
2.1 Instantaneous rate of change, or, an informal introduction to
derivatives

Let a, b be two different values in the domain of f . The average rate of change of f

between a and b is f(b)−f(a)
b−a .

Geometrically, a secant line of the graph of a function f is a line that passes through
two different points on the graph (a, f(a)) and (b, f(b)). The slope of the secant line is the
average rate of change of f between a and b.

If, as b approaches a, the average rate of change between a and b approach a number d,
then d is called the instantaneous rate of change, or the derivative of f at a.

Geometrically, when we fix one of the two points, say fixing a, and let b approaches a,
if the secant line converges to a line la, then la is called the tangent line of the graph of f
at point (a, f(a)). The slope of the tangent line is the instantaneous rate of change.

Example: f(x) = x3

Example: g(x) =

{
1, x > 0

0, x ≤ 0

2.2 Limit Laws

limx→c f(x) only depends on the value of f on a open interval containing c excluding c.

limx→cC = C, where C is a constant.

limx→c x = c

When limx→c f(x) and limx→c g(x) both exist, limx→c(f+g)(x) = limx→c f(x)+limx→c g(x),
limx→c(f−g)(x) = limx→c f(x)−limx→c g(x) and limx→c(fg)(x) = limx→c f(x) limx→c g(x).
As a consequence, if P is a polynomial, limx→c P (x) = P (c).

When limx→c f(x) and limx→c g(x) both exist, and the latter is non-zero, limx→c(f/g)(x) =
limx→c f(x)
limx→c g(x)

. As a consequence, if P , Q are both polynomial andQ(c) 6= 0, limx→c(P/Q)(x) =

P (c)/Q(c).

Example: limx→1
x2−1
x3−1 = limx→1

x+1
x2+x+1

= 2/3.

When limx→c f(x) exists, limx→c f
n(x) = (limx→c f(x))n, limx→c f

1
2n+1 (x) = (limx→c f(x))

1
2n+1 .

1
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When limx→c f(x) > 0, limx→c f
1
2n (x) = (limx→c f(x))

1
2n .

If f ≤ g, limx→c f(x) and limx→c g(x) both exist, then limx→c f(x) ≤ limx→c g(x). (note:
we can’t replace ≤ with < here.)

Sandwich theorem: if f ≤ g ≤ F , limx→c f(x) = limx→c F (x) = L, then limx→c g(x) =
L.

Example: limx→0
sinx
x = 1.

Classification of the cases when the limit does not exist:

1: Unbounded

2: Bounded but “jumps” (i.e. both left & right hand limit exist but they are different.)

3: All remaining cases. We call them “oscillate too much”.

2.3 The definition of limit

Suppose f is defined on an open neighborhood of a except possibly at a. By “limx→a f(x) =
L”, we mean ∀ε > 0, ∃δ > 0 such that ∀x, 0 < |x− a| < δ implies |f(x)− L| < ε. (∀: for
all ∃: there exists)

Example: limx→c x = c [Let δ = ε.]

As a consequence, by “limx→a f(x) does not exist”, we mean ∃ε > 0, ∀δ > 0, ∃x1, x2,
0 < |x1 − a| < δ, 0 < |x2 − a| < δ and |f(x1)− f(x2)| > ε. In particular, if f jumps at a,
limx→a f(x) does not exist.

The proof of some limit laws from definition:

Example 1: prove that limx→c f(x)g(x) = (limx→c f(x))(limx→c g(x)).

Let A = limx→c f(x), B = limx→c g(x). ∀ε > 0, choose ε1 > 0 such that ε21 + ε1(|A| +
|B|) < ε, choose δ > 0 such that 0 < |x−c| < δ implies |f(x)−A| < ε1 and |g(x)−B| < ε1,
then 0 < |x− c| < δ implies |f(x)g(x)−AB| < ε.

