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Purpose of the course

I Introduction of the language of mathematics (mathematical
logic and how to read and write proofs)

I Introduction of basic mathematical concepts, including
numbers (natural numbers, integers, rationals and reals) and
sets.

I This course is essential for any serious study of mathematics
and might be helpful for students of other subjects as well.



Grading

Grading: 40% final, 25% each midterm, 5% homework, 5%
workshop
Topics covered in this course: logic and proofs, theory of natural
numbers, theory of sets, theory of real numbers
Homework and exams will be based on lecture notes, because we
likely won’t be able to cover the whole textbook.

I A or B: Understand some basic strategies for writing proofs,
ready to take further math courses.

I C: Able to read proofs, need further work during the summer
in order to take other math courses.

I D: Others.



Topics we will cover (each taking about a week)

Proposition logic and truth table*

Predicate logic and the rules of deduction*

Definition of natural numbers
Mathematical induction
Addition and multiplication
Divisibility and primes
Definition of sets
Products, relations and functions
Equivalent classes
Integers
Rationals and reals
*: We will come back to these topics now and then throughout the
semester.



Further reading

If you are like things you see in this course, you may be interested
in:

I Learning more mathematics. You should be ready for the
introductory text of any branch of mathematics (analysis,
algebra, topology, combinatorics etc.)

I Learning more about logic or theoretical computer science (a
popular science book on these subjects is Hofstadter’s Gödel,
Escher, Bach, and you should be ready for any introductory
texts on these subjects too)



Things to pay attention to while taking this course

I Trust nothing but your own reason.

I Make sure you understand every steps and details.

I Practice.

I Try applying what you learned to other courses you’re taking,
as well as to everyday life.



An example of proof

Theorem:
√
2 is not a rational number.

Proof: We need to show that there aren’t integers m and n such
that m2/n2 = 2. Suppose m and n are such integers. Then
m2 = 2n2. Factorize m and n into primes, we have m =

∏︀
p p

cp ,

n =
∏︀

p p
dp , and m2 = 2n2 implies 2cp = 2dp if p ̸= 2 and

2c2 = 1 + 2d2, the latter is impossible because c2 and d2 must
both be integers.



Propositional Logic

Propositions: sentences which can be either true or false. In
propositional logic, propositions consists of either single symbols
like A, B, C, ... (atomic propositions) or symbols connected by ∨,
∧, ¬ (∼ in textbook), =⇒ , ⇐=, ⇐⇒ , and parenthesis when
needed.
The truth value of composite propositions can be calculated using
the truth values of its components. For example, A ∧ B is true if
both A and B are true, and false if otherwise.
A proposition is a tautology if its value is always true for all
possible truth values on the single symbols it contains. For
example, ((A =⇒ B) ∧ A) =⇒ B.



How to find tautologies

To check when a statement is a tautology, one can either:

I Substitute the symbols it contains with all possible truth
values (truth table)

I Deduce it from known tautologies using a set of deduction
rules.

More examples of tautologies: ¬(A ∧ ¬A), A =⇒ (A ∨ B),
(A =⇒ B) ⇐⇒ (¬A ∨ (A ∧ B)).



A set of deduction rules for proposition logic

I If there is a sequence of deduction from A to B, then
A =⇒ B.

I From A =⇒ B and A one can get B.

I From A and B one can get A ∧ B.

I From A ∧ B one can get either A or B.

I From either A or B one can get A ∨ B.

I From A ∨ B, A =⇒ C , and B =⇒ C one can get C .

I From A ⇐⇒ B one gets (A =⇒ B) ∧ (B =⇒ A) and vice
versa.

I From ¬¬A one gets A and vice versa.

I If there is a sequence of deduction from A to Contradiction,
then ¬A.

I From A and ¬A one gets Contradiction

I From Contradiction one can get any proposition.



Review for Lecture I

I Some basic concepts in logic

I Concepts in proposition logic

I Deductions in proposition logic



Basic concepts about logic and deductions

I A deduction consists of a sequence of sentences or other
deductions.

I There are two types of sentences: some are true or false, while
others contain unknown quantities (free variables) and its
truthness depends on the choice of those quantities. The first
type are called propositions, the latter called predicates.

I When we add (“deduce”) a proposition in the deduction, we
mean that if all the preceding propositions in its context is
true, then this new proposition is true. When we add a
predicate, we mean if its free variables are chosen so that all
the preceding sentences are true, then it is true.

I For example, from “if 1 > 0, then 0 > −1” and “1 > 0” we
can deduce “0 > −1”. From “if a > 0 then 0 > −a” and
“a > 0” we can deduce “0 > −a”.



Concepts in Proposition logic

I A sentence in proposition logic consists of letters, which
represent simple propositions, connected by ∧, ∨, =⇒ , ⇐⇒
and ¬.

I A ∧ B is true if and only if both A and B are true. A ∨ B is
false if and only if both A and B are false. ¬A is true if and
only if A is false. A =⇒ B means ¬A ∨ (A ∧ B), and
A ⇐⇒ B means (A =⇒ B) ∧ (B =⇒ A).

