
Feb 10/11

1. True or false: if 𝐴 is a 𝑛 × 𝑛 matrix, 𝐴x = 0 has non-zero solution if and
only if there are some b such that 𝐴x = b has no solution.

Answer: This is true. Firstly we prove the “if” part: let b be a vector such
that 𝐴x = b has no solution. Consider the augmented matrix [ 𝐴 b ], do row
reductions to make it into reduced echelon form, then there must be a pivot in
the last column. Because there can only be at most 𝑛 pivots, there must be
an 𝑖, 1 ≤ 𝑖 ≤ 𝑛, such that the 𝑖-th column does not contain a pivot. Now let
[ 𝐴 0 ] goes through the same sequence of row reductions, we get a reduced
echelon matrix with no pivots in the 𝑖-th column and with the last column 0.
Hence 𝐴x = 0 has infinitely many solutions. In particular, it has a non-zero
solution.

Now we show the “only if” part. If 𝐴x = 0 has a non-zero solution, it has
infinitely many solutions. Hence, after we make [ 𝐴 0 ] into a reduced echelon
form through a sequence of row reductions, it can have at most 𝑛 − 1 pivots.
Hence, the last row of this reduced echelon matrix is 0. Now replace the zero
on the 𝑛-th row and 𝑛 + 1-th column with 1, and reverse the sequence of row
reductions, we get a matrix of the form [ 𝐴 b0 ]. As row reductions of aug-
mented matrix do not change the solution set, 𝐴x = 𝑏0 has no solution.

2. True or false: 𝐴 and 𝐵 are 𝑛× 𝑛 matrices, 𝐴𝑥 = 𝑏 and 𝐵𝑦 = 𝑐 are both
consistent, then [ 𝐴 𝐵 ]𝑧 = 𝑏 + 𝑐 is consistent.

Answer: This is true. Suppose 𝐴𝑥0 = 𝑏, 𝐵𝑦0 = 𝑐, the rule of matrix mul-

tiplying with a vector implies that [ 𝐴 𝐵 ]
[︁
𝑥0

𝑦0

]︁
= 𝐴𝑥0 + 𝑏𝑦0 = 𝑏 + 𝑐. Hence,

𝑧 =
[︁
𝑥0

𝑦0

]︁
is a solution of [ 𝐴 𝐵 ]𝑧 = 𝑏 + 𝑐.

3. 𝑣1 = (1, 1, 0), 𝑣2 = (0, 1, 2), find 𝑣3 = (𝑎1, 𝑎2, 𝑎3) such that 𝑥1𝑣1 + 𝑥2𝑣2 +
𝑥3𝑣3 = (1, 1, 1) has a solution.

Answer: The augmented matrix of the given linear system is⎡⎣ 1 0 𝑎1 1
1 1 𝑎2 1
0 2 𝑎3 1

⎤⎦
.

With row reductions, we can make it into the following form:⎡⎣ 1 0 𝑎1 1
0 1 𝑎2 − 𝑎1 0
0 0 2𝑎1 − 2𝑎2 + 𝑎3 1

⎤⎦
.
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Hence, it is consistent if and only if 2𝑎1 − 2𝑎2 + 𝑎3 ̸= 0.
4. Find 𝐴 and b such that the solution of 𝐴x = b is a line passing through⎡⎣ 1

0
0

⎤⎦ and

⎡⎣ 0
1
2

⎤⎦.
Answer: The line passing through

⎡⎣ 1
0
0

⎤⎦ and

⎡⎣ 0
1
2

⎤⎦ can we written as⎧⎨⎩
⎡⎣ 1

0
0

⎤⎦ + 𝑡

⎡⎣ −1
1
2

⎤⎦⎫⎬⎭, where 𝑡 ∈ R. In other words, if x =

⎡⎣ 𝑥1

𝑥2

𝑥3

⎤⎦, we have
𝑥1 = 1 − 𝑡, 𝑥2 = 𝑡, 𝑥3 = 2𝑡. Solve 𝑡 from any of the three equations and
substitute the value of 𝑡 to the other two, we get a linear system with the
required solution set. For example, we can substitute 𝑡 with 𝑥2 in the first and
the third equation and get: {︃

𝑥1 = 1 − 𝑥2

𝑥3 = 2𝑥2

Hence, we can choose 𝐴 =

[︂
1 1 0
0 −2 1

]︂
, b =

[︂
1
0

]︂
.

It is obvious that the solution of this problem is not unique. You may get
some other 𝐴 and b with a different approach.

Feb 24/25 Prelim 1 Review

∙ Vectors and matrices

– Vectors and vector arithmetics

– linear combination, span, and linear dependence

– Matrix-vector product (as linear combination of column vectors, with
row-column rule)

∙ Linear systems

– Augmented matrix and coefficient matrix

– Row reduction

– echelon form, pivots

– parametric vector form

– vector equation and matrix equation

∙ Linear transformation

– The definition of linear transformation
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– Linear transformation from R𝑛 → R𝑚 can be written as matrix trans-
formation i.e. multiplication by a matrix.

– The matrices of some transformations on R2

Last Quiz: Echelon form of [𝑎1 𝑎2 𝑎3], where 𝑎1 and 𝑎2 are linearly inde-
pendent and 𝑎3 is in the span of {𝑎1, 𝑎2}.

Because linearly independence and dependence do not change under row re-
duction, the first two columns must be pivot columns and the third must not
be pivot column, hence pivots positions are (1, 1) and (2, 2).

Practice problems:

True or False:
1. The sum of two linear transformations is linear.
True
2. The product of a linear function and a linear transformations is linear.
False
***************
3. 𝑎 is in 𝑠𝑝𝑎𝑛{𝑏, 𝑐}, then 𝑏 is in 𝑠𝑝𝑎𝑛{𝑎, 𝑐}.
False, for example if 𝑎 = 2𝑐, and 𝑏 and 𝑐 are linearly independent.
4. [𝑎 𝑏 𝑐] and [𝑎 𝑐 𝑏] has the same pivot positions.
False. For example, if 𝑎 = (1, 1), 𝑏 = (2, 2), 𝑐 = (1, 2).
***************
5. 𝐴 is a 3× 3 matrix with 2 pivots, then the solution of 𝐴𝑥 = 𝑏 can never span
R3.
True. The solution of 𝐴𝑥 = 𝑏 is either empty or a line, hence can not contain 3
linearly independent vectors.

Find the matrix representing a reflection over 𝑦 = 2𝑥.

The vector (1, 0) is sent to (cos(𝜃), sin(𝜃)), where 𝜃 = 2 arctan(2). Hence, by
trigonometry, cos(𝜃) = −0.6, sin(𝜃) = 0.8. The image of (0, 1) is the image of
(1, 0) rotated clockwise by 𝜋/2, hence must be (0.8, 0.6). As a result, the matrix

is

(︂
−0.6 0.8
0.8 0.6

)︂
.

𝐴 =

⎡⎣ 1 0 1
1 𝑡 0
0 −1 𝑡

⎤⎦. Find all 𝑡 such that 𝑥 ↦→ 𝐴𝑥 is not one-to-one.

Do row reduction we get:

𝐴 =

⎡⎣ 1 0 1
0 −1 𝑡
0 0 𝑡2 − 1

⎤⎦
The map is not one-to-one if and only if 𝐴 has a column without a pivot if an
only if 𝑡2 − 1 = 0, i.e. 𝑡 = ±1.
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Mar 2/3

Quiz:

Suppose 𝐴, 𝐵 and 𝑋 are 𝑛×𝑛 matrices, 𝐴, 𝑋 and 𝐴−𝐴𝑋 are all invertible,
and (𝐴− 𝐴𝑋)−1 = 𝑋−1𝐵. Solve for 𝑋 (i.e. write 𝑋 as a formula involving 𝐴
and 𝐵). If you need to invert a matrix, justify that it is invertible.

Solution: (𝐴 − 𝐴𝑋)𝑋−1𝐵 = 𝐼 so 𝐴𝑋−1𝐵 − 𝐴𝐵 = 𝐼, 𝐴𝑋−1 − 𝐴 = 𝐵−1,
𝑋 = (𝐵−1 + 𝐴)−1𝐴. 𝐵 is invertible because 𝐵 = 𝑋(𝐴 − 𝐴𝑋)−1 which is a
product of two invertible matrices. 𝐵−1 + 𝐴 is invertible because 𝐵−1 + 𝐴 =
𝐴𝑋−1, the right-hand-side is a a product of two invertible matrices.

∙ Matrix multiplication (𝐴[𝑏1 𝑏2 . . . ] = [𝐴𝑏1 𝐴𝑏2 . . . ]), transpose, inverse
(𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼)

∙ Inverse formula for 2 × 2 matrix

∙ Algorithm for inverse with row reduction, which can be justified by multi-
plication with elementary matrices or by simultaneously solving a sequence
of linear systems.

∙ As a consequence of the above, 𝐴 invertible ⇐⇒ #row=#column=#pivot ⇐⇒
𝑥 ↦→ 𝐴𝑥 is one-to-one and onto

∙ vector space & subspace

∙ null space=kernel=solution set of 𝐴𝑥 = 0; column space=image= span of
columns

Practice problems (Not part of the quiz!):

(1) Find the inverse of

⎡⎣ 1 𝑎 𝑏
0 1 𝑐
0 0 1

⎤⎦.
Solution: use the row reduction algorithm. The answer is

⎡⎣ 1 −𝑎 𝑎𝑐− 𝑏
0 1 −𝑐
0 0 1

⎤⎦.
(2) True or false: 𝐴 is invertible iff 𝐴𝑇 is invertible.

This is true. 𝐴𝑇 (𝐴−1)𝑇 = (𝐴−1𝐴)𝑇 = 𝐼𝑇 = 𝐼, (𝐴−1)𝑇𝐴𝑇 = (𝐴𝐴−1)𝑇 =
𝐼𝑇 = 𝐼.

(3) True or false: The set of 𝑛× 𝑛-invertible matrices a subspace of 𝑀𝑛×𝑛.

False. 0 is not invertible.
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(4) True or false: Let 𝑉 be a vector space, 𝑇 be a linear map from 𝑉 to 𝑉 , then
the intersection of the kernel (null space) and image (column space) of 𝑇 is 0.

False. For example, 𝑉 = R2, 𝑇 =

[︂
0 1
0 0

]︂
, then the null space and column

space of 𝑇 are both spanned by 𝑒1.

(5) True or false: 𝐴 is a 𝑛× 𝑛 matrix. If 𝐴3 = 0 then 𝐼 −𝐴 is invertible.