Example 2: prove the Sandwich theorem: f ≤ g ≤ F , limx→c f(x) = limx→c F (x) = L,
then limx→c g(x) exists and equals L.
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∀ε > 0, choose δ > 0 such that 0 < |x− c| < δ implies |f(x)−L| < ε and |F (x)−L| < ε,
then 0 < |x− c| < δ implies |g(x)− L| < ε.

Exercises on the concept of limit:

1. limx→0 sin 1
x does not exist because it

(a) is unbounded.
(b) jumps.
(c) oscillates too much.

[c]

2. limx→0 x sin 1
x

(a) does not exist.
(b) =0.
(c) =1.

[a, by Sandwich theorem.]

3. Calculate limx→0

√
1+x−1
sinx .[1/2]

4. Calculate limx→0(ln( 1x + 1)− ln( 1x − 1)). [0]

5. Calculate limx→0
sin(1+x)−sin(1−x)

x . [2 cos 1]

2.4 One-sided limit

limx→c− f(x) = L if ∀ε > 0, ∃δ > 0 such that x ∈ (c− δ, c) =⇒ |f(x)− L| < ε.
limx→c+ f(x) = L if ∀ε > 0, ∃δ > 0 such that x ∈ (c, c+ δ) =⇒ |f(x)− L| < ε.

Relation with limit:

If limx→c f(x) = L, then limx→c− f(x) = L and limx→c+ f(x) = L.
If limx→c− f(x) = limx→c+ f(x) = L, then limx→c f(x) = L
If limx→c− f(x) 6= limx→c+ f(x) = L, then limx→c f(x) does not exist. (And f jumps at c.)

All the basic laws of limit (e.g. the Sandwich theorem) can be adapted to work on
one-sided limit.

We can use one-sided limit to show limx→0
sinx
x = 1 as follows:

Step 1: If f is even, limx→0+ f(x) = limx→0− f(x) = limx→0 f(x)
Step 2: sinx

x is even.
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Step 3: Show that limx→0+
sinx
x = 1 with a geometric argument and the Sandwich theorem.

2.5 Continuity

We call f continuous at c if limx→c f(x) = f(c), left continuous if limx→c− f(x) = f(c),
right continuous if limx→c+ f(x) = f(c).

f is called continuous if it is continuous everywhere in its domain.

Geometric meaning: if f is continuous on interval I, then the graph of f restricted on I
is connected.

Properties: If f is continuous at c, limx→a g(x) = c, then limx→a f(g(x)) = f(c). Specif-
ically, the composition of continuous functions are continuous.

Rational functions, xa, sinx, cosx, ex, lnx are all continuous.

Sum, difference, product, quotient, power, roots preserve continuity.

Intermediate Value Theorem: if f is continuous on interval I, ∃a, b ∈ I such that
f(a) < c < f(b), then there exists x ∈ I such that f(x) = c.

Examples: (1) Find all x such that f(x) = [x] (floor of x) is continuous, left continuous,
right continuous.

(2) Show that cotx is continuous.

(3) True or false: you were once exactly 3 ft tall. (use Intermediate Value Theorem)

(4) We can approximate e2 with 2.7182 because (a) ex is continuous (b) x2 is continuous.
((b), because x2 is continuous implies that x∗2 is close to x2 if x∗ is close to x.)

(5) Find all x where f(x) =

{
x, x ∈ Q
0, otherwise

is continuous. (0)

Further exercises:

(1) Show that f(x) = |x| is continuous. (Hint: use definition to show continuity at 0.)

(2) Show that polynomial x10001 + 56x345 + 1000005x2 + x+ 345680907 has a real root.
(Hint: use Intermediate Value Theorem.)
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Continuous extension: If f is not defined on c, but limx→c f(x) exists, we can extend

the function f to c by defining a new function F (x) =

{
f(x), x ∈ D(f)

limx→c f(x), x = c
. When

defining exponential functions we used the idea of continuous extension.

