1 9/5 PDE terminology & philosophy

PDE: equation for a multivariate function that involves its partial derivatives.

Example: u, = x.
Example: (yu), = 1.

General solution of a PDE.
Formally: PDE: F(u, %, Uz, , Uz,z;,---) =0

Order of a pde
Linear PDE.
Linear homogeneous PDE.

What are the order and linearality of the following PDEs?
Up + Uyyz = 1, utly +u =0, uy + (22 + y?)uy, = 1.

Some PDEs we will focus on later:

Heat: u; = ugzy: (heat transmission, diffusion)
Laplace: gy + uy,y = 0: (static electric field, Newton’s gravity, equilibrium of random walk)
Wave: uy = g, (sound wave, other waves in physics)

Other important linear PDEs:

Dispersive wave equations: uy = Ugy — KUggee (stiff string)
Cauchy-Riemann equation: u, = vy, uy = —v,

Non-linear PDEs you may see in later classes:
Navier-Stokes
Nonlinear Schrodinger: iu; = —Au + k|u|*u
KdV: uy + uges + 6uu, = 0, ete.

Example: growth of bacteria. Baseline: GMCF (geodesic mean curvature flow) u; = Alg—ul - Vu +
BIVulV - ga.

Types of problems:
Evolution model (with time): Boundary condition. Initial condition. Initial value problem. Initial-boundary
value problem.
Steady state model (no time): boundary value problem.

Typical questions in the theory of PDE:
Existence
Uniqueness
Regularity
Continuous dependency on boundary

Typical strategy: integral transform: (Tw)(y) = [w(z)K(z,y)dz, then T(uy) = [uy(z)K(z,y)dz =
— [w(z)K,(z,y)dx, assume some decay conditions on the boundary (or infinity).



Problem: Is such a transform well defined?
Connection with harmonic analysis.

Use of symmetry (method of mirror images, spherical symmetry etc.)
Example: solve ug, + uyy = 1, where u = 0 on the unit circle.

Example: u, = uy, uy = ug + 1.

2 9/7 Review of ODE, Advection and Diffusion

Review of ODE & multivatiable calculus topics:

o v +p(t)u+q(t) =0

o v+ Au" + Bu +Cu=0

e Chain rule: Example: u,, = us, what happens with change-of-variable y =z + ¢, w =« — t?
e Fubini’s theorem.

2
e Differentiating an integral. Example: 4 fot sin(ts)ds.
. d t2 —ts? d z? 52 z? 2 x? 2
Solution: Let x = t,y =t, then 5 [ e ds = § [ e ¥ ds = ([, e ¥ ds), + (f, e ¥ ds), =

2 2 2
27 - ev(@)’ 4 Iy (e7v"),ds = 2ze~¥(@)° Iy s2e ¥ ds = 2te=t" — f; s2e=!5" ds.

e Example: uy = Ugy + Uyy, u(z,y,t) = sin(zcosf + ysind + t) are solutions, hence fo% sin(z cos 6 +
ysin@ + t)df is also a solution.

PDE from conservation laws, 1-dimensional case:

Consider the flow of some material whose total quantity remain unchanged, along a thin tube with section
area A(z). Then, conservation means:

b

ai ) uw(z,t)A(z)dz = A(a)p(a,t) — A(b)p(b,t) + /a [z, t)A(z)dx

¢: fluzx. f: source.

Differentiate w.r.t. b one gets: Auy = —A¢p, — A'¢p + fA.

e ¢ = u: e.g. cars which travels at the same speed, age distribution etc.
® ¢ = —u,: heat conduction etc.

® ¢ =u — u,: contaminated flow etc.

o f = —u: decay.

Relationship with random motion: see u(-,t) as the probability distribution.
Example: u; = u, — u. Decay vs. “widening”.

Example: u has two components (e.g. mass, momentum): wave equation.



3 9/12 Method of characteristics

Question: first order linear PDE in 2 dimension: u; + fu, + gu+h =0

First consider the case when g = h = 0. Recall that for 1st order ODE, there is a concept of first integral:
the solution of z'F,, + F; = 0 are the level curves of F(z,t). Hence, the level curves of u are exactly the
solutions of ’ = f, which are called characteristics.