True. (𝐼 −𝐴)(𝐼 + 𝐴 + 𝐴2) = 𝐼3 −𝐴3 = 𝐼.

Mar 9/10

Quiz: Assume that𝐴 =

⎡⎢⎢⎣
1 2 −5 11 −3
2 4 −5 15 2
1 2 0 4 5
3 6 −5 19 −2

⎤⎥⎥⎦ is row equivalent to

⎡⎢⎢⎣
1 2 0 4 5
0 0 5 −7 8
0 0 0 0 −9
0 0 0 0 0

⎤⎥⎥⎦.
Find basis for Nul 𝐴 and Col 𝐴.

Answer: The first, third and fifth columns are pivot columns, so a basis for
Col 𝐴 is {(1, 2, 1, 3), (−5 − 5, 0,−5), (−3, 2, 5,−2)}.

The solution of 𝐴𝑥 = 0 is {𝑡1(−2, 1, 0, 0, 0) + 𝑡2(−1/4, 0, 7/5, 1, 0)}. So a
basis would be {(−2, 1, 0, 0, 0), (−1/4, 0, 7/5, 1, 0)}.

The solution is not unique, but you must justify it.

(i) Basis: (1) linearly independent (2) spans the whole space. If a finite set
satisfies (2), a basis can be obtained by removing redundant elements, or
see below.

(ii) Find basis of null space: solve LS. Find basis of col space: pivots.

(iii) Change-of-coordinate: if the basis of a new coordinate system, written
under the current one, is 𝑏1, . . . 𝑏𝑛, then left-multiplying [𝑏1 𝑏2 . . . 𝑏𝑛]−1

changes old coordinate to the new.

(iv) Axioms of vector space: (1) Sum exists. (2) Commutativity for addition.
(3) Association for addition. (4) 0 exists. (5) Negativity exists. (Remark:
(1)-(5) means that a vector space is an abelian group for addition.)
(6) Scaler multiplication exists. (7)-(8) distribution. (9) association for
multiplication. (10) 1.

(v) A vector space must contain 0 hence non-empty.

(vi) The addition and scaler multiplication may not be “obvious”: R+ is a
vector space with multiplication and power.
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(vii) Ways to show a subset is a vector space: show that it contains 0 and is
closed under addition and multiplication, show that it is spanned by some
vectors, show that it is the null/col space of a map

(viii) Remember to check “for every”.

(ix) Kernel=Nul, range=image=Col

Practice problems (Not part of the quiz!):

(1) Let 𝐿 be the subspace of R4 spanned by (1,−1, 0, 0), (0, 1,−1, 0), and
(−1, 0, 1, 0). Find a basis for 𝐿.

Write a matrix with the 3 vectors as columns, then by row reduction one can
see that the first two columns are pivot columns. Hence {(1,−1, 0, 0), (0, 1,−1, 0)}
forms a basis.

(2) Consider the map 𝐹 : 𝑀2×2 → R2, 𝐹 (𝑀) = 𝑀

[︂
0
1

]︂
.

(a) Show that 𝐹 is linear.

𝐹 (𝐴 + 𝐵) = (𝐴 + 𝐵)

[︂
0
1

]︂
= 𝐴

[︂
0
1

]︂
+ 𝐵

[︂
0
1

]︂
= 𝐹 (𝐴) + 𝐹 (𝐵),

𝐹 (𝑐𝐴) = (𝑐𝐴)

[︂
0
1

]︂
= 𝑐(𝐴

[︂
0
1

]︂
) = 𝑐𝐹 (𝐴).

(b) Use the basis

{︂[︂
1 0
0 0

]︂
,

[︂
0 1
0 0

]︂
,

[︂
0 0
1 0

]︂
,

[︂
0 0
0 1

]︂}︂
, write down

the matrix of 𝐹 .

Evaluate the basis vectors with 𝐹 , one gets

[︂
0 1 0 0
0 0 0 1

]︂
.

(c) What are the kernel and range of 𝐹?

The columns of the matrix in (b) spans R2, so the range of 𝐹 is R2.
Also from the matrix one can see that the kernel of 𝐹 is spanned by
the first and the third basis elements.

(3) True or false: R3 has infinitely many basis.

True. For example, all triples of the form {(0, 0, 1), (0, 1, 0), (1, 𝑡, 0)} forms
a basis.
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(4) True or false: if 𝐴 is an invertible matrix, the columns of 𝐵 is a basis of Col
𝐵, then the columns of 𝐵𝐴 is a basis of Col 𝐵.

True. The columns of 𝐵𝐴 spans Col 𝐵𝐴, which is 𝑅𝑎𝑛𝑔𝑒(𝐵𝐴). Since 𝐴 is
onto, 𝑅𝑎𝑛𝑔𝑒(𝐵𝐴) = 𝑅𝑎𝑛𝑔𝑒(𝐵) = Col 𝐵 (Because given any two mapd 𝑓
and 𝑔, if 𝑔 is onto then the range of 𝑓 ∘ 𝑔 is always the same as the range of
𝑓) So the columns of 𝐵𝐴 spans Col 𝐵.

The columns of 𝐵 is a basis implies that they are linearly independent, hence
𝐵 is one-to-one. Since 𝐴 is invertible it is also one-to-one, so 𝐵𝐴, being
the composition of two one-to-one maps, is one-to-one, hence the columns
of 𝐵𝐴 are also linearly independent.

Now we know that the columns of 𝐵𝐴 are linearly independent and spans
Col 𝐵, so it is a basis of Col 𝐵.

Remark: Hence, 𝑏, 𝑏′ is a basis implies 𝑏 + 𝑏′, 𝑏− 𝑏′ is a basis.

(5) Find a linear map whose kernel is the subspace 𝐿 in problem (1).

𝐿 = 𝑠𝑝𝑎𝑛{(1,−1, 0, 0), (0, 1,−1, 0)} = {𝑡1(1,−1, 0, 0) + 𝑡2(0, 1,−1, 0)} =
{(𝑡1,−𝑡1 + 𝑡2,−𝑡2, 0)}, so: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1 = 𝑡1

𝑥2 = −𝑡1 + 𝑡2

𝑥3 = −𝑡2

𝑥4 = 0

Eliminate 𝑡1 and 𝑡2 from the above equations we have{︃
𝑥2 + 𝑥1 + 𝑥3 = 0

𝑥4 = 0

, so the map

𝑥 ↦→
[︂

1 1 1 0
0 0 0 1

]︂
𝑥

has kernel 𝐿. The solution is obviously not unique.

(6) Let 𝐶([0, 1]) be the vector space of continuous functions on [0, 1]. Which of
the followings are subspaces of 𝐿?

(a) The set of polynomials with integer coefficients.

No. Not closed under scaler multiplication.
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(b) {𝑓 ∈ 𝐶([0, 1]) : 𝑓( 1
3 ) = 0}.

Yes. It is the kernel of 𝑓 ↦→ 𝑓(1/3).

(c) {𝑓 :
∫︀ 1

0
𝑓(𝑥)𝑑𝑥 = 1}.

No. Does not contain 0.

(d) {𝑓 : 𝑓 is differentiable}.

Yes. Because of the linearity of derivatives.

(e) {𝑓 : 𝑓 ≥ 0}.
No. Not closed under negation or scaler multiplication.

(7) 𝑃3 = {𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3} is the vector space of degree 3 polynomials.

(a) Show that 𝑇 : 𝑃3 → 𝑃3, 𝑇 (𝑓) = (𝑥𝑓)′ − 3𝑓 is a linear map.

𝑇 (𝑐𝑓) = (𝑥𝑐𝑓)′ − 3𝑐𝑓 = 𝑐((𝑥𝑓)′ − 3𝑓) = 𝑐𝑇 (𝑓), 𝑇 (𝑓 + 𝑔) = (𝑥(𝑓 +
𝑔))′ − 3(𝑓 + 𝑔) = (𝑥𝑓)′ − 3𝑓 + (𝑥𝑔)′ − 3𝑔 = 𝑇 (𝑓) + 𝑇 (𝑔).

(b) Write down a basis for the kernel and range of 𝑇 .

𝑇 (𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2 + 𝑐3𝑥

3) = (𝑐0𝑥+ 𝑐1𝑥
2 + 𝑐2𝑥

3 + 𝑐3𝑥
4)′− 3(𝑐0 + 𝑐1𝑥+

𝑐2𝑥
2 + 𝑐3𝑥

3) = 𝑐0 + 2𝑐1𝑥+ 3𝑐2𝑥
2 + 4𝑐3𝑥

3 − 3(𝑐0 + 𝑐1𝑥+ 𝑐2𝑥
2 + 𝑐3𝑥

3) =
−2𝑐0 − 𝑐1𝑥 + 𝑐3𝑥

3. So a basis of the range of 𝑇 is {1, 𝑥, 𝑥3}, and a
basis of its kernel is {𝑥2}.
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Mar 16/17

Quiz: ℬ = {1− 𝑡2, 𝑡− 𝑡2, 2−2𝑡+ 𝑡2} is a basis of P2. Find the coordinate vector
of 𝑝 = 3 + 𝑡− 6𝑡2 under ℬ.

Review:

(i) Change of coordinate: start with a basis ℬ0 (e.g. standard basis for R𝑛,
or 1, 𝑡, 𝑡2, . . . under P𝑛). For any basis ℬ, let 𝑃 be matrix whose columns
are the coordinates of ℬ under ℬ0. We have:

∙ To get coordinate under ℬ0 from coordinate under ℬ, left multiply
with 𝑃 .

∙ To get coordinate under ℬ from coordinate under ℬ0, left multiply
with 𝑃−1.

∙ To get coordinate under 𝒞 from coordinate under ℬ, do the above 2
successively.

(ii) dim𝑉 = size of a basis of 𝑉
= size of any basis of 𝑉
= maximum number of linearly independent elements in 𝑉
= minimal number of elements that span 𝑉

(iii) 𝐴 is 𝑚× 𝑛, then 𝑟𝑎𝑛𝑘𝐴 = dim Col 𝐴
= dim Row 𝐴
= 𝑛− dim Nul 𝐴
(Row 𝐴 = Col 𝐴𝑇 ).

(iv) Basis theorem: if dim𝑉 = 𝑛, 𝑛 elements in 𝑉 span 𝑉 iff they are linearly
independent iff they form a basis.

(v) Same dimension does not mean identical!

(vi) Row operation preserves Row, Nul but changes Col.

Practice problems (Not part of the quiz!):

(1) 𝐴 =

⎡⎣ 1 2 3 4
0 0 5 6
0 0 0 0

⎤⎦. What is the rank of 𝐴? Find a basis for Row, Col

and Nul of 𝐴.