(3) Assuming the temperature distribution is continuous, show that there are 2 diamet-
rically opposite points on the equator with the same temperature at the same time. (Hint:
Intermediate Value Theorem.)

Answers to the problems in the Quantifier worksheet

(b) f is bounded on any finite interval. Example of a function that satisfies (b):

f1(x) = x. Example of a function that doesn’t satisfy (b): g1(x) =

{
0, x = 0
1
x , x 6= 0

.

(c) f is constant on an open interval containing x0. Example of a function that satisfies
(b): f2(x) = 0. Example of a function that doesn’t satisfy (b): g2(x) = x.

(d) f is bounded. Example of a function that satisfies (b): f3(x) = sinx. Example of a
function that doesn’t satisfy (b): g3(x) = x.

(e) The preimage of any finite interval under f is bounded. Example of a function that
satisfies (e): f4(x) = x. Example of a function that doesn’t satisfy (b): g4(x) = sinx.

2.6 Limits Involving Infinity

We say limx→c f(x) = L, if f(x) can be arbitrary close to L for all x 6= c that are
sufficiently close to c. (This is another way of stating the ε− δ definition.)

We say limx→∞ f(x) = L, if f(x) can be arbitrary close to L for all x that are sufficiently
large.

We say limx→−∞ f(x) = L, if f(x) can be arbitrary close to L for all x such that −x are
sufficiently large.

All limit laws we learned earlier are true for limx→∞ and limx→−∞.

Example: limx→∞(ln(x+ 1)− ln(x− 1)).

We say limx→c f(x) =∞, if f(x) can be arbitrary large for all x 6= c that are sufficiently
close to c.
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We can define infinite one-sided limit, infinite limit as x→ ±∞ similarly.

Example: Calculate limx→0+ tan−1( 1x). Here tan−1 is the arctangent function, which is
the inverse of f(x) = tan(x), −π/2 < x < π/2.

Horizontal, Oblique & Vertical Asymptotes: horizontal & vertical asymptotes are just
ways of saying the existence of finite limit as x goes to infinity, or the existence of infinite
limit as x approach some finite number. We say the graph of f has an oblique asymptote
y = kx+ b, if f(x)− kx− b has limit 0 as x→ ±∞.

Example: f(x) = x2+1
x = x+ 1

x .

Review for Chapter 1 & 2

• Definition of function, domain, range, natural domain
• Definition of odd/even/increasing/decreasing functions
• Graph of a function
• Operations on functions: sum, difference, product, quotients, composition
• The shifting and scaling of the graph of a function
• Definition of trigonometric functions, exponential functions and logarithms, iden-

tities involving these functions
• One-to-one functions and their inverse
• Definition of inverse trigonometric functions
• Limit laws, Sandwich Theorem
• limx→0

sinx
x = 1

• Classification of the cases where limit does not exist: “unbounded”, “jumps” and
“oscillates too much”
• Relationship between limit and one-sided limits
• Continuity and Intermediate Value Theorem
• Limit involving infinity
• Horizontal, Oblique & Vertical Asymptotes
• Average and Instantaneous rate of change

Review Questions:

1. What is the relationship between the graph of tan(2x) and tan(x)? Write tan(2x) in
terms of sin(x) and cos(x), and calculate limx→π/3 tan(2x).

2. f(x) = sin 1
x is an (a) even function. (b) odd function. (c) increasing function. (d)

decreasing function.

3. Show that there is a x such that x2 = ex.
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4. Find b such that f(x) =

{
b, x = 0

e−
1
x2 , x 6= 0

is continuous.
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Trigonometric functions & identities:

The unit circle is the circle centered at origin with radius 1.

(1, 0)

In mathematics, we measure angles by radian, i.e. the length of the arc on the unit circle
that subtend the angle from the origin. Given any real number s, consider the arc on the
unit circle starting at (1, 0) and has length s. The y-coordinate and x-coordinate of this
arc is defined as sin s and cos s.