Example: u; = zu, — u.
Example: uy = ug + uy.
Example: u; = sintu, + 1.
Non-linear advection: u; = f(u)u,: level curves are straight lines of slope f(c). Breaking time.
Example: u; = (1 — u)u,.
4 9/14 Diffusion, fundamental solutions
Review of method of characteristics: u; + cu, = .
Fick’s law: ¢ = —Duy,, which results in u; = Du,,. Simple observation:
1. Steady state solution: v = ax + b.
2. Loss of information: should study initial value problem: u; = g, u(x,0) = f(z) on region ¢t > 0.

3. Time scale: remains unchanged under ¢t = ¢, = ca'.

4. Conservation of the “total heat”: [udz remain unchanged.
One could expect solution whose “shape” remain unchanged as one scales as in (3). However the integral

in (4) changes under this scaling, so one should expect a factor of t~ /2. Let u = t~/?v(2?/t), then v can

. . . — 2
—s/4_ One can normalize it into u = ﬁe z° /4t

be chosen as v = Ce ;

This is called the fundamental solution of heat equation in one dimension. § distribution.

Alternative interpretation of the fundamental solution: discretize, then use central limit theorem. Gen-
eral solution: Convolution.

Fundamental solution of heat equations in higher dimensions?
Up = Uy + Ugy

Method of mirrors: IBV problem.

5 9/18 Wave equation

Utt = Ugy

Model 1: String vibration: wus proportional to force which is characterized by ;.



Model 2: Sound wave in 1-dimension: p; = —(pv)z, (pv); = —(pv?)s — pu, p = kp?.
Review: general solution.

Solution for initial value problem.

Sound speed.

Initial-boundary value problems with one boundary (mirror), initial-boundary value problems with 2
boundaries, periodicity.

(Optional) Sepherical waves in higher dimensions.

6 9/21 Wave equation, boundary conditions, review of multivari-
able calculus

Correction: derivation of the general solution of 1-D wave equation:

Upt = Py
(Or 4+ ¢02)(0r — cOx)u =0
(O + Oz )u = f(x + ct)

u= Gy(x — ct) +/ fles+ (z —ct) + cs)ds
F=f
u=Gi(x—ct)+ (Fi(z+ct) — Fi(x — ct))/c = (G1 — Fi/c)(z — ct) + (F1/c)(x + ct)
Now let G =Gy — Fi/e, F = Fy/c.

Boundary conditions: Dirichlet, Neumann, Robin.

Homogeneous boundary condition.

Example: uy = ugq, w(0,t) =0, ux(1,t) = 0, general solution?
Example: non-homogeneous boundary and non-homogeneous equations
Example: ug = Uy, + sin .

Vector field in 3 dimension: T : R? — R3. grad, div and curl. Stokes theorem in R, R?, R3.

7 9/26 Heat equation in high dimension, Laplace equation

Mass balance in high dimension: u; + divg = 0. Heat: ¢ = —kgrad(u).

Steady-state: Laplace equation.



Maximal principle, uniqueness.
Example of solutions. Fundamental solution.

Variational principle.

kskokokokokok

Laplacian in sepherical coordinates. Sepherical harmonics.

8 9/28 Types of PDEs

Consider 2nd order equation Aty +Bugy+Cuyy+ f(u, Uy, ty, z,y) = 0. It is called elliptic/parabolic/hyperbolic
iff Az? + Bxy + COy? is positive or negative definite/degenerate/indefinite.

Canonical forms: gy + Uyy + - =0, Ugy + - =0, Upgp +--- =0
Example: different types at different places.

Example: type remains unchanged under coordinate change: polar coordinate.

9 10/3 Heat equation

Formula for the Green’s function/fundamental solution G(z,t).

Properties: ffooo G(z,t)dx =1, limy_,q+ fl G(z,t)dx =0, Gt = kGyy.

z|>c>0

Poisson integration formula: is a solution: linearality; initial condition: the properties above.
Non-uniqueness of the solution: Tychonov 1935
Higher dimension.