Answer: The rank is 2 because there are 2 pivots. By observation, one can
see that a basis of Col 𝐴 = Row 𝐴𝑇 is {(1, 0, 0), (3, 5, 0)}, and a basis of
Row 𝐴 = Col 𝐴𝑇 is {(1, 2, 3, 4), (0, 0, 5, 6)}.
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To find Nul 𝐴, we solve 𝐴𝑥 = 0 by row reduction. The reduced echelon form

is

⎡⎣ 1 2 0 2/5
0 0 1 6/5
0 0 0 0

⎤⎦, so a basis for Nul𝐴 is {(−2, 1, 0, 0), (−2/5, 0,−6/5, 1)}.

To find Nul 𝐴𝑇 , we solve 𝐴𝑇 = 0 by row reduction. The reduced echelon

form is

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎦, so a basis of Nul 𝐴𝑇 is {(0, 0, 1)}.

(2) True or false: If 𝐴 is 𝑚×𝑛 with linearly independent rows, then the dimen-
sion of Nul 𝐴 is 𝑚− 𝑛.

Answer: False. Because all rows are linearly independent, 𝑟𝑎𝑛𝑘(𝐴) = 𝑚.
dim Null 𝐴 = 𝑛− 𝑟𝑎𝑛𝑘(𝐴) = 𝑛−𝑚 which is generally different from 𝑚−𝑛.

For example, when 𝐴 =

[︂
1 0 0
0 1 0

]︂
.

(3) 𝐴 and 𝐵 are 𝑛×𝑛 matrices, and 𝐴𝐵 = 0, what is the maximum of dim Col
𝐴 + dim Row 𝐵?

Answer: 𝐴𝐵 = 0 means that Col 𝐵 must be contained in Nul 𝐴. (Col 𝐵 =
Range (𝑥 ↦→ 𝐵𝑥) = {𝐵𝑥}, and any element of the form 𝐵𝑥 must be in Nul
𝐴 because 𝐴(𝐵𝑥) = (𝐴𝐵)𝑥 = 0𝑥 = 0.) Hence, 𝑑𝑖𝑚 Row 𝐵 = dim Col
𝐵 ≤ dim Nul 𝐴 = 𝑛− 𝑟𝑎𝑛𝑘(𝐴) = 𝑛− dim Col 𝐴, so dim Col 𝐴 + dim Row
𝐵 ≤ 𝑛. The bound 𝑛 is also the maximum, because when 𝐴 = 0, 𝐵 = 𝐼,
this sum is 𝑛.

Remark: for the version on your handout (find the maximum of dim Nul
𝐴 + dim Row 𝐵), the trivial bound 2𝑛 is also the maximum because one
can let 𝐴 = 0 and 𝐵 = 𝐼.

(4) What is the dimension of {(𝑎 + 2𝑏 + 𝑐, 3𝑎 + 𝑏 + 3𝑐,−𝑎− 𝑐, 𝑎 + 𝑏 + 𝑐)}?

Answer: The space is spanned by {(1, 3,−1, 1), (2, 1, 0, 1)}, hence has di-
mension 2.

(5) What is the coordinate of 𝑥3 ∈ P3 under {1, 𝑥− 1, (𝑥− 1)2, (𝑥− 1)3}?

Answer: You can use change-of-coordinate formula, or do it directly with
binomial formula: 𝑥3 = ((𝑥− 1) + 1)3 = (𝑥− 1)3 + 3(𝑥− 1)2 + 3(𝑥− 1) + 1.

(6) True or false: 𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ min{𝑟𝑎𝑛𝑘(𝐴), 𝑟𝑎𝑛𝑘(𝐵)}.
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Answer: True. 𝑟𝑎𝑛𝑘(𝐴𝐵) is the dimension of the image of 𝑥 ↦→ 𝐴𝐵𝑥, which
is a subspace of the image of 𝑥 ↦→ 𝐴𝑥, hence 𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ 𝑟𝑎𝑛𝑘(𝐴). On the
other hand, 𝑟𝑎𝑛𝑘(𝐴𝐵) = 𝑟𝑎𝑛𝑘((𝐴𝐵)𝑇 ) = 𝑟𝑎𝑛𝑘(𝐵𝑇𝐴𝑇 ), hence the same
argument will show that 𝑟𝑎𝑛𝑘(𝐴𝐵) ≤ 𝑟𝑎𝑛𝑘(𝐵𝑇 ) = 𝑟𝑎𝑛𝑘(𝐵).

Remark: 𝑟𝑎𝑛𝑘(𝐴𝐵) = 𝑟𝑎𝑛𝑘(𝐵) − dim( Col 𝐵∩ Nul 𝐴) = 𝑟𝑎𝑛𝑘(𝐴) − dim(
Row 𝐴∩ Nul 𝐵𝑇 ).
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Mar 23/24

Quiz

Find the particular solution for the difference equation 𝑦𝑘+2 − 4𝑦𝑘+1 + 3𝑦𝑘 = 0,
𝑘 = 0, 1, . . . , with boundary conditions 𝑦0 = 1 and 𝑦𝑁 = 0.

Answer: The auxiliary equation is 𝑟2−4𝑟+3 = 0, hence the general solution
is 𝑦𝑘 = 𝐶1 · 3𝑘 + 𝐶2. Use 𝑦0 = 𝐶1 + 𝐶2 = 1 and 𝑦𝑁 = 𝐶1 · 3𝑁 + 𝐶2 = 0 we can

get 𝐶1 = − 1
3𝑁−1 , 𝐶2 = 3𝑁

3𝑁−1 , 𝑦𝑘 = − 1
3𝑁−13𝑘 + 3𝑁

3𝑁−1 .

Review

(i) Linear difference equation

(a) The concept of order of a difference equation.

(b) The solution set of an order 𝑘 homogeneous equation has dimension
𝑘.

(c) Show solutions linearly independent: Casorati matrix.

(d) The solution set of a non-homogeneous equation is a particular solu-
tion plus the solution set of homogeneous equation.

(e) Find solution for homogeneous equation by solving the aux-
iliary equation: if it has distinct roots 𝑟1, . . . 𝑟𝑘, then general
solution is 𝑐1𝑟

𝑛
1 + . . . 𝑐𝑘𝑟

𝑛
𝑘 . 𝑒𝑖𝑡 = cos 𝑡 + 𝑖 sin 𝑡.

(f) Relation with first order systems of equation xn+1 = 𝐴xn. The roots
of the auxiliary equation are the eigenvalues of 𝐴.

(ii) Determinant

(a) Effect under row and column operation.

(b) Multilinearity

(c) det(I) = 1
The above 3 characterize det

(d) Geometric meaning: volume.

(e) det(𝐴𝐵) = det(𝐴) det(𝐵)

(f) det(𝐴) = det(𝐴𝑇 )

Practice problems

(1) Show that the general solution of 𝑦𝑘+2 + 2𝑦𝑘+1 + 𝑦𝑘 = 0 is 𝑦𝑘 = 𝐶1(−1)𝑘 +
𝐶2𝑘(−1)𝑘.

Answer: As it is a homogeneous linear equation of order 2, its solution set
is a vector space of dimension 2. Hence, by basis theorem, we only need to
verify that:
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(a) (−1)𝑘 and 𝑘(−1)𝑘 are both solutions: this is because (−1)𝑘+2+2(−1)𝑘+1+
(−1)𝑘 = (−1)𝑘(1−2 + 1) = 0, and (𝑘+ 2)(−1)𝑘+2 + 2(𝑘+ 1)(−1)𝑘+1 +
𝑘(−1)𝑘 = (−1)𝑘(𝑘 + 2 − 2(𝑘 + 1) + 𝑘) = 0.

(b) (−1)𝑘 and 𝑘(−1)𝑘 are linearly independent: this is because

[︂
(−1)𝑘 𝑘(−1)𝑘

(−1)𝑘+1 (𝑘 + 1)(−1)𝑘+1

]︂
is invertible.

(2) {𝑢, 𝑣, 𝑤} is a basis of R3, what is the relationship between det([𝑢 + 𝑣 𝑣 +
𝑤 𝑤 + 𝑢]) and det([𝑢 𝑣 𝑤])?

Answer: det([𝑢 + 𝑣 𝑣 + 𝑤 𝑤 + 𝑢]) = 2 det([𝑢 𝑣 𝑤]). There are many
ways of showing it:

∙ We can use matrix multiplication:

det([𝑢 + 𝑣 𝑣 + 𝑤 𝑤 + 𝑢]) = det

⎛⎝[𝑢 𝑣 𝑤]

⎡⎣ 1 0 1
1 1 0
0 1 1

⎤⎦⎞⎠

= det([𝑢 𝑣 𝑤]) det

⎛⎝⎡⎣ 1 0 1
1 1 0
0 1 1

⎤⎦⎞⎠ = det([𝑢 𝑣 𝑤]) · 2

∙ We can use multi-linearity of det:

det([𝑢+𝑣 𝑣+𝑤 𝑤+𝑢]) = det([𝑢 𝑣+𝑤 𝑤+𝑢])+det([𝑣 𝑣+𝑤 𝑤+𝑢])

= det([𝑢 𝑣 𝑤+𝑢])+det([𝑢 𝑤 𝑤+𝑢])+det([𝑣 𝑣 𝑤+𝑢])+det([𝑣 𝑤 𝑤+𝑢])

= det([𝑢 𝑣 𝑤])+det([𝑢 𝑣 𝑢])+det([𝑢 𝑤 𝑤])+det([𝑢 𝑤 𝑢])

+ det([𝑣 𝑣 𝑤]) + det([𝑣 𝑣 𝑢]) + det([𝑣 𝑤 𝑤]) + det([𝑣 𝑤 𝑢])

= det([𝑢 𝑣 𝑤])+0+0+0+0+0+0+det([𝑣 𝑤 𝑢]) = 2 det([𝑢 𝑣 𝑤])

(3) True or false: det(𝐴 + 𝐵) = det(𝐴) + det(𝐵).

Answer: False. For example, if 𝐴 =

[︂
1 0
0 0

]︂
, 𝐵 =

[︂
0 0
0 1

]︂
.

(4) True or false: If 𝐴 is 4 × 3, then det(𝐴𝐴𝑇 ) = 0.

