
1 9/5 PDE terminology & philosophy

PDE: equation for a multivariate function that involves its partial derivatives.

Example: uy = x.
Example: (yu)y = 1.

General solution of a PDE.

Formally: PDE: F (u, xi, uxi , uxixj , . . . ) = 0

Order of a pde
Linear PDE.
Linear homogeneous PDE.

What are the order and linearality of the following PDEs?
ux + uyyx = 1, uux + u = 0, ux + (x2 + y2)uyy = 1.

Some PDEs we will focus on later:

Heat: ut = uxx: (heat transmission, diffusion)
Laplace: uxx + uyy = 0: (static electric field, Newton’s gravity, equilibrium of random walk)
Wave: utt = uxx: (sound wave, other waves in physics)

Other important linear PDEs:

Dispersive wave equations: utt = uxx − kuxxxx (stiff string)
Cauchy-Riemann equation: ux = vy, uy = −vx

Non-linear PDEs you may see in later classes:
Navier-Stokes
Nonlinear Schrodinger: iut = −∆u+ k|u|2u
KdV: ut + uxxx + 6uux = 0, etc.

Example: growth of bacteria. Baseline: GMCF (geodesic mean curvature flow) ut = A ∇u|∇u| · ∇u +

B|∇u|∇ · ∇u|∇u| .

Types of problems:
Evolution model (with time): Boundary condition. Initial condition. Initial value problem. Initial-boundary
value problem.
Steady state model (no time): boundary value problem.

Typical questions in the theory of PDE:
Existence
Uniqueness
Regularity
Continuous dependency on boundary

Typical strategy: integral transform: (Tu)(y) =
∫
u(x)K(x, y)dx, then T (ux) =

∫
ux(x)K(x, y)dx =

−
∫
u(x)Kx(x, y)dx, assume some decay conditions on the boundary (or infinity).
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Problem: Is such a transform well defined?

Connection with harmonic analysis.

Use of symmetry (method of mirror images, spherical symmetry etc.)
Example: solve uxx + uyy = 1, where u = 0 on the unit circle.

Example: ux = ut, ux = ut + 1.

2 9/7 Review of ODE, Advection and Diffusion

Review of ODE & multivatiable calculus topics:

• u′ + p(t)u+ q(t) = 0

• u′′′ +Au′′ +Bu′ + Cu = 0

• Chain rule: Example: uxx = utt, what happens with change-of-variable y = x+ t, w = x− t?

• Fubini’s theorem.

• Differentiating an integral. Example: d
dt

∫ t2
0

sin(ts)ds.

Solution: Let x = t, y = t, then d
dt

∫ t2
0
e−ts

2

ds = d
dt

∫ x2

0
e−ys

2

ds = (
∫ x2

0
e−ys

2

ds)x + (
∫ x2

0
e−ys

2

ds)y =

2x · e−y(x2)
2

+
∫ x2

0
(e−ys

2

)yds = 2xe−y(x2)
2

−
∫ x2

0
s2e−ys

2

ds = 2te−t
5 −

∫ t2
0
s2e−ts

2

ds.

• Example: utt = uxx + uyy, u(x, y, t) = sin(x cos θ + y sin θ + t) are solutions, hence
∫ 2π

0
sin(x cos θ +

y sin θ + t)dθ is also a solution.

PDE from conservation laws, 1-dimensional case:

Consider the flow of some material whose total quantity remain unchanged, along a thin tube with section
area A(x). Then, conservation means:

d

dt

∫ b

a

u(x, t)A(x)dx = A(a)φ(a, t)−A(b)φ(b, t) +

∫ b

a

f(x, t)A(x)dx

φ: flux. f : source.

Differentiate w.r.t. b one gets: Aut = −Aφx −A′φ+ fA.

• φ = u: e.g. cars which travels at the same speed, age distribution etc.

• φ = −ux: heat conduction etc.

• φ = u− ux: contaminated flow etc.

• f = −u: decay.

Relationship with random motion: see u(·, t) as the probability distribution.

Example: ut = ux − u. Decay vs. “widening”.

Example: u has two components (e.g. mass, momentum): wave equation.
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3 9/12 Method of characteristics

Question: first order linear PDE in 2 dimension: ut + fux + gu+ h = 0

First consider the case when g = h = 0. Recall that for 1st order ODE, there is a concept of first integral:
the solution of x′Fx + Ft = 0 are the level curves of F (x, t). Hence, the level curves of u are exactly the
solutions of x′ = f , which are called characteristics.

Example: ut = xux − u.

Example: ut = ux + uy.

Example: ut = sin tux + 1.