Theorem (Poisson integration): If f is a bounded continuous function, then a solution of u; = kug, when
t >0, u(z,0) = f(x) is:

u= [ 16—y
Proof: By computation we know that:
L [ Gz t)de =1
2. For any ¢ > 0, fw%[fc,c] G(z,t)dr — 0 as t — 0.
3. Gt = kGyy

ur = kuy, follows from 3. and the fact that all infinite integrals involves converges absolutely. Now we
need to show the initial condition, i.e. that u(x,t) — f(z) as t — 0F. Let M be a bound of |f(x)|.

For any ¢ > 0,

u(z,t) — f ()]



x+c xz+c
<1 @Gyt 5@+ [ G- @GE v || )G~

< /(@) / Gl Oyl +  swp  |f(y) - f@)| + M| / Gy, t)dy]
yél—c,c] z—c<y<ztc yé[—c,c]

Now, for any e > 0, let ¢ be small enough so that sup, .., .. .[f(y) — f(z)] < €/2, t be small enough
so that ‘fyg[fc,c] G(y,t)dy| < ¢/4M, then |u(x,t) — f(z)| < e. Hence u(z,t) — f(z) as t — 0. Furthermore,
because any continuous function is absolutely continuous when restricted to a bounded closed neighborhood,
the convergence is uniform when x is restricted to any bounded interval. Hence w is continuous on ¢ = 0.

10 10/5 Examples, Poisson problem for wave equation

Ut = Ugy, U(IE,O) = X[-1,1]

Ut = Ugy, u(z,0) = e~

er f function: erf(z) = % Iy e dt

d’Alembert from change of variable: uy = k*uyy, p =z + kt, ¢ =  — kt, then uy, = 0, u = F(p) + G(q).
Now u(z,0) = f(z), ut(x,0) = g(x), which in p, g-coordinate means F(x) + G(z) = f, kF'(x) — kG'(z) = 0.
Solve for F' and G then one gets the d’Alembert formula.

Negative and positive characteristics, domain of influence and domain of dependence



11 Review for Midterm 1

The following may appear in the first midterm:
e Simplify PDE by substitution

e Prove properties of the solution by chain rules, fundamental theorem of calculus, and divergence
theorem

e Solve PDE by reducing it to ODE either through restriction to a curve or through the use of symmetry.
e Obtain particular solution from the general solution by applying boundary condition.

e Method of characteristics

e General solution of 1-dimensional wave equations

e Poisson integration representation for initial value problem of the heat equation

e Can recognize elliptic, parabolic and hyperbolic 2nd-order equations

Practice problems:

1. Solve the initial value problem wu; + sin tu, = 1, u(z,0) = sinz.
Solution: By method of characteristics, the general solution is w(x,t) = t + F(z + cost), so u(x,t) =
t + sin(z + cost — 1).

2. Find the steady state solution of u; = uzs + TUy.
Solution: The steady state solution satisfies ., + zu; = 0, hence u = A fom e~t*/2dt + B. You can also write
it using the erf function.

3. Consider the equation: wy; = gy + Uyy. If a solution satisfy u = sintv(z,y), what is the PDE v
satisfies? Can you find a solution when v depends only on y?
Solution: By product law, we get vy, + vyy +v = 0. If v depends only on y then v = Acosy + Bsiny.

4. Cousider the boundary value problem wy = gz, — ug, u(0,¢) = u(1,t) = 0. Show that the function
fol u? + u2dx is decreasing. What’s the limit of u as t — oo?
Solution: % fol u? + uldr = fol 2ty + 2uptgrdr = 2(upug)|y — 2f01 u?dr < 0. As t — oo, the energy
[} u? + u2da will decay towards 0, and the limit will be 0.



12 10/10 Well posed problem, review
Some known solutions of IVP:

o up = uy, u(x,0) = f(z)
Answer: u(x,t) = f(z +1).

® Uit = Uggy, U (-T 0) f( ) ut( 0) —g(l’) '
Answer: u(z,t) = 3(f(z +1t) + fz — 1)) + fx+

® Up = Ugy, u(x,0) = f(x), u bounded. (or < C’eC"”?)
Answer: u(z,t) = [, f(s)G(x — s)ds.