Answer: True. By the rule of matrix multiplication, the columns of 𝐴𝐴𝑇

are linear combinations of the columns of 𝐴, hence Col 𝐴𝐴𝑇 ⊆ Col 𝐴, hence
𝑟𝑎𝑛𝑘(𝐴𝐴𝑇 ) = dim Col 𝐴𝐴𝑇 ≤ dim Col 𝐴 ≤ 3. However, 𝐴𝐴𝑇 is a 4 × 4
matrix, hence it can never be invertible. As a consequence, det(𝐴𝐴𝑇 ) = 0.
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(5) Find all solutions of 𝑦𝑘+2 − 𝑦𝑘+1 + 𝑦𝑘 = 0, 𝑦0 = 𝑦𝑁 = 0.

Answer: The roots of the Auxiliary polynomial 𝑟2 − 𝑟 + 1 = 0 are 𝑟 =
1
2±
√
3
2 = 𝑒±

𝜋𝑖
3 𝑧, so the general solution is 𝑦𝑘 = 𝐶1 sin(𝑘𝜋/3)+𝐶2 cos(𝑘𝜋/3).

Use the boundary condition, we have: 𝑦0 = 𝐶2 = 0, 𝑦𝑁 = 𝐶1 sin(𝑘𝜋/3) +
𝐶2 cos(𝑘𝜋/3) = 0. Hence, if 𝑁 is not a multiple of 3, the only solution
is 𝑦𝑘 = 0; if 𝑁 is a multiple of 3, the solutions are sequences of the form
𝑦𝑘 = 𝐶 sin(𝑘𝜋/3).

(6) 𝐴 is a 2 × 2 matrix with all entries in [−1, 1]. What is the largest possible
det(𝐴)? How about when 𝐴 is 4 × 4?

Answer: det

(︂[︂
𝑎 𝑏
𝑐 𝑑

]︂)︂
= 𝑎𝑑 − 𝑏𝑐 ≤ |𝑎||𝑏| + |𝑐||𝑑| ≤ 1 + 1 = 2, and

det

(︂[︂
1 −1
1 1

]︂)︂
= 2, so the largest possible det(𝐴) is 2.

We can think about it in another way: the column vectors has length at
most

√
12 + 12 =

√
2, and the det is maximized if they can be made both

orthogonal and of the greatest possible length, hence det is bounded above
by (

√
2)2 = 2. Similarly, in 4 × 4 case, the column vectors are of length

at most
√

12 + 12 + 12 + 12 = 2, hence det is bounded above by 24 = 16.
After a few tries it is possible to find a matrix whose determinant reaches
this upper bound, for instance the following one:⎡⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

⎤⎥⎥⎦
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Apr 6/7

Quiz

Find 𝑘 in matrix 𝐴 =

⎡⎢⎢⎣
5 −2 6 −1
0 3 𝑘 0
0 0 5 4
0 0 0 1

⎤⎥⎥⎦, such that the eigenspace of 𝐴 for

𝜆 = 5 is two-dimensional.

Answer: The eigenspace for 5 is the null space of 𝐴− 5𝐼. It has dimension 2
if and only if the matrix 𝐴− 5𝐼 has rank 2. By row operation one can see that
it happens if and only if 𝑘 = 6.

Review

∙ Motivation: to study linear maps from a vector space to itself, e.g. the
behavior of iterations of such maps, we need to understand the normal
form of a matrix under similarity transformation 𝐴 ↦→ 𝑃−1𝐴𝑃 .

∙ Characteristic polynomial: det(𝐴− 𝜆𝐼). Its roots 𝜆1, . . . 𝜆𝑘 are called
eigenvalues. When 𝜆𝑗 is an eigenvalue, ker(𝐴−𝜆𝑗𝐼) is called the eigenspace
of 𝜆𝑗 . An element of an eigenspace is called an eigenvector.

∙ Characteristic polynomials, eigenvalues, dimension of the eigenspaces are
all invariant under similarity.

∙ Eigenvectors of different eigenvalues are linearly independent.

∙ Diagonalizable (under similarity) iff eigenspaces span the whole vector
space.

Practice problems

(1) Find the eigenvalues and eigenspaces of

⎡⎣ 0 1 1
1 1 0
1 0 1

⎤⎦. Is it diagonalizable?
Answer: Denote the matrix as 𝐴, the characteristic polynomial is det(𝐴 −
𝜆𝐼) = −𝜆3 + 2𝜆2 + 𝜆 − 2 = −(𝜆 − 2)(𝜆 + 1)(𝜆 − 1), hence the eigenval-
ues are 2, 1 and −1. Their corresponding eigenspaces are the null space
of 𝐴 − 2𝐼, 𝐴 − 𝐼 and 𝐴 + 𝐼, respectively. By solving homogeneous linear
system we know the eigenspaces for 2 is 𝑠𝑝𝑎𝑛{(1, 1, 1)}, the eigenspace for
1 is 𝑠𝑝𝑎𝑛{(0, 1,−1)}, and the eigenspace for −1 is 𝑠𝑝𝑎𝑛{(−2, 1, 1)}. The
eigenvectors (1, 1, 1), (0, 1,−1) and (−2, 1, 1) span R3, hence 𝐴 is diagonal-
izable.
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(2) Find 𝑎 such that

[︂
0 𝑎
1 1

]︂
is not diagonalizable in R.

Answer: The characteristic polynomial is 𝜆2 − 𝜆 − 𝑎. When 𝑎 > − 1
4 , this

polynomial has two distinct real roots, hence the matrix has at least two
linearly independent eigenvectors, hence must be diagonalizable. When
𝑎 < − 1

4 , the characteristic polynomial has no real roots, hence the matrix
has no real eigenvalue, hence must not be diagonalizable. When 𝑎 = − 1

4 ,
the matrix has an unique eigenvalue 1

2 with eigenspace 𝑠𝑝𝑎𝑛{(−1, 2)}, which
does not span R2, hence is not diagonalizable.

Remark: When 𝑎 < − 1
4 the matrix is not diagonalizable under R but is

diagonalizable under C.

(3) True or false: If 𝐴2 = 𝐼, any eigenvalue of 𝐴 must be either 1 or −1.

Answer: True. If 𝜆 is an eigenvalue of 𝐴, there is a non-zero vector 𝑥 such
that 𝐴𝑥 = 𝜆𝑥. Hence 𝑥 = 𝐴𝐴𝑥 = 𝐴(𝜆𝑥) = 𝜆(𝐴𝑥) = 𝜆2𝑥, which implies
𝜆2 = 1, i.e. 𝜆 = ±1.

Remark: It can be further shown that the 𝐴 here is diagonalizable.

(4) True or false: 𝐴 is diagonalizable if and only if 𝐴2 is diagonalizable.

Answer: False. If 𝐴 is diagonalizable, i.e. 𝐴 = 𝑃−1𝐷𝑃 where 𝐷 is diago-
nal, then 𝐴2 = 𝑃−1𝐷𝑃𝑃−1𝐷𝑃 = 𝑃−1𝐷2𝑃 is diagonalizable. However, 𝐴2

being diagonalizable does not imply that 𝐴 is diagonalizable, for example

𝐴 =

[︂
0 1
0 0

]︂
.

(5) 𝐴 is an invertible square matrix with characteristic polynomial 𝑓(𝜆). What
is the characteristic polynomial of 𝐴−1? Write it in terms of 𝑓 .

Answer: Suppose𝐴 is 𝑛×𝑛, the characteristic polynomial of𝐴−1 is det(𝐴−1−
𝜆𝐼) = det((−𝜆)𝐴−1(𝐴 − 1

𝜆𝐼)) = det(−𝜆𝐼) · det(𝐴−1) · det(𝐴 − 1
𝜆𝐼) =

(−1)𝑛𝜆𝑛 · 1
det(𝐴)𝑓( 1

𝜆 ) =
(−1)𝑛𝜆𝑛𝑓( 1

𝜆 )

𝑓(0) .

(6) True or false: If Nul 𝐴∩ Col 𝐴 has dimension 1, then 𝐴 can not be diago-
nalizable.

Answer: True. Suppose an 𝑛× 𝑛 matrix 𝐴 is diagonalizable, with eigenval-
ues 𝜆1, . . . 𝜆𝑘, we will show that Nul 𝐴∩ Col 𝐴 always has dimension 0.
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Because 𝐴 is diagonalizable, non-zero 𝑥 ∈ R𝑛 can be uniquely written as
𝑥 = 𝑥1 + . . . 𝑥𝑘, such that 𝐴𝑥𝑗 = 𝜆𝑗𝑥𝑗 . If none of the 𝜆𝑗 is 0, Nul 𝐴 = 0,
hence Nul 𝐴∩ Col 𝐴 has dimension 0, a contradiction. Now suppose 𝜆1 = 0.
Then, 𝑥 ∈ Nul 𝐴 iff 𝑥 = 𝑥1, while 𝑥 ∈ Col 𝐴 iff 𝑥1 = 0. Hence Nul 𝐴∩ Col
𝐴 has dimension 0.

(7) True or false: If 𝜆 is an eigenvalue of 𝐴, then 𝜆3−1 is an eigenvalue of 𝐴3−𝐼.

Answer: True. 𝜆 is an eigenvalue of 𝐴 means that there is a non-zero 𝑥 such
that 𝐴𝑥 = 𝜆𝑥, hence (𝐴3 − 𝐼)𝑥 = 𝐴3𝑥 − 𝑥 = 𝜆3𝑥 − 𝑥 = (𝜆3 − 1)𝑥, hence
𝜆3 − 1 is an eigenvalue of 𝐴3 − 𝐼.

(8) Calculate

[︂
1 1
1 0

]︂𝑁
.

See Example 2 on Page 284 of the textbook.

(9) True or false: 1/2 can not be the eigenvalue of an integer matrix (a matrix
whose entries are integers).

Answer: True. By definition of determinant, the characteristic polynomial
of an integer matrix is a polynomial with integer coefficients and leading
coefficient ±1. Hence 1

2 can not be an eigenvalue because any rational root
of a monic integer polynomial is an integer. (This is more a number theory
question than a linear algebra question, so don’t worry about it if you find
it a bit confusing.)
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April 13

Quiz

Diagonalize the matrix 𝐴 =

[︂
2 3
4 1

]︂
(i.e. find invertible matrix 𝑃 and diagonal

matrix 𝐷 such that 𝐴 = 𝑃𝐷𝑃−1), or show that 𝐴 is not diagonalizable.

Review

Matrix of a map 𝑇 : 𝑉 → 𝑊 under base change: ℬ, 𝒞 are bases of 𝑉 , 𝒟, ℰ are
bases of 𝑊 , 𝑀 is the matrix of 𝑇 under ℬ and 𝒟, then the matrix of 𝑇 under
𝒞 and ℰ is 𝑃ℰ←𝒟𝑀𝑃ℬ←𝒞 .