Non-linear advection: ut = f(u)ux: level curves are straight lines of slope f(c). Breaking time.
Example: ut = (1− u)ux.

4 9/14 Diffusion, fundamental solutions

Review of method of characteristics: ut + cux = x.

Fick’s law: φ = −Dux, which results in ut = Duxx. Simple observation:

1. Steady state solution: u = ax+ b.

2. Loss of information: should study initial value problem: ut = uxx, u(x, 0) = f(x) on region t > 0.

3. Time scale: remains unchanged under t = c2t′, x = cx′.

4. Conservation of the “total heat”:
∫
udx remain unchanged.

One could expect solution whose “shape” remain unchanged as one scales as in (3). However the integral
in (4) changes under this scaling, so one should expect a factor of t−1/2. Let u = t−1/2v(x2/t), then v can

be chosen as v = Ce−s/4. One can normalize it into u = 1
4πDte

−x2/4t.

This is called the fundamental solution of heat equation in one dimension. δ distribution.

Alternative interpretation of the fundamental solution: discretize, then use central limit theorem. Gen-
eral solution: Convolution.

Fundamental solution of heat equations in higher dimensions?

ut = ux + uxx

Method of mirrors: IBV problem.

5 9/18 Wave equation

utt = uxx

Model 1: String vibration: utt proportional to force which is characterized by uxx.
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Model 2: Sound wave in 1-dimension: ρt = −(ρv)x, (ρv)t = −(ρv2)x − px, p = kργ .

Review: general solution.

Solution for initial value problem.

Sound speed.

Initial-boundary value problems with one boundary (mirror), initial-boundary value problems with 2
boundaries, periodicity.

(Optional) Sepherical waves in higher dimensions.

6 9/21 Wave equation, boundary conditions, review of multivari-
able calculus

Correction: derivation of the general solution of 1-D wave equation:

utt = c2uxx

(∂t + c∂x)(∂t − c∂x)u = 0

(∂t + c∂x)u = f(x+ ct)

u = G1(x− ct) +

∫ t

o

f(cs+ (x− ct) + cs)ds

F ′1 = f

u = G1(x− ct) + (F1(x+ ct)− F1(x− ct))/c = (G1 − F1/c)(x− ct) + (F1/c)(x+ ct)

Now let G = G1 − F1/c, F = F1/c.

Boundary conditions: Dirichlet, Neumann, Robin.

Homogeneous boundary condition.

Example: utt = uxx, u(0, t) = 0, uX(1, t) = 0, general solution?

Example: non-homogeneous boundary and non-homogeneous equations

Example: utt = uxx + sinx.

Vector field in 3 dimension: T : R3 → R3. grad, div and curl. Stokes theorem in R, R2, R3.

7 9/26 Heat equation in high dimension, Laplace equation

Mass balance in high dimension: ut + divφ = 0. Heat: φ = −kgrad(u).

Steady-state: Laplace equation.
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Maximal principle, uniqueness.

Example of solutions. Fundamental solution.

Variational principle.

*******
Laplacian in sepherical coordinates. Sepherical harmonics.

8 9/28 Types of PDEs

Consider 2nd order equationAuxx+Buxy+Cuyy+f(u, ux, uy, x, y) = 0. It is called elliptic/parabolic/hyperbolic
iff Ax2 +Bxy + Cy2 is positive or negative definite/degenerate/indefinite.

Canonical forms: uxx + uyy + · · · = 0, uxy + · · · = 0, uxx + · · · = 0
Example: different types at different places.

Example: type remains unchanged under coordinate change: polar coordinate.

9 10/3 Heat equation

Formula for the Green’s function/fundamental solution G(x, t).

Properties:
∫∞
−∞G(x, t)dx = 1, limt→0+

∫
|x|>c>0

G(x, t)dx = 0, Gt = kGxx.

Poisson integration formula: is a solution: linearality; initial condition: the properties above.

Non-uniqueness of the solution: Tychonov 1935

Higher dimension.

Theorem (Poisson integration): If f is a bounded continuous function, then a solution of ut = kuxx when
t > 0, u(x, 0) = f(x) is:

u =

∫
R
f(y)G(x− y, t)dy

Proof: By computation we know that:

1.
∫
RG(x, t)dx = 1

2. For any c > 0,
∫
x 6∈[−c,c]G(x, t)dx→ 0 as t→ 0.

3. Gt = kGxx

ut = kuxx follows from 3. and the fact that all infinite integrals involves converges absolutely. Now we
need to show the initial condition, i.e. that u(x, t)→ f(x) as t→ 0+. Let M be a bound of |f(x)|.