In all cases, we have: (1) solution exist. (2) solution is unique. (3) solution depends on the initial condition
continuously. Hence we call them well posed problems.

Example of non-well-posed problems:
Nonlinear advection.
Reverse heat equation.

Uge + U = 0.

Review:
1. uy = tug, u(z,0) =

2. Uy = Uzy — u: steady state?

13 10/17 Semi-infinite domain, Dahamel’s Principle

Example 1: u; = gy, u(z,0) = f, w(0,t) = 0: w= [G(z —y,t)d(y)dy, so ¢(x) = f(x) when z > 0 and
—f(—z) when z < 0.

Example 2: uy = Uy, u(‘rﬂo) =/, Ut(‘rao) =9, um(ovt) =0,2>0,t>0: u= %((b(x - t) + ¢($ + t)) +
% ;jtt ¥(s)ds. So ¢ and i are even extension of f and g respectively.

Example 3: L linear operator in the space of functions on . u; = Lu, u(0) = « has solution u(¢, «).
Then, u; = Lu + f(t), u(0) = « has solution u(t) = u(t, o) + fo ,f(t—s))ds.

Example 4: uy = Ugy + sin(z +t), ug(z,0) = u(x,0) = 0. Let U = [u, us]”, use the principle above.

Example 5: u; = gy, u(0,t) = t. Solution: combine ideas from problem 1 and 3.

14 10/19 Laplace Transform and Fourier Transform

Review: Homogeneous boundary: mirroring; Non-homogeneous equation: w(t «) being the solution of
wy = Tw, w(0) = «, then uy = Tu + f(¢), u(0) = b has solution u = w(t,b) + fo w(t — s, f(s))ds. Hence, to
solve non-homogeneous equations, first solve for w then put it in the formula.



Laplace transform: L(f) = [~ e~ f(t)d.
Properties: L(f’) = sL(f) — f(0), L(f * g) = L(f)L(g). Here f and g are 0 on (—o0,0).

L(f) = 0iff f a.e. 0. When f is analytic, L™(f) = 5= fCHOO f(s)estds, but we won’t use this.

2mi Je—io00
Formulas we will use:

(1): L(mea™/0) = Le~lalVe,

A7t

2
(2): L(5aze~* /D) = \/me=V5.

Example 1: u; = tyy, u(z,0) = f(x), f compactly supported (or have similar decay condition)

sL(u) — f(z) = (Lu)ge, hence (Lu)(z,s) = 2\1/5 (e*\/g“" . eVe" f(r)dr 4 eV*" [ e"/g’“f(r)dr> =

\/:EE 1=, e~ Velz=rl f(r)dr = L(f7_ G(z — r,t)y(r)dr). Here we use (1), and also the formula for solving

non-homogeneous 2nd order ODE: y = yo [ (y1 f/W)ds — y1 [ (y2f /W )ds.

Example 2: u; = tyy, u(z,0) =0, u(0,t) = f(¢).

sL(u) = (L) gg, s0 (Lu)(z,s) = L(f)e V3 sou = L™Y(L(f))* \/4’;776’% = fot f(T)\/ﬁef‘“fifﬂdT.

How about f =17

15 10/24 Laplace and Fourier transform

Steps for solving PDEs using integration transform:
1. Do transform, turn it into ODE.

2. Apply initial/boundary conditions.

3. Solve ODE, take the inverse transform.

Example 1: u; = ug, u(z,0) = f(z), use Laplace transform on ¢.

sLu— f(z) = (Lu)g, so Lu = F(s) + [° f(r)e*™="dr = F(s) + L(f(z +-)). Sou= L7 (F) + f(z +t),
by initial condition F' = 0.

Example 2: (PIP) u; = Kugy, u(z,0) =0, u(0,t) = f, find K from u,(¢,0).

w= J3 F(1) Sese W dr = 2K [} Galw,t = 1)f(1)dr = 2 [ Gla,t = 7)f (r)dr = ... Do

everything for x small then take limit.