Matrix of a self map under base change.

Complex eigenvalue: 2 × 2 case: if the eigenvector of 𝑎 − 𝑏𝑖 is 𝑢 + 𝑣𝑖, then

𝐴 = [𝑢 𝑣]

[︂
𝑎 −𝑏
𝑏 𝑎

]︂
[𝑢 𝑣]−1.

Geometric meaning: rotation and scaling.

Application: Discrete dynamical system 𝑥𝑘+1 = 𝐴𝑥𝑘. When 𝑥𝑘 are proba-
bility vectors and 𝐴 is a stochastic matrix ([1 . . . 1]𝐴 = [1 . . . 1] and all entries
of 𝐴 are non-negative), it is a discrete Markov chain.

When 𝐴 is diagonalizable on C, 0 is an attractor, repeller or saddle iff all
eigenvalues have magnitude < 1, > 1, or some < 1 while some > 1. Direction of
greatest attraction/repulsion is the eigenspace of the smallest/largest eigenvalue.

For Markov chain, if 𝐴𝑘 is positive for some 𝑘 (called regular), 𝐴 has a
unique positive eigenvalue whose eigenvector is the steady state.

Practice Problems

1. 𝐴 =

[︂
0 −1
2 2

]︂
.

(i) What are the complex eigenvalues and eigenvectors of 𝐴?

(ii) Find a basis of R2 under which 𝑥 ↦→ 𝐴𝑥 is the composition of a scaling
and a rotation.

(iii) What are the scaling and the rotation in (ii)?

(iv) 𝑥1 =

[︂
0
1

]︂
, 𝑥𝑘+1 = 𝐴𝑥𝑘, describe {𝑥𝑘}.
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Answer: (i) The eigenvalues are 1± 𝑖 and the corresponding eigenvectors are
(1,−1 ∓ 𝑖).

(ii) From (i), we know that 𝑥 ↦→ 𝐴𝑥 has matrix

[︂
1 −1
1 1

]︂
under {(1,−1), (0, 1)}.

(iii) Scaling by
√

2 and rotation by 𝜋/4.

(iv) 𝑥𝑘 spirals away towards infinity, and the direction rotates with a period
of 8.

2. True or false:

(i) The product of two stochastic matrices is a stochastic matrix.

(ii) The transpose of a stochastic matrix is a stochastic matrix.

(iii) 2 can not be an eigenvalue of a stochastic matrix.

(iv) If 𝐴 is a real 4 × 4 matrix, 2 − 𝑖, 1 + 1
2 𝑖 are both eigenvalues, then 0 is a

saddle for 𝑥𝑘+1 = 𝐴𝑥𝑘

(v) If 𝐴 is a stochastic matrix, then 0 is not a repeller in 𝑥𝑘+1 = 𝐴𝑥𝑘.

Answer: (i) True. If 𝐴 and 𝐵 are both stochastic, all entries of 𝐴 and 𝐵 are
non-negative, hence all entries of their product would also be non-negative.
Furthermore, if [1 . . . 1]𝐴 = [1 . . . 1] and [1 . . . 1]𝐵 = [1 . . . 1], [1 . . . 1]𝐴𝐵 =
[1 . . . 1]𝐵 = [1 . . . 1]. Hence 𝐴𝐵 is also stochastic.

(ii) False. For example

[︂
1 1
0 0

]︂
.

(iii) False. Suppose otherwise, let 𝐴 be a stochastic matrix and 𝑎𝑖𝑗 be the
entry on the 𝑖-th row and 𝑗-th column, 𝑥 = (𝑥1, . . . 𝑥𝑛) be an eigenvector of 2,
then 2

∑︀
𝑖 |𝑥𝑖| =

∑︀
𝑖 |2𝑥𝑖| =

∑︀
𝑖 |
∑︀

𝑗 𝑎𝑖𝑗𝑥𝑗 | ≤
∑︀

𝑖

∑︀
𝑗 𝑎𝑖𝑗 |𝑥𝑗 | =

∑︀
𝑗(
∑︀

𝑖 𝑎𝑖𝑗)|𝑥𝑗 | =∑︀
𝑗 |𝑥𝑗 |. Hence

∑︀
𝑖 |𝑥𝑖| = 0, 𝑥 = 0, a contradiction.

(iv) False. Because 𝐴 is real, 2 + 𝑖 and 1− 1
2 𝑖 are also eigenvalues, hence all

eigenvalues of 𝐴 have magnitude greater than 1, which means that 0 can not be
a saddle.

(v) True. Because 𝐴 always has eigenvalue 1.

3. Consider a random walk on the following graph:
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𝐴

𝐵 𝐶

𝐷

such that if one is at vertex 𝑣 at time 𝑡, one will be at one of the vertices
neighboring 𝑣 with the same probability.

(i) Write down the corresponding stochastic matrix 𝑃 .

(ii) Is 𝑃 regular?

(iii) Find the steady-state vector for 𝑃 .

Answer: (i)𝑃 =

⎡⎢⎢⎣
0 1/3 0 1/3

1/2 0 1/2 1/3
0 1/3 0 1/3

1/2 1/3 1/2 0

⎤⎥⎥⎦.
(ii)Yes. All entries of 𝑃 2 are positive.

(iii)In the steady state, the probabilities at 𝐴 and 𝐶 are 0.2 and the proba-
bilities at 𝐵 and 𝐷 are 0.3.

4. Let P2 be the vector space of polynomials of degree at most 2. 𝑇 : P2 → P2

sends 𝑓 to 𝑓 ′.

(i) Write down the matrix of 𝑇 under basis {1, 𝑥, 𝑥2}.

(ii) Write down the matrix of 𝑇 under basis {1 + 𝑥2, 𝑥 + 1, 𝑥2}.

Answer: To find the matrix of 𝑇 under a basis ℬ = {𝑏1, . . . }, we put the
ℬ−coordinate of 𝑇 (𝑏𝑘) at the 𝑘-th column.

(i)

⎡⎣ 0 1 0
0 0 2
0 0 0

⎤⎦.
(ii)

⎡⎣ −2 1 −2
2 0 2
2 −1 2

⎤⎦.
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Prelim II review

∙ Matrix Arithmetics: The definition of matrix addition, scaler multipli-
cation, matrix multiplication (row/column reductions can be written as
matrix multiplication), transpose and inverse.
Algorithm to calculate the inverse of a matrix. How to check if a matrix
is invertible.

Exercise: If the second row of 𝐴 is twice the first row of 𝐴, what is the
relationship between the first two row of 𝐴𝐵? Can 𝐴𝐵 be invertible?

Answer: The rows of 𝐴 are the columns of 𝐴𝑇 , and the rows of 𝐴𝐵 are the
columns of (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 , which, by definition of matrix multiplication,
are the columns of 𝐴𝑇 multiply with 𝐵𝑇 from the left. Hence, the second
row of 𝐴𝐵 is twice the first row of 𝐴𝐵, and 𝐴𝐵 can not be invertible
because its rows are not linearly independent.

∙ Determinants: Can be computed by cofactor expansion (p. 168). det(𝐴) ̸=
0 iff 𝐴 is invertible. det(𝐴𝑇 ) = det(𝐴), det(𝐴𝐵) = det(𝐴) det(𝐵). How
det changes under row/column operations. Geometric meaning as the
“volumn”.

Exercise: 𝐴 is an 𝑛× 𝑛 invertible matrix. What is det(−𝐴𝑇𝐴−1)?

Answer: det(−𝐴𝑇𝐴−1) = (−1)𝑛 det(𝐴𝑇 ) det(𝐴−1) = (−1)𝑛 det(𝐴)/ det(𝐴) =
(−1)𝑛.

∙ Vector space and linear maps

– Vector space: a set with two operations: addition and scalar mul-
tiplication, that satisfies a sequence of axioms. R𝑛 are vector spaces.

– Subspace: A subset of a vector space that contains 0 and is closed
under both addition and scalar multiplication. When 𝑉 is a vector
space, 𝑆 ⊂ 𝑉 , 𝑠𝑝𝑎𝑛{𝑆} is a subspace. The kernel (null space)
and range (column space) of any linear map are subspaces of its
domain and codomain, respectively. Use row reduction to compute
null space and column space.

– Basis: A linear independent subset that spans the vector space.
Given vector space 𝑉 , any two basis has the same number of elements,
and the number of elements in any basis of 𝑉 is called its dimension.
The Basis theorem. The dimension of the range of a linear map is
called its rank.

– Coordinates and change of basis: Given a vector space 𝑉 with
basis ℬ, any element 𝑣 ∈ 𝑉 can be written as a linear combination
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of elements in ℬ, and the weights are its ℬ-coordinates [𝑣]ℬ. Given
linear map 𝑇 : 𝑉 → 𝑊 , basis ℬ = {𝑏1, . . . 𝑏𝑛} in 𝑉 and 𝒞 in 𝑊 , let
𝑀 = [[𝑇 (𝑏1)]𝒞 . . . [𝑇 (𝑏𝑛)]𝒞 ], then [𝑇 (𝑣)]𝒞 = 𝑀 [𝑣]ℬ. How are []ℬ and
the matrix 𝑀 changes when we change the basis?

Exercise: Show that 𝑉 = {𝑎 sin(𝑥 + 𝑏)} is a subspace in the vector space
of continuous functions, find a basis, write down the map 𝑇𝑎 : 𝑓(𝑥) ↦→
𝑓(𝑥 + 𝑎) − 𝑓(𝑥) under this basis and calculate its rank.

Answer: We can show that 𝑉 = 𝑠𝑝𝑎𝑛{sin(𝑥), cos(𝑥)}: 𝑎 sin(𝑥 + 𝑏) =
𝑎 cos(𝑏) sin(𝑥)+𝑎 sin(𝑏) cos(𝑥), hence 𝑉 ⊆ 𝑠𝑝𝑎𝑛{sin(𝑥), cos(𝑥)}. 𝑐 sin(𝑥)+
𝑐′ cos(𝑥) =

√
𝑐2 + 𝑐′2 sin(𝑥 + 𝑑), where 𝑑 is the angle between the posi-

tive 𝑥-axis and the vector (𝑐, 𝑐′), hence 𝑠𝑝𝑎𝑛{sin(𝑥), cos(𝑥)} ⊆ 𝑉 . From
this we can conclude that 𝑉 is a subspace of the space of continuous func-
tions. Furthermore, sin(𝑥) and cos(𝑥) are linearly independent, hence they
form a basis of 𝑉 , and dim(𝑉 ) = 2. 𝑇𝑎(sin(𝑥)) = sin(𝑥 + 𝑎) − sin(𝑥) =
(cos(𝑎) − 1) sin(𝑥) + sin(𝑎) cos(𝑥), 𝑇𝑎(cos(𝑥)) = cos(𝑥 + 𝑎) − cos(𝑥) =
(cos(𝑎) − 1) cos(𝑥) − sin(𝑎) sin(𝑥). Hence, the matrix of 𝑇 under basis
{sin(𝑥), cos(𝑥)} is [︂

cos(𝑎) − 1 sin(𝑎)
− sin(𝑎) cos(𝑎) − 1

]︂
You may choose another basis, which will result in another matrix. By
calculation, we know that it has rank 0 if 𝑎 = 2𝑘𝜋, 𝑘 ∈ Z and rank 2 if
otherwise.