For any c > 0,
|u(x, t)− f(x)|
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≤ |
∫ x+c

x−c
f(x)G(x− y, t)dy − f(x)|+ |

∫ x+c

x−c
(f(y)− f(x))G(x− y, t)dy|+ |

∫
y 6∈[x−c,x+c]

f(y)G(x− y, t)dy|

≤ |f(x)

∫
y 6∈[−c,c]

G(y, t)dy|+ sup
x−c<y<x+c

|f(y)− f(x)|+M |
∫
y 6∈[−c,c]

G(y, t)dy|

Now, for any ε > 0, let c be small enough so that supx−c<y<x+c |f(y) − f(x)| < ε/2, t be small enough
so that |

∫
y 6∈[−c,c]G(y, t)dy| < ε/4M , then |u(x, t)− f(x)| < ε. Hence u(x, t)→ f(x) as t→ 0. Furthermore,

because any continuous function is absolutely continuous when restricted to a bounded closed neighborhood,
the convergence is uniform when x is restricted to any bounded interval. Hence u is continuous on t = 0.

10 10/5 Examples, Poisson problem for wave equation

ut = uxx, u(x, 0) = χ[−1,1]

ut = uxx, u(x, 0) = e−x
2

erf function: erf(x) = 2√
π

∫ x
0
e−t

2

dt

d’Alembert from change of variable: utt = k2uxx, p = x+ kt, q = x− kt, then upq = 0, u = F (p) +G(q).
Now u(x, 0) = f(x), ut(x, 0) = g(x), which in p, q-coordinate means F (x) +G(x) = f , kF ′(x)− kG′(x) = 0.
Solve for F and G then one gets the d’Alembert formula.

Negative and positive characteristics, domain of influence and domain of dependence
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11 Review for Midterm I

The following may appear in the first midterm:

• Simplify PDE by substitution

• Prove properties of the solution by chain rules, fundamental theorem of calculus, and divergence
theorem

• Solve PDE by reducing it to ODE either through restriction to a curve or through the use of symmetry.

• Obtain particular solution from the general solution by applying boundary condition.

• Method of characteristics

• General solution of 1-dimensional wave equations

• Poisson integration representation for initial value problem of the heat equation

• Can recognize elliptic, parabolic and hyperbolic 2nd-order equations

Practice problems:

1. Solve the initial value problem ut + sin tux = 1, u(x, 0) = sinx.
Solution: By method of characteristics, the general solution is u(x, t) = t + F (x + cos t), so u(x, t) =
t+ sin(x+ cos t− 1).

2. Find the steady state solution of ut = uxx + xux.
Solution: The steady state solution satisfies uxx +xux = 0, hence u = A

∫ x
0
e−t

2/2dt+B. You can also write
it using the erf function.

3. Consider the equation: utt = uxx + uyy. If a solution satisfy u = sin tv(x, y), what is the PDE v
satisfies? Can you find a solution when v depends only on y?
Solution: By product law, we get vxx + vyy + v = 0. If v depends only on y then v = A cos y +B sin y.

4. Consider the boundary value problem utt = uxx − ut, u(0, t) = u(1, t) = 0. Show that the function∫ 1

0
u2
t + u2

xdx is decreasing. What’s the limit of u as t→∞?

Solution: d
dt

∫ 1

0
u2
t + u2

xdx =
∫ 1

0
2ututt + 2uxuxtdx = 2(utux)|10 − 2

∫ 1

0
u2
tdx ≤ 0. As t → ∞, the energy∫ 1

0
u2
t + u2

xdx will decay towards 0, and the limit will be 0.
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12 10/10 Well posed problem, review

Some known solutions of IVP:

• ut = ux, u(x, 0) = f(x)
Answer: u(x, t) = f(x+ t).

• utt = uxx, u(x, 0) = f(x), ut(x, 0) = g(x)

Answer: u(x, t) = 1
2 (f(x+ t) + f(x− t)) + 1

2

∫ x+t

x−t g(s)ds.

• ut = uxx, u(x, 0) = f(x), u bounded. (or ≤ CeCx2

)
Answer: u(x, t) =

∫
R f(s)G(x− s)ds.

In all cases, we have: (1) solution exist. (2) solution is unique. (3) solution depends on the initial condition
continuously. Hence we call them well posed problems.

Example of non-well-posed problems:

Nonlinear advection.
Reverse heat equation.
uxx + utt = 0.

Review:
1. ut = tux, u(x, 0) = x2.

2. utt = uxx − u: steady state?

13 10/17 Semi-infinite domain, Dahamel’s Principle

Example 1: ut = uxx, u(x, 0) = f , u(0, t) = 0: u =
∫
G(x − y, t)φ(y)dy, so φ(x) = f(x) when x > 0 and

−f(−x) when x < 0.