Fourier transform: F(f) = [, e™!f(t)dt. Properties: F(f) = —isF(f). F7'(f) = s=e " f(t)dt.
F(f+g)=F(f)«F(g). (F'(f*g)=5:F(H)F'(9))

Example 3: 1y = gy, u(z,0) = f. Fonz: (Fu); = —y*(Fu), Fu=e " F(f),u=F (e W )xf =....
Here, one uses that [, e(==+) 4z does not depend on y.



16 10/26 Fourier transform

Review: Definition, derivatives, convolution, inverse.
Example 1: uy = dug, + f(2,t), u(z,0) = g(z), u(z,0) = 0.

Fourier transform on z, v = F(u): vy = —4s%v + F(f), v(s,0) = Fg, v(s,0) = 0. So v(z,t) =
(Fg)(s )cos(23t ) + fg = sin(2s(t — r))(Ff)(s r)dr. Now by the inverse formula, we have F~!(cos(2st) -
Fg)(z,t) = $(g(x—2t)+g(z+2t)), and F~1 (5 sin(2s(t—7))-Ff) = F Y (7= (F(f(z+2t—2r,r)— f(z —2t+

2r,r)))) =1 ;j22tt+22: f(y,7)dy. Hence the solution is u = & (g(z — 2t) + g(x +2t)) + § [; f;j;;:;: fly,r)dy.

Example 2: uy + Uz = 0, u(x,0) = f(z), u bounded on ¢ > 0. (a model for electric potential, current
field, Newtonian gravity etc.)

Fourier transform on z: v = F(u), then vy = s%v, v(s,t) = F(f)(s)e I*It, u = F=Y(F(f)(s)e*It) =
f* sy

Example 3: 3-dimensional wave equation: uy = Au, us(x,0) = f(x), u(z,0) = 0.

s)2v. v = Sl pg) - Caleulate

Multi-variable Fourier transform on x, v = F(u), we get vy = o]

1
% in coordinate system (r, h,) where h = s - x, one gets that it is a distribution concentrated at

|x] = t. Huygen’s principle.

Example 4: uy = tgy — ug, u(x,0) =0, u(z,0) = f(x).

Do Fourier transform in x direction, one gets @ = —f(s) (11— 482)’1/2(6* L e 1 t). So
u:f*(I) (b x t f]R 1/2( 1+@t —6_17@6@_1‘51d5.

17 10/31 Solving IBVP with Fourier series
Example: uy = gy, u(0,t) = u(1,t) =0, u(z,0) = f(z).

flz—2n) 2n<z<2n+1
f@Cn—2z) 2n—1<z<2n

G(z + 2n+ y,t))dy, where G(x,t) = \/i?e’f/‘”.

Method 1: expand f into ¢(z) = { . Sou= fol Yomez fW(G(@x42n—y,t) —

Method 2: Note that u(z,t) = e~ sin(nnt) satisfies both the equation and the boundary condition.
Try to build the solution by linear combinations of such solutions. Suppose f(x) = )", ¢, sin(nmz). Then,

= 2f0 )sin(nmy)dy. So, u(z,t) = 3.0 2e~ Tt (fol f(y) sin(mry)dy) sin(nmz).

One can show that they are the same by Poisson summation formula. One needs only to show: >

ne”
1 _ (z+2n)? 27r7,n9:
N > ez € % . This is by using Poisson summation formula ) F(n) =} f]R dx, on func-
. 1 _ (z+21)2
= 4t
tion F(y) NS

Example 2: same, for Neumann boundary condition.

10

22, .
efn Tot+inx —



18 11/2 Fourier series

L*(M): L? integrable functions on M (defined up to measure 0 set). Inner product: (u,v) = [uD <

(f [ul? [ [o]?)172. -

Complete orthonormal system: {f,} € L?(M), orthonormal, and (g, f,) = 0 for all n implies g = 0.
Then, g = Y54(g, /i) (in L7 sense), 3° |(g, fo)|? = llgl]? (Parseval's equality).

Other convergence: reduce to the periodic case. It can then be upgraded to uniform when g € C!, and

pointwise when there is Dini criterion (fOL/2 |w — |4 < ).