∙ Eigenvalues and eigenvectors Change of basis for self maps are simi-
larity transformations. Characteristic equation, eigenvalues, eigenspaces
and eigenvectors. Criteria for diagonalization. How to diagonalize.
Deal with complex eigenvalues.

Exercise: 𝑣, 𝑤 ∈ R𝑛, 𝑣𝑇𝑤 ̸= 0. Show that 𝑣𝑤𝑇 is diagonalizable.

Answer: 𝑣𝑤𝑇 𝑣 = (𝑣𝑇𝑤)𝑣, hence 𝑣𝑇𝑤 is an eigenvalue. The rank of 𝑣𝑤𝑇 is
1, hence 0 is an eigenvalue, and the eigenspace for 0 has dimension 𝑛− 1.
Hence the eigenspaces of 𝑣𝑇𝑤 span R𝑛, which implies that it is diagonal-
izable.

∙ Applications

– Linear difference equation Auxiliary equation. General solution.
Boundary value problem.

– Discrete dynamical system General solution when the matrix is
diagonalizable. Describe of the solution based on eigenvalues and
eigenspaces.
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– Markov chain Probability vector and stochastic matrix. Existence
and uniqueness of steady-state vector when the matrix is regular.

Exercise: Find the direction of greatest attraction and repulsion for sys-

tem 𝑥𝑘+1 =

⎡⎢⎢⎣
2 0 0 0
0 1 −1 0
0 1 1 0
0 0 0 −1/2

⎤⎥⎥⎦𝑥𝑘.

Answer: The eigenvalues are 2, 1 ± 𝑖 and −1/2. 2 is the eigenvalue with
the greatest magnitude, hence its eigenspace, 𝑠𝑝𝑎𝑛{(1, 0, 0, 0)}, is the di-
rection of the greatest repulsion. −1/2 is the eigenvalue with the greatest
magnitude, hence its eigenspace, 𝑠𝑝𝑎𝑛{(0, 0, 0, 1)}, is the direction of the
greatest attraction.
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April 20/21

Practice problems:

1. 𝑉 = 𝑠𝑝𝑎𝑛{1, 𝑥−1, 𝑥−2}. 𝑇 : 𝑉 → R2 is defined as 𝑇 (𝑓) =

[︂
𝑓(1)
𝑓(−1)

]︂
.

What is the matrix of 𝑇 under basis {1, 𝑥−1, 𝑥−2}? What is the matrix of 𝑇
under basis {1, 1+𝑥

𝑥 , 1+𝑥
𝑥2 }?

Answer: To find the matrix of 𝑇 , evaluate it on the basis vectors and use
them as columns.

The matrix of 𝑇 under {1, 𝑥−1, 𝑥−2} is

[︂
1 1 1
1 −1 1

]︂
, and the matrix of 𝑇

under basis {1, 1+𝑥
𝑥 , 1+𝑥

𝑥2 } is

[︂
1 2 2
1 0 0

]︂
.

2. If 𝐴 is a 3 × 3 real matrix, both 0 and 1 + 𝑖 are eigenvalues of 𝐴. What
are the (real and complex) eigenvalues of (𝐴 + 𝐼)−1? What is the rank of 𝐴?

Answer: Because 𝐴 is real and 1 + 𝑖 is an eigenvalue, its conjugate 1 − 𝑖
must also be an eigenvalue. Because 𝐴 is 3 × 3 and has 3 distinct eigenvalues,
their eigenspaces must all have dimension 1, hence the null space of 𝐴, a.k.a.
the 0-eigenspace of 𝐴, must have dimension 1, hence the rank of 𝐴 is 3− 1 = 2.

If 𝐴𝑥 = 𝜆𝑥 then (𝐴 + 𝐼)𝑥 = (1 + 𝜆)𝑥, hence the eigenvalues of 𝐴 + 𝐼 are
1, 2±𝑖, therefore 𝐴+𝐼 is invertible. As a consequence, (1+𝜆)−1𝑥 = (𝐴+𝐼)−1𝑥,
hence the eigenvalues of (𝐴 + 𝐼)−1 are 1, 2±𝑖

5 .

3. You are walking on an infinite plane, start by facing north. After each
step, you turn left by 𝜋/2 with a probability of 0.2. What is the probability of
you facing east after 𝑁 steps as 𝑁 → ∞?

Answer: Let the probability of facing north, west, south and east at step
𝑘 be 𝑝1𝑘, 𝑝

2
𝑘, 𝑝

3
𝑘 and 𝑝4𝑘 respectively, let 𝑝𝑘 = (𝑝1𝑘, 𝑝

2
𝑘, 𝑝

3
𝑘, 𝑝

4
𝑘), then 𝑝𝑘+1 = 𝑃𝑝𝑘,

where 𝑃 =

⎡⎢⎢⎣
0.8 0 0 0.2
0.2 0.8 0 0
0 0.2 0.8 0
0 0 0.2 0.8

⎤⎥⎥⎦. Hence finding steady-state probability vec-
tor is solving (𝑃 − 𝐼)𝑝 = 0 and normalize your result into a probability vector.
The answer is 𝑝 = (1/4, 1/4, 1/4, 1/4), hence the probability of facing east as
𝑁 → ∞ converges to 1/4.

4. Diagonalize 𝑀 =

⎡⎣ 0 0 0
1 1 1
2 2 2

⎤⎦.
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Answer: The rank of𝑀 is 1, hence its null space (i.e. eigenspace for 0) has di-
mension 2. By solving 𝐴𝑥 = 0 we know that it has a basis {(1,−1, 0), (0, 1,−1)}.
By observation or computation, (0, 1, 2) is an eigenvector of 𝑀 with corre-

sponding eigenvalue 3. Hence 𝑀 = 𝑃𝐷𝑃−1, where 𝐷 =

⎡⎣ 3 0 0
0 0 0
0 0 0

⎤⎦, 𝑃 =⎡⎣ 0 1 0
1 −1 1
2 0 −1

⎤⎦.
5. 𝐴 is a 3 × 3 matrix. 𝐴2 = 𝐴. Use 𝑥 = 𝐴𝑥 + (𝐼 − 𝐴)𝑥 to show that the

eigenspaces of 0 and 1 of 𝐴 span R3, and conclude that 𝐴 is diagonalizable.

Answer: Let 𝑉0 = {𝑥 : 𝐴𝑥 = 0}, 𝑉1 = {𝑥 : 𝐴𝑥 = 𝑥}. Because 𝐴(𝐴𝑥) =
𝐴2𝑥 = 𝐴𝑥, 𝐴𝑥 ∈ 𝑉1. Because 𝐴((𝐼−𝐴)𝑥) = (𝐴−𝐴2)𝑥 = 0𝑥 = 0, (𝐼−𝐴)𝑥 ∈ 𝑉0,
hence 𝑥 = 𝐴𝑥 + (𝐼 − 𝐴)𝑥 implies that 𝑉0 and 𝑉1 span R3. In other words, if
𝑉0 = 0, then 𝑉1 = R3, i.e. the 1-eigenspace of 𝐴 is R3. If 𝑉1 = 0, then 𝑉0, which
is the 0-eigenspace, is R3. If neither 𝑉0 nor 𝑉1 is 0, then 𝑉0 is the 0-eigenspace
and 𝑉1 is the 1-eigenspace and together they span R3. In all cases R3 is spanned
by a collection of eigenvectors of 𝐴, hence 𝐴 is diagonalizable.

6. 𝑥𝑛 ∈ R2 for all 𝑛 ∈ Z, 𝑥𝑛+2 = 3𝑥𝑛+1 +

[︂
−2 0
0 0

]︂
𝑥𝑛. Find general

solution.

Answer: Let 𝑥𝑛 =

[︂
𝑎𝑛
𝑏𝑛

]︂
, then the linear difference equation on 𝑥 can be

reduced to 𝑎𝑛+2 = 3𝑎𝑛+1 − 2𝑎𝑛 and 𝑏𝑛+2 = 3𝑏𝑛+1, hence the general solution is
𝑎𝑛 = 𝐶1 + 𝐶22𝑛, and 𝑏𝑛 = 𝐶33𝑛.

Alternatively, you can use the idea on p.252 of the textbook and reduce it
to discrete dynamical system:

𝑦𝑛 =

⎡⎢⎢⎣
𝑎𝑛
𝑏𝑛

𝑎𝑛+1

𝑏𝑛+1

⎤⎥⎥⎦

𝑦𝑛+1 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
−2 0 3 0
0 0 0 3

⎤⎥⎥⎦ 𝑦𝑛

And find general solution by diagonalizing the 4 × 4 matrix.
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April 27/28

Quiz

Find the general solution of 𝑥′ = 𝐴𝑥, 𝐴 =

[︂
3 1
−2 1

]︂
.

Answer: The eigenvalues of 𝐴 are 2 ± 𝑖 and the corresponding eigenvectors
are (−1, 1 ∓ 𝑖). Hence the general solution is:

𝐴𝑒𝑡(2+𝑖)(−1, 1 − 𝑖) + 𝐵𝑒𝑡(2−𝑖)(−1, 1 + 𝑖)

Review

(i) Differential equations: decouple by diagonalization, deal with complex
eigenvalues, attractor, repeller, saddle and spiral point.
2×2 with complex eigenvalue 𝑎+𝑏𝑖 with corresponding eigenvector 𝑢+𝑣𝑖:
𝐶1(𝑢 cos 𝑏𝑡− 𝑣 sin 𝑏𝑡)𝑒𝑎𝑡 + 𝐶2(𝑢 sin 𝑏𝑡 + 𝑣 cos 𝑏𝑡)𝑒𝑎𝑡.

(ii) Inner product in R𝑛 (𝑥·𝑦 = 𝑥𝑇 𝑦). Basic properties. Length, distance
and angles. Orthogonal vectors. Orthogonal complement of a subspace
of R𝑛.