Example 2: utt = uxx, u(x, 0) = f , ut(x, 0) = g, ux(0, t) = 0, x ≥ 0, t ≥ 0: u = 1
2 (φ(x− t) + φ(x+ t)) +

1
2

∫ x+t

x−t ψ(s)ds. So φ and ψ are even extension of f and g respectively.

Example 3: L linear operator in the space of functions on x. ut = Lu, u(0) = α has solution u(t, α).

Then, ut = Lu+ f(t), u(0) = α has solution u(t) = u(t, α) +
∫ t

0
u(s, f(t− s))ds.

Example 4: utt = uxx + sin(x+ t), ut(x, 0) = u(x, 0) = 0. Let U = [u, ut]
T , use the principle above.

Example 5: ut = uxx, u(0, t) = t. Solution: combine ideas from problem 1 and 3.

14 10/19 Laplace Transform and Fourier Transform

Review: Homogeneous boundary: mirroring; Non-homogeneous equation: w(t, α) being the solution of

wt = Tw, w(0) = α, then ut = Tu+ f(t), u(0) = b has solution u = w(t, b) +
∫ t

0
w(t− s, f(s))ds. Hence, to

solve non-homogeneous equations, first solve for w then put it in the formula.
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Laplace transform: L(f) =
∫∞

0
e−stf(t)dt.

Properties: L(f ′) = sL(f)− f(0), L(f ∗ g) = L(f)L(g). Here f and g are 0 on (−∞, 0).

L(f) = 0 iff f a.e. 0. When f is analytic, L−1(f) = 1
2πi

∫ c+i∞
c−i∞ f(s)estds, but we won’t use this.

Formulas we will use:

(1): L( 1√
4πt

e−a
2/(4t)) = 1√

4s
e−|a|

√
s.

(2): L( a
2t3/2

e−a
2/(4t)) =

√
πe−a

√
s.

Example 1: ut = uxx, u(x, 0) = f(x), f compactly supported (or have similar decay condition)

sL(u) − f(x) = (Lu)xx, hence (Lu)(x, s) = 1
2
√
s

(
e−
√
sx
∫ x
−∞ e

√
srf(r)dr + e

√
sr
∫∞
x
e−
√
srf(r)dr

)
=

1√
4s

∫∞
−∞ e−

√
s|x−r|f(r)dr = L(

∫∞
−∞G(x − r, t)y(r)dr). Here we use (1), and also the formula for solving

non-homogeneous 2nd order ODE: y = y2

∫ x
a

(y1f/W )ds− y1

∫ x
a

(y2f/W )ds.

Example 2: ut = uxx, u(x, 0) = 0, u(0, t) = f(t).

sL(u) = (Lu)xx, so (Lu)(x, s) = L(f)e−
√
sx so u = L−1(L(f))∗ x√

4πt3
e−

x2

4t =
∫ t

0
f(τ) x√

4π(t−τ)3
e−

x2

4(t−τ) dτ .

How about f = 1?

15 10/24 Laplace and Fourier transform

Steps for solving PDEs using integration transform:
1. Do transform, turn it into ODE.
2. Apply initial/boundary conditions.
3. Solve ODE, take the inverse transform.

Example 1: ut = ux, u(x, 0) = f(x), use Laplace transform on t.

sLu− f(x) = (Lu)x, so Lu = F (s) +
∫∞
x
f(r)es(x−r)dr = F (s) +L(f(x+ ·)). So u = L−1(F ) + f(x+ t),

by initial condition F = 0.

Example 2: (PIP) ut = Kuxx, u(x, 0) = 0, u(0, t) = f , find K from ux(t, 0).

u =
∫ t

0
f(τ) x√

4Kπ(t−τ)3
e−

x2

4K(t−τ) dτ = −2K
∫ t

0
Gx(x, t − τ)f(τ)dτ = −2

∫ t
0
G(x, t − τ)f ′(τ)dτ = . . . . Do

everything for x small then take limit.

Fourier transform: F (f) =
∫
R e

istf(t)dt. Properties: F (f ′) = −isF (f). F−1(f) = 1
2π e
−istf(t)dt.

F (f ∗ g) = F (f) ∗ F (g). (F−1(f ∗ g) = 1
2πF

−1(f)F−1(g))

Example 3: ut = uxx, u(x, 0) = f . F on x: (Fu)t = −y2(Fu), Fu = e−ty
2

F (f), u = F−1(e−ty
2

)∗f = . . . .

Here, one uses that
∫
R e

(−x+iy)2dx does not depend on y.
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16 10/26 Fourier transform

Review: Definition, derivatives, convolution, inverse.