I The kind of sentences we care about in proposition logic are
tautologies, i.e. sentences whose value is always true no
matter what the truth values of the letters it contains are.

I We can check if a sentence is a tautology by enumerating over
all possible truth values for all the simple propositions it
contains. This process is called the truth table.

I If a sentence in proposition logic is a tautology, replacing all
letters with any propositions, the resulting proposition is
always true hence can be used as a step in deduction.



Deduction in proposition logic

To save space, we use ⊢ to mean “deduce from”, and ⊥ to mean
“contradiction”.

I Rules governing ∧: A,B ⊢ A ∧ B; A ∧ B ⊢ A; A ∧ B ⊢ B.

I Rules governing ∨: A ⊢ A ∨ B; B ⊢ A ∨ B;
A ∨ B,A =⇒ C ,B =⇒ C ⊢ C .

I Rules governing =⇒ : (A ⊢ B) ⊢ A =⇒ B;
A,A =⇒ B ⊢ B.

I Rules governing ⇐⇒ :
(A =⇒ B) ∧ (B =⇒ A) ⊢ A ⇐⇒ B;
A ⇐⇒ B ⊢ (A =⇒ B) ∧ (B =⇒ A).

I Rules governing ¬: A ⊢ ¬¬A; ¬¬A ⊢ A.

I Rules about contradiction: A,¬A ⊢⊥; (A ⊢⊥) ⊢ ¬A; ⊥⊢ A.

I The application of the second rule about contradiction is
called proof by contradiction.



An example of deduction

Theorem: A ∧ B ⇐⇒ ¬(A =⇒ ¬B)
Proof: Assume A ∧ B is true. This implies both A and B are true.
Further assume A =⇒ ¬B is true, then, because A is true, we get
¬B, which contradicts with B, hence ¬(A =⇒ ¬B) is true. This
argument gives us A ∧ B =⇒ ¬(A =⇒ ¬B).
Next, assume ¬(A =⇒ ¬B) is true. Suppose ¬A, then if A is
true, there is a contradiction, hence ¬B. This tell us A =⇒ ¬B,
which contradicts with the initial assumption, hence A must be
true. On the other hand, suppose ¬B, then if A we have ¬B,
hence A =⇒ ¬B, which also contradicts with the initial
assumption, hence B must be true also. Hence, A ∧ B. This
argument gives us ¬(A =⇒ ¬B) =⇒ A, and, together with the
previous paragraph, the theorem is proved.



Predicate logic

I In predicate logic, we allow upper case letters to represent
predicates: e.g. A(x , y) is a predicate with two free variables
x and y , and use lower case letters to denote functions and
constants.

I There are three more symbols: ∀, ∃ and =, which come
together with more deduction rules (here t is any given
term(formed by variables and functions)):
I Rules governing ∃: A(t) ⊢ ∃xA(x); ∃xA(x),A(y) =⇒ B ⊢ B.
I Rules governing ∀: A(x) ⊢ ∀yA(y); ∀xA(x) ⊢ A(t).
I Rules governing =: ⊢ t = t; s = t ⊢ t = s;

r = s, s = t ⊢ r = t.
I Predicates and functions: s = t ⊢ f (s) = f (t);

s = t ⊢ P(s) ⇐⇒ P(t).

I The conclusions deduced from these rules are true statements
in predicate logic, i.e. they are true when one replace the
letters with any predicate or function.



An example of deduction in predicate logic

Theorem: ¬∃xP(x) ⇐⇒ ∀x¬P(x)
Proof: Assume that ¬∃xP(x). Suppose for some y , P(y), then
∃xP(x), which contradicts with the initial assumption. Hence
¬P(y) must be true. Since y is arbitrary (free) in the argument
above, we must have ∀x¬P(x).
Now assume that ∀x¬P(x). Suppose ∃xP(x). Then, pick y such
that P(y) is true. From the assumption ∀x¬P(x), we know
¬P(y), which results in a contradiction. Hence ∃xP(x) must be
false, which implies that ¬∃xP(x) is true. Together with the
previous paragraph, the theorem is proved.



Remarks about writing proofs

In practice, the steps in deductions that relies solely on first order
logic (like the ones you see in this week) are usually omitted when
one writes down mathematical proofs, and one should be able to
tell via intuition if such a deduction is valid. However for the
beginning portion of this semester you will be required to write
down all the details including those involving logic as an exercise
and also as a way to guarantee that our intuitions are indeed
correct.



Remarks about writing proofs

The rules introduced here are called “natural deduction” as they
are close to what people really do when reasoning in their everyday
life. However the proofs written using these rules might still feel
weird at times and there is occasion need for reorganizing the
sentences a bit in order to make the proof more readable.
It is not necessary to memorize the 24 rules listed, just be aware of
their existence, and understand their validity. With practice you
would be able to internalize the rules of logic by the end of the
semester.



Survey

Please answer the following questions in a piece or paper (you do
not need to write your name):

I Do you know how to prove that there are infinitely many
prime numbers?

I Are you able to follow the lecture at the moment?

I What are some concepts we covered so far that you are still
confused about?

I Do you have any further questions or suggestions?