(iii) Orthogonal set and orthogonal basis. Orthogonal sets of non-zero
vectors are linearly independent. Calculate coefficient under orthogonal
basis by inner product (geometric interpretation: orthogonal projection
to a line). Orthonormal set and orthonormal basis.

(iv) Matrix with orthonormal columns. 𝑈𝑇𝑈 = 𝐼, ||𝑈𝑥|| = ||𝑥||, (𝑈𝑥) · (𝑈𝑦) =
𝑥 · 𝑦. Orthogonal matrix.

(v) Orthogonal projection to a subspace. Calculation using an or-
thogonal (and orthonormal) basis. Best approximation.

Practice problems

(1) Find an orthonormal basis of the space spanned by (1, 0,−1) and (0, 1,−1).

Answer: Use Gram-Schmidt. Let 𝑣1 = (1, 0,−1), 𝑣2 = (0, 1,−1), then we
first replace 𝑣2 with 𝑣′2 = 𝑣2 − 𝑣1·𝑣2

𝑣1·𝑣1 𝑣1 = 𝑣2 − 1
2𝑣1 = (−1/2, 1,−1/2). Nor-

malize them, we have { 1√
2
(1, 0,−1),

√︁
2
3 (−1/2, 1,−1/2)}.

(2) Let 𝑎 = (0, 1, 2), 𝑏 = (1, 1, 1).

(a) Find 𝑥, 𝑦 such that 𝑐 = (1, 𝑥, 𝑦) is orthogonal to 𝑊 = 𝑠𝑝𝑎𝑛{𝑎, 𝑏}.
(b) Let 𝑃𝑀 be the orthogonal projection to 𝑊 . Find the general solution

of 𝑥′ = 𝑃𝑀𝑥.
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(c) How about 𝑥′ = 𝑃𝑀⊥𝑥?

Answer:

(a) 𝑎 · 𝑐 = 0 means 𝑥 + 2𝑦 = 0, 𝑏 · 𝑐 = 0 means 1 + 𝑥 + 𝑦 = 0. Hence
𝑥 = −2, 𝑦 = 1.

(b) By the definition of orthogonal projection, 𝑃𝑀𝑎 = 𝑎, 𝑃𝑀𝑏 = 𝑏, 𝑃𝑀𝑐 =
0. So 𝑎, 𝑏 and 𝑐 are eigenvectors of 𝑃𝑀 and they span R3, hence the
general solution is

𝑥(𝑡) = 𝐶1𝑒
𝑡(0, 1, 2) + 𝐶2𝑒

𝑡(1, 1, 1) + 𝐶3(1,−2, 1)

(c) By the definition of orthogonal projection (or because 𝑃𝑀⊥ = 𝐼−𝑃𝑀 ),
𝑃𝑀⊥𝑎 = 𝑃𝑀⊥𝑏 = 0, 𝑃𝑀⊥𝑐 = 𝑐. Hence the general solution is

𝑥(𝑡) = 𝐶1(0, 1, 2) + 𝐶2(1, 1, 1) + 𝐶3𝑒
𝑡(1,−2, 1)

(3) True or false:

(a) (𝑎 · 𝑏)𝑐 = (𝑏 · 𝑐)𝑎.
(b) 𝑈 and 𝑉 are subspaces, 𝑊 = 𝑈 ∩ 𝑉 , 𝑃𝑈 , 𝑃𝑉 and 𝑃𝑊 are orthogonal

projections to 𝑈 , 𝑉 and 𝑊 . Then 𝑃𝑊 = 𝑃𝑈𝑃𝑉 .

(c) If 𝐴 is an orthogonal matrix, 𝜆 is a real eigenvalue of 𝐴. Then |𝜆| = 1.

Answer:

(a) False. For example, let 𝑎 = (1, 0), 𝑏 = 𝑐 = (0, 1).

(b) False. For example, let 𝑈 = 𝑠𝑝𝑎𝑛{(1, 0, 0), (0, 1, 0)} and 𝑉 = 𝑠𝑝𝑎𝑛{(1, 0, 0), (0, 1, 1)}.
(c) True. Because if 𝑈 is orthogonal, ||𝑈𝑥|| = ||𝑥||. Let 𝑥 be an eigenvector

of 𝜆, then ||𝑈𝑥|| = |𝜆|||𝑥|| = ||𝑥||, hence |𝜆| = 1.

(4) 𝑎, 𝑏, 𝑐 are three non-zero vectors in R3. 𝑎 and 𝑏 are orthogonal, the angle
between 𝑐 and 𝑎 is 𝜋/3, the angle between 𝑐 and 𝑏 is 𝜋/3, what is the angle
between 𝑐 and its orthogonal projection to 𝑠𝑝𝑎𝑛{𝑎, 𝑏}?
Answer: Because the angle between 𝑎 and 𝑐 is 𝜋/3, 𝑎·𝑐 = ||𝑎||||𝑐|| cos(𝜋/3) =
1
2 ||𝑎||||𝑐||. Similarly, 𝑏 · 𝑐 = ||𝑏||||𝑐|| cos(𝜋/3) = 1

2 ||𝑏||||𝑐||.

Because {𝑎, 𝑏} is an orthogonal basis of 𝑠𝑝𝑎𝑛{𝑎, 𝑏}, the projection of 𝑐 on
𝑠𝑝𝑎𝑛{𝑎, 𝑏}, which we denote as 𝑐1, is:

𝑐1 =
𝑎 · 𝑐
𝑎 · 𝑎

𝑎 +
𝑏 · 𝑐
𝑏 · 𝑏

𝑏

=
||𝑐||

2||𝑎||
𝑎 +

||𝑐||
2||𝑏||

𝑏

Hence ||𝑐1|| =
√
𝑐1 · 𝑐1 =

√
2
2 ||𝑐||, 𝑐 · 𝑐1 = ||𝑐||

2||𝑎||
||𝑎||||𝑐||

2 + ||𝑐||
2||𝑏||

||𝑏||||𝑐||
2 = ||𝑐||2

2 ,

and the angle between 𝑐 and 𝑐1 is arccos 𝑐·𝑐1
||𝑐||||𝑐1|| = arccos

√
2
2 = 𝜋/4.
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(5) In R𝑛, find 𝑣 that minimizes 2||𝑣||2 + ||𝑣 − 𝑎||2 + ||𝑣 − 𝑏||2.

Answer: 2||𝑣||2+||𝑣−𝑎||2+||𝑣−𝑏||2 = 𝑣 ·𝑣+(𝑣−𝑎)·(𝑣−𝑎)+(𝑣−𝑏)·(𝑣−𝑏) =
4𝑣 · 𝑣 − 2(𝑎 + 𝑏) · 𝑣 + 𝑎 · 𝑎 + 𝑏 · 𝑏 = 4(𝑣 − 𝑎+𝑏

4 ) − 4(𝑎+𝑏
4 · 𝑎+𝑏

4 ) + 𝑎 · 𝑎 + 𝑏 · 𝑏.
So the value is minimized when 𝑣 = 𝑎+𝑏

4 .

(6) 𝑎, 𝑏 ∈ R2, show that (det[𝑎 𝑏])2 = (𝑎 · 𝑎)(𝑏 · 𝑏) − (𝑎 · 𝑏)2.

Answer: (det[𝑎 𝑏])2 = det[𝑎 𝑏] det[𝑎 𝑏]𝑇 = det

[︂
𝑎 · 𝑎 𝑎 · 𝑏
𝑏 · 𝑎 𝑏 · 𝑏

]︂
= (𝑎 ·

𝑎)(𝑏 · 𝑏) − (𝑎 · 𝑏)2.
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Quiz

A subspace 𝑊 of R4 has basis

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

3
−1
2
−1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
−5
9
−9
3

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭. Find an orthogonal basis

for 𝑊 .

Answer: See HW solution.

Bonus problem: 𝑎 =

[︂
1
0

]︂
, 𝑏 =

[︂
𝑏1
𝑏2

]︂
. Consider the map 𝑇 : R2 → R2

defined as 𝑇 (𝑥) = (𝑎 · 𝑥)𝑏 + (𝑏 · 𝑥)𝑎. What is the matrix of 𝑇? When is this
matrix orthogonal? When is it diagonalizable (over R)? When is it invertible?
(The grade for this problem will be added to your earlier quiz grades.)

Answer: 𝑇 (

[︂
1
0

]︂
) =

[︂
2𝑏1
𝑏2

]︂
, 𝑇 (

[︂
0
1

]︂
) =

[︂
𝑏2
0

]︂
. Hence the matrix is[︂

2𝑏1 𝑏2
𝑏2 0

]︂
.

It is orthogonal iff the column vectors are orthogonal and of unit length, i.e.
iff 2𝑏1𝑏2 = 0 and 𝑏22 = 4𝑏21 + 𝑏22 = 1. Hence this matrix is orthogonal iff 𝑏2 = ±1
and 𝑏1 = 0.

It is invertible iff its determinant, which is −𝑏22, is non-zero, i.e. iff 𝑏2 ̸= 0.

The characteristic polynomial of this matrix is 𝜆2 − 2𝑏1𝜆 − 𝑏22, which has
discriminant 4𝑏21 + 4𝑏22. Hence, unless 𝑏1 = 𝑏2 = 0 it will have two different real
roots hence the matrix will be diagonalizable. if 𝑏1 = 𝑏2 = 0 the matrix is 0,
which is already diagonal. Hence the matrix is always diagonalizable.

Review

(i) Gram-Schmidt, QR-factorization (of a matrix with linearly independent
columns, Gram-Schmidt applies to columns then scale)

(ii) Least-square problem: arg min𝑥 ||𝑏 − 𝐴𝑥||. Normal equation: 𝐴𝑇𝐴𝑥 =
𝐴𝑇 𝑏. When the columns of 𝐴 are linearly independent, 𝐴𝑇𝐴 is invertible
and the solution is unique. Alternatively, let 𝐴 = 𝑄𝑅, then 𝑅𝑇𝑄𝑇𝑄𝑅𝑥 =
𝑅𝑇𝑄𝑏, hence 𝑥 = 𝑅−1𝑄𝑏.

(iii) Symmetric matrix: 𝐴 is symmetric iff 𝐴𝑇 = 𝐴. Any symmetric matrix 𝐴
can be written as 𝑃𝑇𝐷𝑃 , where 𝑃𝑇𝑃 = 𝐼, 𝐷 is diagonal.
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(iv) Quadratic form in R𝑛: 𝑥 ↦→ 𝑥𝑇𝐴𝑥. Change of variable: 𝐴 ↦→ 𝑃𝑇𝐴𝑃 ,
where 𝑃 is the change-of-coordinate matrix.