Example 1: utt = 4uxx + f(x, t), u(x, 0) = g(x), ut(x, 0) = 0.

Fourier transform on x, v = F (u): vtt = −4s2v + F (f), v(s, 0) = Fg, vt(s, 0) = 0. So v(x, t) =

(Fg)(s) cos(2st) +
∫ t

0
1
2s sin(2s(t − r))(Ff)(s, r)dr. Now by the inverse formula, we have F−1(cos(2st) ·

Fg)(x, t) = 1
2 (g(x−2t)+g(x+2t)), and F−1( 1

2s sin(2s(t−r)) ·Ff) = F−1( 1
4is (F (f(x+2t−2r, r)−f(x−2t+

2r, r)))) = 1
4

∫ x+2t−2r

x−2t+2r
f(y, r)dy. Hence the solution is u = 1

2 (g(x− 2t) + g(x+ 2t)) + 1
4

∫ r
0

∫ x+2t−2r

x−2t+2r
f(y, r)dy.

Example 2: utt + uxx = 0, u(x, 0) = f(x), u bounded on t > 0. (a model for electric potential, current
field, Newtonian gravity etc.)

Fourier transform on x: v = F (u), then vtt = s2v, v(s, t) = F (f)(s)e−|s|t, u = F−1(F (f)(s)e−|s|t) =
f ∗ t

π(t2+x2) .

Example 3: 3-dimensional wave equation: utt = ∆u, ut(x, 0) = f(x), u(x, 0) = 0.

Multi-variable Fourier transform on x, v = F (u), we get vtt = |s|2v. v = sin(|s|t)
|s| F (f). Calculate

F−1(sin(|s|t)
|s|) in coordinate system (r, h, θ) where h = s · x, one gets that it is a distribution concentrated at

|x| = t. Huygen’s principle.

Example 4: utt = uxx − ut, u(x, 0) = 0, ut(x, 0) = f(x).

Do Fourier transform in x direction, one gets û = −f̂(s) · (1− 4s2)−1/2(e−
1+
√

1−4s2

2 t − e−
1−
√

1−4s2

2 t). So

u = f ∗ Φ, Φ(x, t) = − 1
2π

∫
R(1− 4s2)−1/2(e−

1+
√

1−4s2

2 t − e−
1−
√

1−4s2

2 t)e−isxds.

17 10/31 Solving IBVP with Fourier series

Example: ut = uxx, u(0, t) = u(1, t) = 0, u(x, 0) = f(x).

Method 1: expand f into φ(x) =

{
f(x− 2n) 2n < x < 2n+ 1

f(2n− x) 2n− 1 < x < 2n
. So u =

∫ 1

0

∑
n∈Z f(y)(G(x+2n−y, t)−

G(x+ 2n+ y, t))dy, where G(x, t) = 1√
4πt

e−x
2/4t.

Method 2: Note that u(x, t) = e−n
2π2t sin(nπt) satisfies both the equation and the boundary condition.

Try to build the solution by linear combinations of such solutions. Suppose f(x) =
∑
n cn sin(nπx). Then,

cn = 2
∫ 1

0
f(y) sin(nπy)dy. So, u(x, t) =

∑∞
n=1 2e−n

2π2t
(∫ 1

0
f(y) sin(nπy)dy

)
sin(nπx).

One can show that they are the same by Poisson summation formula. One needs only to show:
∑
n∈Z e

−n2π2t+inx =

1√
πt

∑
n∈Z e

− (x+2n)2

4t . This is by using Poisson summation formula
∑
n F (n) =

∑
n

∫
R F (x)e2πinxdx, on func-

tion F (y) = 1√
4πt

e−
(x+2y)2

4t .

Example 2: same, for Neumann boundary condition.
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18 11/2 Fourier series

L2(M): L2 integrable functions on M (defined up to measure 0 set). Inner product: (u, v) =
∫
uv ≤

(
∫
|u|2

∫
|v|2)1/2.

Complete orthonormal system: {fn} ∈ L2(M), orthonormal, and (g, fn) = 0 for all n implies g = 0.
Then, g =

∑
i(g, fi)fi,(in L2 sense),

∑
|(g, fi)|2 = ||g||2 (Parseval’s equality).

Other convergence: reduce to the periodic case. It can then be upgraded to uniform when g ∈ C1, and

pointwise when there is Dini criterion (
∫ L/2

0
| g(x0+t)+g(x0−t)

2 − l|dtt <∞).

Some complete orthonormal systems for L2([0, l]): {sin(2nπx/l), cos(2nπx/l)}, {sin(2πx/l)}, {cos(nπx/l)},
{e2inπx/l}.