QSOII}E; complete orthonormal systems for L2([0,1]): {sin(2n7z /1), cos(2nmx/1)}, {sin(27z/1)}, {cos(nrx/1)},
{e MnmTr }.

Example: sin(mz) expand under cos(nmz).

Application: Poisson summation formula: F(z) = ) f(z 4+ n), do Fourier expansion on [0,1] using
eQirwrz7 F(J?) _ Zn fOl Zn f(y + n)672in7rydy€2in7rm _ Zn fOl Zn f(y + n)672inw(y+n)dy62in7m:. Let x = 0.

Example of solving PDE with Fourier series: u; = tugg, u5(0,t) =0, ug(1,¢) = f(¢), u(z,0) =0, f(0) = 0:
v=u— ”%if(t), then v(z,0) = 0, vt—i-x—;f’(t) = Vg + f(t). Let v(x,t) = Un (t) cos nx, then v, +C,, f'(t) =
Vp + Dy, where Cp, = L (=1)" — =25 (=1)""! when n >0, Cy = %, D,, =0 for n >0, Dy = 1.

n
nm n2n2 6’ -

11



19 11/7 Review for Chapter 2 & 3

The Heaviside function H is defined by H(z) = 1 when # > 0 and 0 when z < 0.
The Dirac mass 4 is defined by [ é(z)f(z)dz = f(0). Hence, § x f = f for any f.
Xxa: characteristic function of A.
The solution of IVP for 1-d wave equation can be written as %(5ct +0_et) * [+ %X[_cmt] % (.
Effect of translation and scaling for L and F'.
Reason for odd/even extension.
Example 1: u; = ugy — u + f(2), u(z,0) =0, t > 0.
Solution 1: Change of variable u = e~tv, then vy = vy, + €t f(2), u = fo e’ [ Glx —y,t —7)f(y)dydr.

Solution 2: Fourier transform in the z direction: v = Fu, v; = —s?v—v+F(f), v(s,t) = F(f)(e*(82+1)t_
)5z, u(z,t) = 3(f xe7'G = f) = (e71#1).

Example 2: uy = tgq, u,(0,t) =0, us(x,0) =0, u(z,0) = f(x), x > 0,t > 0.
Solution 1: Even extension: u(z,t) = 3(f(|z +t[) + f(|z —t])).

Solution 2: Laplace transform in ¢ direction: v = Lu, then s2v — sf = vy, v,(0,8) = 0. So v(z,s) =
fO (f(T) s(xfr) _ efs(:vfr))> dr + C(s) (e + e™57) = foﬂﬁ (f(w;T) (e5™ — 787‘)) dr + C(s)(e5® + e=57). Here
Iy (f(w ") (e — _”)) dr = $(e" L(Xj0,41f) — L(f(—))). Let z — oo, we have C(s) = —@. Now take

L' one gets the solution.
Example 3: uy = gy, ug(0,1) = ugp(2,t), u(0,t) = w(2,t), ug(x,0) =0, u(z,0) = f(x).
Solution 1: Do periodic extension: u(z,t) = 3(f(z +t — 2 ZH]) + f(z — t — 2[Z52))).

Solution 2: Fourier series expansmn u(z,t) = 5 fo s)ds+ 3 >0, fo ) cos(nms)ds(cos(nm(t + ) +
cos(m(t— ))) + 3 57 [ £(aysinns)ds(sinon(i -+ ) + sinnn(s — ).

Example 4: iu; = gy

12



20 Review for Midterm 2

Topics that will be covered in the second midterm:
e Definitions of Laplace and Fourier transform.
e Use odd/even extension for boundary-value problems
e Dahamel’s principle
e Solving PDE on bounded domain using Fourier (sine, cosine etc.) series.

The Heaviside function H is defined by H(z) = 1 when = > 0 and 0 when z < 0.
The Dirac mass 4 is defined by [6(z)f(z)dz = f(0). Hence, & x f = f for any f.