By definition, sin is odd and cos is even, both have period 2π, and sin2 x+ cos2 x = 1.

Other trigonometric functions are defined as follows: tanx = sinx
cosx , cotx = cosx

sinx ,

secx = 1
cosx , cscx = 1

sinx .

Other trigonometric identities you need to remember: sin(a+b) = sin a cos b+sin b cos a,
cos(a + b) = cos a cos b − sin a sin b, cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x,
sin 2x = 2 sinx cosx.

Inverse functions: If for any a, b ∈ D(f), a 6= b implies f(a) 6= f(b), we call f one-
to-one. If f is one-to-one, define function f−1 on f(D(f)) as: f−1(y) = x if and only if
f(x) = y. We have: for any x ∈ D(f), f−1(f(x)) = x; for any y ∈ f(D(f)), f(f−1(y)) = y.
We call f−1 the inverse function of f . To graph f−1, do a reflection of the graph of f by
the line x = y.

Secant line and tangent line: A secant line of the graph of a function f is a line that
passes through two points (a, f(a)) and (b, f(b)), such that a 6= b. The slope of the secant
line is called the average rate of change of f between a and b. When we fix one of the two
points, say fixing a, and let b approaches a, if the secant line converges to a line la, then
la is called the tangent line of the graph of f at point (a, f(a)). The slope of the tangent
line is called the instantaneous rate of change of f at a.

Exponential and Logarithm: Exponential functions are functions of the form f(x) =
ax, where a is a positive real number. The number e is defined by the property that the
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tangent line of the graph of y = ex at (0, 1) has slope 1. lnx is the inverse function of ex.

Relation between limit and continuity f is continuous at c if (i) the limit of f at c
exists, and (ii) this limit equals f(c). The existence of limit at a point c does not depend
on the value of f(c), but continuity at c does.

Finding Asymptotes To find horizontal or vertical asymptotes, calculate the limit.
To find oblique asymptote of a rational function, write it into the form of ax + b + f(x)
such that limx→±∞ f(x) = 0.

Graphing with computer, ε and δ: These are not required topics & will not appear
in Prelim 1.

Exercises:

1. Write cos(4x) in terms of cosx. How about cos(5x)?

2. Find the inverse function of f(x) = ln(x+1)−ln(x−1). What is its domain and range?

3. Find the tangent line of y =
√
x at (1, 1).



10

3.1,3.2 Derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Left & right hand derivative: limh→0−
f(x+h)−f(x)

h & limh→0+
f(x+h)−f(x)

h

The existence of derivative implies continuity. The existence of left (right) derivative
implies left (right) continuity.

Cases when derivative not exist: discontinuity, corner, cusp, vertical tangent line, etc.

Example: f(x) = 3
√
x, calculate f ′. (hint: use a3 − b3 = (a− b)(a2 + ab+ b2))

When the derivate of f exist for all x ∈ A, we call f differentiable on A.

Example: 1√
x2+1

.

Additional Example: f(x) =

{
0, x = 0

x3 sin 1
x , x 6= 0

at x = 0. (hint: use sandwich theorem)

3.3 Differentiation Rules, n-th Derivative

The function f itself is the 0-th derivative of f .

The n-th derivative of f , denoted as f (n), is the derivative of the n− 1-th derivative of
f .

f (1) is often written as f ′, f (2) as f ′′, f (3) as f ′′′ etc.

Geometric meaning: f increasing implies f ′ > 0. f decreasing implies f ′ < 0. f reaches
local maximum or minimum at x implies f ′(x) = 0. f is concave up (or convex in some
books) implies f ′′ > 0. f is concave down (or concave in some books) implies f ′′ < 0.

Example: (sinx)′ = limh→0
sinh cosx+sinx cosh−sinx

h = limh→0(cosx · sinhh ) + limh→0(sinx ·
cosh−1

h ) = cosx+ limh→0(sinx ·
2 sin2 h

2

(h
2
)2
· h4 ) = cosx+ sinx · 2 · 0 = cosx.
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Rules for derivatives

a and b are constants, then (af + bg)′ = af ′ + bg′.