Example: sin(πx) expand under cos(nπx).

Application: Poisson summation formula: F (x) =
∑
n f(x + n), do Fourier expansion on [0, 1] using

e2inπx, F (x) =
∑
n

∫ 1

0

∑
n f(y + n)e−2inπydye2inπx =

∑
n

∫ 1

0

∑
n f(y + n)e−2inπ(y+n)dye2inπx. Let x = 0.

Example of solving PDE with Fourier series: ut = uxx, ux(0, t) = 0, ux(1, t) = f(t), u(x, 0) = 0, f(0) = 0:

v = u− x2

2 f(t), then v(x, 0) = 0, vt+
x2

2 f
′(t) = vxx+f(t). Let v(x, t) =

∑
n vn(t) cosnx, then v′n+Cnf

′(t) =
vn +Dn, where Cn = 1

nπ (−1)n − 2
n2π2 (−1)n−1 when n > 0, C0 = 1

6 , Dn = 0 for n > 0, D0 = 1.
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19 11/7 Review for Chapter 2 & 3

The Heaviside function H is defined by H(x) = 1 when x ≥ 0 and 0 when x < 0.

The Dirac mass δ is defined by
∫
δ(x)f(x)dx = f(0). Hence, δ ∗ f = f for any f .

χA: characteristic function of A.

The solution of IVP for 1-d wave equation can be written as 1
2 (δct + δ−ct) ∗ f + 1

2cχ[−ct,ct] ∗ g.

Effect of translation and scaling for L and F .

Reason for odd/even extension.

Example 1: ut = uxx − u+ f(x), u(x, 0) = 0, t > 0.

Solution 1: Change of variable u = e−tv, then vt = vxx + etf(x), u =
∫ t

0
eτ−t

∫
RG(x− y, t− τ)f(y)dydτ .

Solution 2: Fourier transform in the x direction: v = Fu, vt = −s2v−v+F (f), v(s, t) = F (f)(e−(s2+1)t−
1) 1

1+s2 , u(x, t) = 1
2 (f ∗ e−tG− f) ∗ (e−|x|).

Example 2: utt = uxx, ux(0, t) = 0, ut(x, 0) = 0, u(x, 0) = f(x), x > 0, t > 0.

Solution 1: Even extension: u(x, t) = 1
2 (f(|x+ t|) + f(|x− t|)).

Solution 2: Laplace transform in t direction: v = Lu, then s2v − sf = vxx, vx(0, s) = 0. So v(x, s) =∫ x
0

(
f(r)

2 (es(x−r) − e−s(x−r))
)
dr + C(s)(esx + e−sx) =

∫ x
0

(
f(x−r)

2 (esr − e−sr)
)
dr + C(s)(esx + e−sx). Here∫ x

0

(
f(x−r)

2 (esr − e−sr)
)
dr = 1

2 (exsL(χ[0,x]f) − L(f(−·))). Let x → ∞, we have C(s) = −L(f)
2 . Now take

L−1 one gets the solution.

Example 3: utt = uxx, ux(0, t) = ux(2, t), u(0, t) = u(2, t), ut(x, 0) = 0, u(x, 0) = f(x).

Solution 1: Do periodic extension: u(x, t) = 1
2 (f(x+ t− 2bx+t

2 c) + f(x− t− 2bx−t2 c)).

Solution 2: Fourier series expansion. u(x, t) = 1
2

∫ 2

0
f(s)ds+ 1

2

∑∞
n=1

∫ 2

0
f(s) cos(nπs)ds(cos(nπ(t+x)) +

cos(nπ(t− x))) + 1
2

∑∞
n=1

∫ 2

0
f(s) sin(nπs)ds(sin(nπ(t+ x)) + sin(nπ(x− t))).

Example 4: iut = uxx.
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20 Review for Midterm 2

Topics that will be covered in the second midterm:

• Definitions of Laplace and Fourier transform.

• Use odd/even extension for boundary-value problems

• Dahamel’s principle

• Solving PDE on bounded domain using Fourier (sine, cosine etc.) series.

The Heaviside function H is defined by H(x) = 1 when x ≥ 0 and 0 when x < 0.
The Dirac mass δ is defined by

∫
δ(x)f(x)dx = f(0). Hence, δ ∗ f = f for any f .

Practice problems:

(1) Find the Laplace transform of f(x) = x−1/2.

Solution:
∫∞

0
x−1/2e−sxdx = 2√

s

∫∞
0
s−sxds1/2x1/2 = 2√

s

√
π

2 =
√

π
s .

(2) If f is continuous with bounded support defined on (0,∞), find bounded solution of uxx + utt = 0,
ux(0, t) = 0, u(x, 0) = f(x), on the region {x, t : x > 0, t > 0}.

