φ(s)) where f is the pdf of
N (0, 1), and Φ its cdf.
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D JS code for visualizing the normal approxi-
mation and continuity correction

< !DOCTYPE html>
<html>
<head>
<meta name=” viewport ” content=”width=device−width ,  

i n i t i a l −s c a l e =1.0”>
<script src=https : // cdnj s . c l o u d f l a r e . com/ ajax / l i b s / mathjs

/1 4 . 8 . 1/ math . min . j s></ script>
</head>
<h1>Normal Approximation o f Binomial D i s t r i b u t i o n</h1>
<body>
<p>N: <input type=” text ” id=”n” value=”10”></p>
<p>p : <input type=” text ” id=”p” value=” 0 .5 ”></p>
<p><button type=” button ” onclick=”plotCDF ( ) ; ”>Plot CDF</

button></p>
<canvas id=”myCanvas” width=”500” height=”500”
style=” border : 1 px  s o l i d  #000000;”>
</ canvas>
<script>

f unc t i on plotCDF ( ) {
var n=par s e In t ( document . getElementById ( ”n” ) . va lue ) ;
var p=parseF loat ( document . getElementById ( ”p” ) . va lue

) ;
var cvs=document . getElementById ( ”myCanvas” ) ;
var ctx=cvs . getContext ( ”2d” ) ;

ctx . c l ea rRec t (0 , 0 , cvs . width , cvs . he ight ) ;
ctx . beginPath ( ) ;

ctx . s t r o k e S t y l e=”#0000FF” ;
func t i on l i n e ( a , b , c , d ) {

ctx . moveTo( a , b) ;
ctx . l ineTo ( c , d ) ;
ctx . s t r oke ( ) ;

}
var x=0;
var y=500;
f o r ( l e t i =0; i<n ; i++){

var xn=x+500/n ;
var cp=math . combinat ions (n , i ) ∗Math . pow(p , i ) ∗

Math . pow(1−p , n−i ) ;
var yn=y−500∗cp ;
l i n e (x , y , x , yn ) ;
l i n e (x , yn , xn , yn ) ;
x=xn ;
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y=yn ;
}
l i n e (500 , y , 500 , 0) ;
ctx . s t r o k e S t y l e=”#FF0000” ;
ctx . beginPath ( ) ;
var ny = [ ] ;
for ( l e t i =0; i<=500; i+=5){

var k=i ∗n /500 ;
var x=(k−n∗p) /Math . pow(n∗p∗(1−p) , 0 . 5 ) ;
ny . push ( [ i , 500∗(0.5 −0.5∗math . e r f ( x/Math . pow(2 ,

0 . 5 ) ) ) ] ) ;
}
for ( l e t i =0; i <100; i++){

l i n e ( ny [ i ] [ 0 ] , ny [ i ] [ 1 ] , ny [ i + 1 ] [ 0 ] , ny [ i + 1 ] [ 1 ] ) ;
}
ctx . s t r o k e S t y l e=”#FF00FF” ;
ctx . beginPath ( ) ;
var ny = [ ] ;
for ( l e t i =0; i<=500; i+=5){

var k=i ∗n/500+0.5;
var x=(k−n∗p) /Math . pow(n∗p∗(1−p) , 0 . 5 ) ;
ny . push ( [ i , 500∗(0.5 −0.5∗math . e r f ( x/Math . pow(2 ,

0 . 5 ) ) ) ] ) ;
}
for ( l e t i =0; i <100; i++){

l i n e ( ny [ i ] [ 0 ] , ny [ i ] [ 1 ] , ny [ i + 1 ] [ 0 ] , ny [ i + 1 ] [ 1 ] ) ;
}

}
</script>
</body>
</html>
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E Python code for calculating probabilies with
normal approximation and continuity correc-
tion

import math
def cd f ( t ) :

return (1+math . e r f ( t /2∗∗0 .5 ) ) /2

def choose (n , k ) :
r=1
for j in range ( k ) :

r∗=n−j
r//= j+1

return r

#binomia l p r o b a b i l i t y d i s t r i b u t i o n
def binom (n , p , k1 , k2 ) :

r=0
for j in range ( k1 , k2+1) :

r+=choose (n , j ) ∗(p∗∗ j ) ∗((1−p) ∗∗(n−j ) )
return r

#normal approximation wi thout c on t i nu i t y co r r e c t i on
def approx (n , p , k1 , k2 ) :

sigma=(n∗p∗(1−p) ) ∗∗0 .5
return cd f ( ( k2−n∗p) / sigma )−cd f ( ( k1−1−n∗p) / sigma )

#normal approximation wi th c on t i nu i t y co r r e c t i on
def approx cc (n , p , k1 , k2 ) :

sigma=(n∗p∗(1−p) ) ∗∗0 .5
return cd f ( ( k2+0.5−n∗p) / sigma )−cd f ( ( k1−0.5−n∗p) / sigma

)

print ( binom (100 , 1/6 , 20 , 25) )
print ( approx (100 , 1/6 , 20 , 25) )
print ( approx cc (100 , 1/6 , 20 , 25) )
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F JS code for visualizing Poisson approximation

< !DOCTYPE html>
<html>
<head>
<meta name=” viewport ” content=”width=device−width ,  

i n i t i a l −s c a l e =1.0”>
<script src=https : // cdnj s . c l o u d f l a r e . com/ ajax / l i b s / mathjs

/1 4 . 8 . 1/ math . min . j s></ script>
</head>
<h1>Poisson Approximation o f Binomial D i s t r i b u t i o n</h1>
<body>
<p>N: <input type=” text ” id=”n” value=”10”></p>
<p>lambda : <input type=” text ” id=”lambda” value=”4”></p>
<p><button type=” button ” onclick=”plotPMF ( ) ; ”>Plot PMF</

button></p>
<canvas id=”myCanvas” width=”500” height=”500”
style=” border : 1 px  s o l i d  #000000;”>
</ canvas>
<script>

f unc t i on plotPMF ( ) {
var n=par s e In t ( document . getElementById ( ”n” ) . va lue ) ;
var lam=parseF loat ( document . getElementById ( ”lambda”

) . va lue ) ;
var cvs=document . getElementById ( ”myCanvas” ) ;
var ctx=cvs . getContext ( ”2d” ) ;

ctx . c l ea rRec t (0 , 0 , cvs . width , cvs . he ight ) ;
ctx . beginPath ( ) ;

ctx . s t r o k e S t y l e=”#0000FF” ;
func t i on l i n e ( a , b , c , d ) {

ctx . moveTo( a , b) ;
ctx . l ineTo ( c , d ) ;
ctx . s t r oke ( ) ;

}
f o r ( l e t i =0; i<20 ; i++){

var x=i ∗25+2;
var cp=0;
i f ( i<=n) {

cp=math . combinat ions (n , i ) ∗Math . pow( lam/n , i ) ∗
Math . pow(1−lam/n , n−i ) ;

}
l i n e (x , 500 , x , 500−500∗cp ) ;

}
ctx . s t r o k e S t y l e=”#FF0000” ;
ctx . beginPath ( ) ;
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for ( l e t i =0; i <20; i++){
var x=i ∗25+4;
var cp=Math . pow( lam , i ) /math . f a c t o r i a l ( i ) ∗Math .

exp(−lam ) ;
l i n e (x , 500 , x , 500−500∗cp ) ;

}
}

</script>
</body>
</html>
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