(fg)′ = f ′g + fg′.

(fg )′ = f ′g−g′f
g2

.

Chain Rule: (f(g(x)))′ = g′(x)f ′(g(x)).

Inverse function rule: (f−1(x))′ = 1
f ′(f−1(x))

.

(xa)′ = axa−1, (sinx)′ = cosx, (cosx)′ = − sinx, (ex)′ = ex, (lnx)′ = 1
x ,

(sin−1 x)′ = 1√
1−x2 , (cos−1 x)′ = −1√

1−x2 , (tan−1 x)′ = 1
1+x2

.

Exercises:

(tanx)′

( ex

x2+1
)′

f(x) =

{
1, x = 0
sinx
x , x 6= 0

, find f ′

Proof that f ′(0) = 0: f ′(0) = limh→0

sinh
h
−1

h = limh→0
sinh−h
h2

. sinh−h
h2

is an odd function,

so we only need to show limh→0+
sinh−h
h2

= 0. Use Sandwich Theorem. When h > 0,

sinh ≤ h ≤ tanh, so sinh−tanh
h2

≤ sinh−h
h2

≤ 0. limh→0+ 0 = 0, limh→0+
sinh−tanh

h2
=

limh→0+( sinhh ·
cosh−1
h cosh ) = limh→0+

sinh
h · limh→0+

1
cosh · limh→0+

−2 sin2 h
2

(h
2
)2
· limh→0+

h
4 = 0, so
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limh→0+
sinh−h
h2

= 0. q.e.d.

g(x) =

{
0, x = 0

x sin 1
x , x 6= 0

, find g′

(xsinx)′
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3.4 Application of Derivatives

Speed, acceleration, jerk (i.e. the first, second, and third order derivative of the dis-
placement with regards to time)

Margin in economics.

Sensitivity to change.

3.5-3.6, 3.8-3.9 Proof of the rules of derivatives

(i) a and b are constants, then (af + bg)′ = af ′ + bg′.
(ii) (fg)′ = f ′g + fg′.

(iii) (fg )′ = f ′g−g′f
g2

.

(iv) Chain Rule: (f(g(x)))′ = g′(x)f ′(g(x)).
(v) Inverse function rule: (f−1(x))′ = 1

f ′(f−1(x))
.

(vi) (xa)′ = axa−1

(vii) (sinx)′ = cosx
(viii) (cosx)′ = − sinx

(ix) (ex)′ = ex

(x) (lnx)′ = 1
x

(xi) (sin−1 x)′ = 1√
1−x2

(xii) (cos−1 x)′ = −1√
1−x2

(xiii) (tan−1 x)′ = 1
1+x2

.

Proof. (i) follows directly from the laws of limit.

(ii) (fg)′(x) = limh→0
f(x+h)g(x+h)−f(x)g(x)

h = limh→0
(f(x+h)g(x+h)−f(x)g(x+h))+(f(x)g(x+h)−f(x)g(x))

h =
f ′g + fg′.

(iii) f
g = f · g−1, hence it follows from (ii), (iv) and (vi).

(iv) is based on an equivalent definition of derivative as linear approximation.

So, f(g(x + h)) = f(g(x) + g′(x)h + o(h)) = f(g(x)) + f ′(g(x))g′(x)h + f ′(g(x))o(h) +
o(g′(x)h+ o(h)) = f(g(x)) + f ′(g(x))g′(x)h+ o(h).

(v) follows from (iv) and the fact that f(f−1(x)) = x.

(vi) for positive x, xa = elnx
a

= ea lnx, hence the formula follows from (iv), (ix) and (x).
For negative x, use (−x)a = (−1)axa.
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(vii) sin′(x) = limh→0
sin(x+h)−sin(x)

h = limh→0
sinx(cosh−1)

h +limh→0
cosx sinh

h = limh→0
sinh(−2 sin2 h

2
)

h +
cosx = cosx.