Solution: Because ux(0, t) = 0, the problem can be reduced to uxx + utt = 0, u(x, 0) = f(|x|), t > 0. So
the solution is

∫
R

t
π((x−r)2+t2)f(|r|)dr.

(3) Find the bounded solution of uxx + utt = 1, u(x, 0) = u(0, t) = u(1, t) = 0, on the region
{x, t : t > 0, 0 < x < 1}.

Solution: Do sine expansion, we have u(x, t) =
∑
n Cn(t) sin(nπx), and C ′′n − n2π2Cn = 1−(−1)n

2nπ so

Cn(t) = 1−(−1)n

2n3π3 e−nπt − 1−(−1)n

2n3π3 , and u(x, t) =
∑
n sin(nπx)

(
1−(−1)n

2n3π3 e−nπt − 1−(−1)n

2n3π3

)
.

13



21 11/14 Review of separation of variables

Example 1: ut = kuxx − hu, u(0, t) = u(L, t) = 0, u(x, 0) = f(x).

Example 2: ut = kuxx − hu, u(0, t) = ux(L, t) = 0, u(x, 0) = f(x).

Example 3: ut = kuxx − hu, u(0, t) = ux(L, t) = 0, u(x, 0) = 0, ut(x, 0) = f(x).

22 11/16 Sturm-Liouville problems

Lu = −(p(x)u′)′ + q(x)u, p non-zero.

Regular SLP: Lu = λu, α1u(a) + α2u
′(a) = β1u(b) + β2u

′(b) = 0.
Periodic SLP: Lu = λu, u(a) = u(b), ux(a) = ux(b).

λ such that there is non-zero solution: eigenvalues, non-zero solution: eigenfunction.

For both SLPs:

Discrete eigenvalues: theory of compact operators.

Eigenvalues are real, eigenfunctions orthorgonal: self adjoint under L2:
∫
fLg =

∫
f−(pg′)′+(qf)g = . . . .

For regular SLP:

Eigenspaces have dimension 1: theory of ODE.

Signs of eigenvalues: λ = (u, Lu)/(u, u), hence when p > 0, q > 0, λ > 0.

Example 1: ut = uxx, u(0, t) = u(1, t) + ux(1, t) = 0, u(x, 0) = f(x).

Example 2: uyy + uxx = u, u(0, t) = u(1, t) + ux(1, t) = 0, u(x, 0) = f(x).

23 11/21 SLP cont.

1. Symmetric boundary conditions: if y1, y2 both satisfy the condition, then p(y1y
′
2 − y′1y2)|ba = 0. Energy

argyment: show that (u, Lv) > 0.

2. Weighted SLP: Lu = λru, then inner product should be taken as (u, v) =
∫
urv.

Example 1: ut = uxx + ux, u(0, t) = u(1, t) = 0, u(x, 0) = f(x).

3. Singular SLP: p = 0 Example 2: Bessel’s eq: −(xu′)′ = λxu, u(0) bounded, u(1) = 0.

4. SLP on infinite interval: Example 3: −u′′ = λu, u(0) = 0, u bounded at ∞: Fourier sine transform
(i.e. Fourier transform after an odd expansion)

14



Example 4: ut = uxx, u(x, 0) = f(x), ux(0, t) = 0, t > 0, x > 0.

In the case when both sides are unbounded, this becomes Fourier transform.

Example 5: −u′′ = λu, u bounded at ∞, u(0)− u′(0) = 0.

Solution: The expansion is f(x) =
∫∞

0
g(s)(sin(sx) + s cos(sx))ds. To get g from f , first solve ODE

h+ h′ = f , then do odd extension for h and do inverse Fourier transform.

24 11/28 Laplace on disc

Review: solve pde with separation of variables:

Step 1: write u as product form, make ODEs.
Step 2: apply boundary condition, get SLP in one or more directions.
Step 3: solve ODEs with eigenvalues.
Step 4: write solution in infinite series.

∆ = ∂2
r + 1

r∂r + 1
r2 ∂

2
θ .

Example 1: urr + 1
rur + 1

r2uθθ = 0, u(1, θ) = f(θ), r < 1.

Solution: u = 1
2π

∫ 2π

0
f(s)ds + 1

π

∑
n r

n
∫ 2π

0
f(s) cos(n(θ − s))ds = 1

2πf ∗
(

1
1−rei(θ−·) + 1

1−re−i(θ−·) − 1
)

.

Poisson’s integral formula, Poisson’s kernel. Fundamental solution.

Example 2: same as above but r > R, bounded solution.