Practice problems:

(1) Find the Laplace transform of f(z) = 2=/,

Solution: fooo o125ty — %fo 5T Jgl/2,1/2 — 2 VT _

ﬁ

%
(2)
U, (0, 1)

Solution: Because u,(0,t) = 0, the problem can be reduced to g, + uy = 0, u(x,0) = f(|x]), t > 0. So

the solution is [, mfﬂﬂ)dr-

If f is continuous with bounded support defined on (0, ), find bounded solution of u,, + uy = 0,
=0, u(z,0) = f(z), on the region {z,t: x> 0, > 0}.

(3) Find the bounded solution of uzy + uy = 1, u(z,0) = u(0,f) = u(l,t) = 0, on the region
{z,t:t>0,0<z <1}

Solution: Do sine expansion, we have u(z,t) = Y. C,(t)sin(nnz), and C)/ — n*72C,, = 1_2(;;)7«0 SO
Cyn(t) = 127(1372 et 1275372 , and u(z,t) =Y, sin(nmz) (1275372 —nmt 15,(13_7:3) )

13



21 11/14 Review of separation of variables
Example 1: u; = kugy — hu, u(0,t) = u(L,t) =0, u(z,0) = f(z).
Example 2: u; = kg, — hu, u(0,t) = uy(L,t) =0, u(z,0) = f(x).

Example 3: u; = kgy — hu, u(0,t) = uy,(L,t) = 0, u(z,0) = 0, u(x,0) = f(x).

22 11/16 Sturm-Liouville problems

Lu = —(p(x)v')" + q(x)u, p non-zero.

Regular SLP: Lu = Au, aqu(a) + agu/(a) = fru(b) + Bou’/(b) = 0.
Periodic SLP: Lu = Au, u(a) = u(b), uz(a) = uz (D).

A such that there is non-zero solution: eigenvalues, non-zero solution: eigenfunction.
For both SLPs:

Discrete eigenvalues: theory of compact operators.

Eigenvalues are real, eigenfunctions orthorgonal: self adjoint under L?: [ fLg = [ f—(pg')'+(af)g= ...

For regular SLP:

Eigenspaces have dimension 1: theory of ODE.

Signs of eigenvalues: A\ = (u, Lu)/(u, u), hence when p > 0,q > 0, A > 0.
Example 1: uy = Uy, u(0,t) = u(1,t) + ux(1,¢) = 0, u(x,0) = f(x).

Example 2: wuyy + Uze = u, w(0,t) = u(1,t) + uy(1,t) =0, u(z,0) = f(z).

23 11/21 SLP cont.

1. Symmetric boundary conditions: if y;, y2 both satisfy the condition, then p(y1y5 — yiy2)

argyment: show that (u, Lv) > 0.
2. Weighted SLP: Lu = Aru, then inner product should be taken as (u,v) = [ urv.

Example 1: u; = gy + g, u(0,t) = u(l,t) =0, u(z,0) = f(z).

3. Singular SLP: p = 0 Example 2: Bessel’s eq: —(zu’)’ = Azu, u(0) bounded, u(1) = 0.

H

= 0. Energy

4. SLP on infinite interval: Example 3: —u” = Au, u(0) = 0, u bounded at co: Fourier sine transform

(i.e. Fourier transform after an odd expansion)
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Example 4: u; = gy, u(z,0) = f(x), uy(0,¢) =0, ¢t >0, z > 0.
In the case when both sides are unbounded, this becomes Fourier transform.
Example 5: —u” = Au, u bounded at oo, u(0) — u’(0) = 0.

Solution: The expansion is f(z) = [, g(s)(sin(sz) + scos(sz))ds. To get g from f, first solve ODE
h+h' = f, then do odd extension for h and do inverse Fourier transform.

24 11/28 Laplace on disc

Review: solve pde with separation of variables:

Step 1: write u as product form, make ODEs.
Step 2: apply boundary condition, get SLP in one or more directions.
Step 3: solve ODEs with eigenvalues.
Step 4: write solution in infinite series.

A=02+410+ 505

Example 1: t, 4+ +u, + 75ugs = 0, u(1,60) = f(0), r < 1.