Practice Problems

(i) Do QR decomposition for

⎡⎣ 1 1 1
1 0 1
0 1 1

⎤⎦.
Answer: To find the column vectors of 𝑄, do Gram-Schmidt on the column
vectors of this matrix and then normalize their lengths to 1. The answer
is:

𝑄 =

⎡⎢⎢⎢⎣
√︁

1
2

√︁
1
6 −

√︁
1
3√︁

1
2 −

√︁
1
6

√︁
1
3

0
√︁

2
3

√︁
1
3

⎤⎥⎥⎥⎦𝑅 = 𝑄𝑇

⎡⎣ 1 1 1
1 0 1
0 1 1

⎤⎦ =

⎡⎢⎢⎢⎣
√

2
√︁

1
2

√
2

0
√︁

3
2

√︁
2
3

0 0
√︁

1
3

⎤⎥⎥⎥⎦
(ii) Write down 𝐴, 𝑏 such that the least square problem for 𝑏 − 𝐴𝑥 does not

have a unique solution.

Answer: The least square problem does not have a unique solution iff the
columns of 𝐴 are not linearly independent. Hence we can let them be e.g.

𝐴 =

⎡⎣ 1 2
1 2
1 2

⎤⎦ , 𝑏 =

⎡⎣ 1
2
3

⎤⎦.
(iii) True or false: 𝐴 and 𝑃𝑇𝐴𝑃 have the same eigenvalues.

Answer: False. A counterexample is 𝐴 =

[︂
1 0
0 1

]︂
, 𝑃 =

[︂
1 1
0 1

]︂
.

(iv) True or false: 𝐴 is a square matrix, 𝜆 is an eigenvalue of 𝐴, then 𝜆2 is an
eigenvalue of 𝐴𝑇𝐴.

Answer: False. A counterexample is 𝐴 =

[︂
1 1
0 1

]︂
.

(v) Minimizes 𝑥𝑇𝐴𝑥 for 𝐵𝑥 = 𝑏.

Answer: There are many ways to state the solution.

If 𝑥* minimizes 𝑥𝑇𝐴𝑥 among all 𝑥 such that 𝐵𝑥 = 𝑏, then for any 𝑦 such
that 𝐵𝑦 = 0, (𝑥* + 𝑦)𝑇𝐴(𝑥* + 𝑦) ≥ (𝑥*)𝑇𝐴𝑥*, hence 𝑦𝑇𝐴𝑥* = 0 and
𝑦𝑇𝐴𝑦 ≥ 0. So the minimal can be found as follows:
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∙ If 𝐵𝑥 = 𝑏 is inconsistent, or if 𝑃𝑇𝐴𝑃 is not positive semidefinite,
where 𝑃 is the orthogonal projection to Nul 𝐵, there would be no
minimal.

∙ If otherwise, let 𝑥 = 𝑥0 + 𝑡1𝑣1 + . . . 𝑡𝑘𝑣𝑘 be the parametrized linear
form of the solution of 𝐵𝑥 = 𝑏. We can rewrite it as 𝑥 = 𝑥0 + 𝑉 𝑡,
where 𝑉 = [𝑣1 𝑣2 . . . ], 𝑡 = [𝑡1 𝑡2 . . . ]

𝑇 . Then, solve for 𝑡* in the
equation 𝑉 𝑇𝐴𝑥0 + 𝑉 𝑇𝐴𝑉 𝑡* = 0. Then the minimal of 𝑥𝑇𝐴𝑥 with
constrain 𝐵𝑥 = 0 is 𝑥𝑇

0 𝐴(𝑥0 + 𝑉 𝑡*).

Remark: You can also do it with Lagrange’s multipliers.
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Review

Singular value decomposition: 𝐴 = 𝑈Σ𝑉 𝑇 . Proof: 𝐴𝑇𝐴 = 𝑉 𝐷2𝑉 𝑇 , hence
(𝐴𝑉 )𝑇 (𝐴𝑉 ) = 𝐷2, i.e. the non-zero columns of 𝐴𝑉 form an orthogonal set with
length equals the singular value, i.e. 𝐴𝑉 = 𝑈Σ for some 𝑈 , hence 𝐴 = 𝑈Σ𝑉 𝑇 .

Computation: find Σ and 𝑉 by orthogonally diagonalizing 𝐴𝑇𝐴, then let 𝑈
be 𝐴𝑉 with column vectors filled and normalized.

Practice Problems

The final exam may not be as hard as these practice problems, so don’t worry
if you find these problems a bit challenging!

1. Find the SVD for

⎡⎣ 0 0
1 1
1 1

⎤⎦.
Answer: The answer is not unique. One answer is: Σ =

⎡⎣ 2 0
0 0
0 0

⎤⎦, 𝑉 =

[︂
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]︂
, 𝑈 =

⎡⎣ 0 1 0

1/
√

2 0 1/
√

2

1/
√

2 0 −1/
√

2

⎤⎦.
2. Find the range of 𝑘 such that 𝑄𝑘(𝑥1, 𝑥2, 𝑥3) = 𝑥2

1 + 2𝑥2
2 + 3𝑥2

3 − 𝑘𝑥1𝑥3 is
indefinite.

Answer: The matrix of 𝑄𝑘 is

⎡⎣ 1 0 −𝑘/2
0 2 0

−𝑘/2 0 3

⎤⎦. So the characteristic

polynomial is (2 − 𝜆)((1 − 𝜆)(3 − 𝜆) − 𝑘2/4) = (2 − 𝜆)(𝜆2 − 4𝜆 + 3 − 𝑘2/4).
Hence, it has both positive and negative eigenvalue iff |𝑘| ≥ 2

√
3.

3. True or false:

(i) If 𝐴 is a symmetric matrix that defines an indefinite quadratic form, then
0 is a saddle point for discrete dynamical system 𝑥𝑘+1 = 𝐴𝑥𝑘.

Answer: False. For example, 𝐴 =

[︂
1/2 0
0 −1/2

]︂
, then 0 is an attractor.

Remark: This is true if we ask about 𝑥′ = 𝐴𝑥.

(ii) Any symmetric matrix of rank 1 can be written as ±𝑥𝑥𝑇 for some 𝑥 ∈ R𝑛.
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Answer: True. If 𝐴 is symmetric, 𝐴 can be orthogonally diagonalized,
i.e. 𝐴 = 𝑃𝐷𝑃𝑇 where 𝑃 is orthogonal. Because the rank of 𝐴 is 1,
only one diagonal entries of 𝐷 is non-zero. Suppose it is the 𝑘-th and its
value is 𝜆, then we can let 𝑥 be the 𝑘-th column of 𝑃 multiplies with |𝜆|1/2.

(iii) Let𝐴 be any symmetric matrix, there are 𝑎, 𝑏 ∈ R such that lim𝑛→∞ 𝑏−𝑛(𝐴+
𝑎𝐼)𝑛 exists and is a matrix of rank 1.

Answer: False. For example, 𝐴 is the 2-by-2 identity matrix, then the
limit is 𝐼 if 𝑏 = 𝑎 + 1, 0 if |𝑏| > |𝑎 + 1|, does not exist if otherwise, hence
can never be of rank 1.

(iv) Let 𝐴 be any matrix, 𝜆 be one of its (real) eigenvalues, then |𝜆| is no larger
than the largest singular value of 𝐴.

Answer: True. Let 𝑥 be an eigenvector of the eigenvalue 𝜆, then |𝜆| =√︁
||𝜆𝑥||2
||𝑥||2 =

√︁
||𝐴𝑥||2
||𝑥||2 =

√︁
𝑥𝑇𝐴𝑇𝐴𝑥
||𝑥||2 . Now let 𝑚 be the largest singular

value of 𝐴, then 𝑚2 is the largest eigenvalue of 𝐴𝑇𝐴. In other words, if
𝐴𝑇𝐴 = 𝑈𝐷𝑈−1 is an orthogonal diagonalization of 𝐴𝑇𝐴, the entries of 𝐷
are all no larger than 𝑚2. Hence 𝑥𝑇𝐴𝑇𝐴𝑥 = (𝑈𝑥)𝑇𝐷(𝑈𝑥) ≤ 𝑚2||𝑈𝑥||2 =
𝑚2||𝑥||2. Hence |𝜆| ≤ 𝑚.

4. Let P3 be the vector space of polynomials of real coefficients of degree at

most 3. 𝑉 = {𝑓 ∈ P3 :
∫︀ 1

0
𝑓(𝑡)𝑑𝑡 = 0}.

(i) Show that 𝑉 is a subspace of P3.

Answer: 0 ∈ 𝑉 because
∫︀ 1

0
0𝑑𝑡 = 0. Addition and scaler multiplication

are closed because integration is linear.

(ii) Find the dimension and a basis of 𝑉 .

Answer: A polynomial 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 is in 𝑉 iff 𝑎3/4 + 𝑎2/3 +
𝑎1/2+𝑎0 = 0. Hence, a basis can be chosen as {𝑥3−1/4, 𝑥2−1/3, 𝑥−1/2}.
The dimension is 3. (The answer is not unique.)

(iii) Let 𝑇 : 𝑉 → 𝑉 be a linear map defined as 𝑇 (𝑓) = 𝑓 ′− 𝑓(1) + 𝑓(0). Write
down the matrix for 𝑇 under the basis you chose in (ii).

Answer: If you use the basis above, the matrix should be

⎡⎣ 0 0 0
3 0 0
0 2 0

⎤⎦.
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(iv) Find the rank, eigenvalues and eigenvectors of the matrix in (iii). Is it
diagonalizable?

Answer: The rank is 2, the unique eigenvalue is 0 and its eigenspace is

spanned by

⎡⎣ 0
0
1

⎤⎦, or, the coefficient of 𝑥 − 1/2. It does not span the

whole vector space, hence the matrix is not diagonalizable.

5. Let 𝑀 be the vector space of 2 × 2 symmetric matrices, find a basis of
𝑀 and write down the matrix of quadratic form det. Is it positive definite,
negative definite or indefinite?

Answer: A basis can be chosen as

{︂[︂
1 0
0 0

]︂
,

[︂
0 0
0 1

]︂
,

[︂
0 1
1 0

]︂}︂
. De-

note the coefficient under this basis by (𝑎, 𝑏, 𝑐), then det = 𝑎𝑏− 𝑐2. The matrix

is

⎡⎣ 0 1/2 0
1/2 0 0
0 0 −1

⎤⎦. It is indefinite because the determinant of a symmetric

2-by-2 matrix can be either positive or negative.
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