Solution: u = 1
2πf ∗

(
1

1−(R/r)ei(θ−·) + 1
1−(R/r)e−i(θ−·) − 1

)
.

Example 3: urr + 1
rur + 1

r2uθθ = f(r, θ), u(1, θ) = f(θ), r < 1.

Solution: f(r, θ) =
∑
n fn(r) cosnθ+

∑
n gn(r) sinnθ, where f0(r) = 1

2π

∫ 2π

0
f(r, s)ds, fn(r) = 1

π

∫ 2π

0
f(r, s) cosnsds

when n > 0, and gn = 1
π

∫ 2π

0
f(r, s) sinnsds. Then, u(r, θ) =

∑
nAn(r) cosnθ +

∑
nBn(r) sinnθ. The func-

tions An, and Bn satisfies: A′′n + 1
rA
′
n − n2

r2An = fn, B′′n + 1
rB
′
n − n2

r2Bn = fn.

Now we solve A′′n+ 1
rA
′
n− n2

r2An = fn. (r2n+1(r−nAn)′)′ = (−nrnAn+rn+1A′n)′ = −n2rn−1An+rnA′n+

rn+1A′′n = rn+1fn, so (r−nAn)′ = r−2n−1
∫ r

0
sn+1fn(s)ds, An = −rn

∫ 1

r
h−2n−1

∫ h
0
sn+1fn(s)dsdh. Similarly,

Bn = −rn
∫ 1

r
h−2n−1

∫ h
0
sn+1gn(s)dsdh.

24.1 General theory of Laplace equation (for any dimension)

Divergence theorem:
∫

Ω
divφdV =

∫
∂Ω
φ · ndA.

Green’s identities:
∫
∂Ω
ugradu · ndA =

∫
Ω
u∆udV +

∫
Ω
‖gradu‖2dV∫

Ω
u∆vdV =

∫
Ω
v∆udV +

∫
∂Ω

(ugradv − vgradu) · ndV .

Uniqueness for Dirichlet problem: Green’s first identity.
Dirichlet’s principle for Dirichlet problem: Green’s second identity.
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25 11/30 More example on non-homogenuity. Heat equation on
balls

Example 1: ut = urr + d−1
r ur, ur(0, t) = u(1, r) = 0, u(r, 0) = f(r).

d = 3, d = 2.

Example 2: utt = c2(urr + 2
rur).

Example 3: parameter identification: λnRn = c(r)2(R′′n + 2
rR
′
n), Rn(1) = 0.

λn(rRn) = c2(rRn)′′, so λn
∫ r

0
c−2sRn(s)ds = (rRn)′, ...

26 12/5 Poisson equation

Example 1: utt = uxx, u(0, t)− sin kt = ux(1, t) = 0, u(x, 0) = ut(x, 0) = 0.

∆u = λu, Dirichlet/Neumann boundary, then there is a orthogonal basis formed by eigenvectors.

Example 2: Ω be the region [0, a]× [0, b], ∆u = f on Ω, u|∂Ω = 0.

Example 3: urr + 1/rur + uθθ = f , u(1, θ) = 0.

Fredholm alternative.

Green’s functon.

Example 4: upper half space.

Example 5: [0,∞)× [0,∞).

27 Final review

Types of equations: advection, heat, wave, laplace, Poisson, linear, linear homogeneous.

Solution methods: method of characteristics, Poisson integration for heat equation, D’Alembert solution
for 1-D wave equation
Method of mirror image, Duhamel’s principle
Fourier and Laplace transform
Fourier method.

Exercises:
1. Solve the equation ut = uxx + f(x), ux(0, t) = u(2, t) = u(x, 0) = 0 on 0 < x < 2, t > 0.

Solution: u =
∑∞
n=0

1
(nπ/2+π/4)2

(∫ 2

0
f(s) cos((nπ/2 + π/4)s)ds

)
(1− e−(nπ/2+π/4)2t) cos((nπ/2 +π/4)x).

2. Find bounded solution of uxx + uyy = 0, uy(x, 0) = f(x), ux(0, y) = ux(1, y) = 0 on 0 < x < 1, y > 0.
Note that f has to satisfy some other constraint for such a solution to exist.

Solution: The constraint is that
∫ 1

0
f(s)ds = 0. u = −

∑∞
n=1

2
nπ

∫ 1

0
f(s) cos(nπs)dse−nπy cos(nπx).
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3. Find the general solution of 0 = (x∂t + ∂x)(∂t − ∂x)u = xutt + (1− x)uxt − uxx.

ut − ux = F (t− x2/2), u = G(x+ t) +
∫ t

0
F (s− (x+ t− s)2/2)ds.
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