Solution: u = 3= OZW f(s)ds+ 25 r "fo )cos(n(f — s))ds = 5=f * (1_%11-(9,,) + e — 1).
Poisson’s integral formula, Poisson’s kernel. Fundamental solution.

Example 2: same as above but r > R, bounded solution.

Solution: © = %f * (1—(3/7-1)ei(9—-> + 1_(R/7,)1€_i(@_.) - 1)-

Example 3: u,, + Lu, + Juge = f(r,0), u(1,6) = f(6), r < 1.

Solution: f(r,0) =73 fn( )cos nb+y", gn(r)sinnd, where fo(r) = 5 O% f(r,s)ds, fn(r) =1 027r f(r,s)cosnsds

when n > 0, and g, = + fo (r,s)sinnsds. Then, u(r,0) =" A,(r)cosnd + Y, By,(r)sinnd. The func-
tions A,, and B,, satisfies: A + 1A’ — ﬁ = fn, B! + B’ _ L = fn.

Now we solve A%+%A;— Z—jAn = fn. (7”27"+1(T_"A ) ) ( nrt A, 4t g )/ "_1An+’lm'A;l—|—
LAY = et f so (P Ay) = et [T s (s)ds, Ay = —r"f h—2n—1 f S"an( Ydsdh. Similarly,
B, =—r" f: h—2n-1 foh s" g, (s)dsdh.

24.1 General theory of Laplace equation (for any dimension)
Divergence theorem: [, divgdV = [, ¢ - ndA.

Green’s identities: [, ugradu -ndA = [, uAudV + [, ||gradu|*dV
JoulAvdV = [ vAudV + [, (ugradv — vgradu) - ndV.

Uniqueness for Dirichlet problem: Green’s first identity.
Dirichlet’s principle for Dirichlet problem: Green’s second identity.
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25 11/30 More example on non-homogenuity. Heat equation on
balls

Example 1: uy = upr + Sy, u, (0,8) = u(l,7) = 0, u(r,0) = f(r).
d=3,d=2.
Example 2: uy = ¢ (upr + %ur)
Example 3: parameter identification: A, R, = c(r)*(R + 2R),), R,(1) = 0.

An(rRy) = A(rRy)", s0 Ay [y ¢ 2sRy(s)ds = (rRy)’, ...

26 12/5 Poisson equation
Example 1: uy = gy, u(0,t) —sinkt = uy,(1,¢t) =0, u(x,0) = us(x,0) = 0.
Au = Au, Dirichlet/Neumann boundary, then there is a orthogonal basis formed by eigenvectors.
Example 2: Q be the region [0,a] x [0,b], Au = f on Q, u|so = 0.
Example 3: u,, + 1/ru, +ugg = f, u(1,0) = 0.
Fredholm alternative.
Green’s functon.
Example 4: upper half space.

Example 5: [0,00) x [0, 00).

27 Final review

Types of equations: advection, heat, wave, laplace, Poisson, linear, linear homogeneous.

Solution methods: method of characteristics, Poisson integration for heat equation, D’Alembert solution
for 1-D wave equation
Method of mirror image, Duhamel’s principle
Fourier and Laplace transform
Fourier method.

Exercises:
1. Solve the equation u; = uyy + f(2), uz(0,1) = u(2,t) = u(z,0) =0on 0 <z < 2,¢t > 0.

Solution: u=3">° m (f02 f(s)cos((nm/2 + 7T/4)8)d8) (1 — e~ (nm/2+7/D) cos((n /2 + 7 /4) ).

2. Find bounded solution of ugy + tyy = 0, uy(z,0) = f(x), uz(0,y) =uz(l,y) =0on0<z <1, y>0.
Note that f has to satisfy some other constraint for such a solution to exist.

Solution: The constraint is that fol f(s)ds=0. u=->"> -2 fol f(s) cos(nmws)dse™ "™ cos(nmx).

n=1 nm
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3. Find the general solution of 0 = (20; 4+ 0:)(0r — Oz )u = Tug + (1 — ) g — Ugy.
we —ugy = F(t —22/2), u= Gz +t) + [} F(s — (x +t — 5)%/2)ds.
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