(viii) follows from (vii) and the fact that cos(x) = sin(π/2− x).

(ix) (ex)′ = limh→0
ex+h−ex

h = ex limh→0
eh−1
h = ex(ex)′|x=0 = ex.

(x) follows from (ix) and (v).

(xi) follows from (v) and (vii).

(xii) follows from (v) and (viii).

(xiii) follows from (iii), (v), (vii), and (viii). �

Example: (cot−1 x)′

(|x|a)′

(log1+x2(1 + x4))′

3.11 The Proof of the Chain Rule

Theorem 1. f ′(x) = a if and only if there exists a function ε defined around 0 such that
f(x+ h) = f(x) + ah+ ε(h)h, and limh→0 ε(h) = 0.

Remark 1. The function ε depends on f and x.

Proof. Suppose f ′(x) = a, then f(x + h) = f(x) + ah + f(x + h) − f(x) − ah = f(x) +

ah+ [f(x+h)−f(x)h − a]h, and limh→0
f(x+h)−f(x)

h − a = f ′(x)− a = 0, so we can let ε(h) =
f(x+h)−f(x)

h −a when h 6= 0 and ε(h) = 0 when h = 0, and have f(x+h) = f(x)+ah+ε(h)h.

Suppose there is a function ε such that f(x+h) = f(x)+ah+ε(h)h, and limh→0 ε(h) = 0,

f ′(x) = limh→0
f(x+h)−f(x)

h = limh→0
ah+ε(h)h

h = a+ limh→0 ε(h) = a. �

Now we can prove the chain rule using the previous theorem:

f(g(x+h)) = f(g(x)+g′(x)h+εg(h)) = f(g(x))+f ′(g(x))(g′(x)h+εg(h)h)+εf (g′(x)h+
εg(h))(g′(x)h+εg(h)h) = f(g(x))+f ′(g(x))g′(x)h+[f ′(g(x))εg(h)+εf (g′(x)h+εg(h)h)(g′(x)+
εg(h))]h, where εf is the ε function corresponding to f and g(x) and εg is the ε function
corresponding to g and x. limh→0[f

′(g(x))εg(h) + εf (g′(x)h+ εg(h)h)(g′(x) + εg(h))] = 0,
so (f(g(x)))′ = f ′(g(x))g′(x).
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Remark 2. The geometric meaning of ε is the difference between the slope of the secant
line and the tangent line.

3.7 Derivative of implicit function

Suppose function y(x) satisfies (y(x))2 + xy(x) + x2 = 3, y(1) = 1, find y′(1), y′′(1).
(Hint: use Chain Rule)
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Proof of the Rules of Differentiation:

(1) a and b are constants, then (af + bg)′ = af ′ + bg′

(2) (sinx)′ = cosx
(3) (ex)′ = ex

(4) (fg)′ = f ′g + fg′

(5) Chain Rule: (f(g(x)))′ = g′(x)f ′(g(x))
(6) Inverse function rule: (f−1(x))′ = 1

f ′(f−1(x))

(7) (cosx)′ = − sinx
(8) (lnx)′ = 1

x

(9) (xa)′ = axa−1

(10) (fg )′ = f ′g−g′f
g2

(11) (sin−1 x)′ = 1√
1−x2

(12) (cos−1 x)′ = −1√
1−x2

(13) (tan−1 x)′ = 1
1+x2

Proof. (1) follows directly from the limit laws.

(2) sin′(x) = limh→0
sin(x+h)−sin(x)

h = limh→0
sinx(cosh−1)

h +limh→0
cosx sinh

h = limh→0
sinx(−2 sin2 h

2
)

h +

cosx = −2 sinx limh→0(
sin h

2
h
2

)2 · h4 + cosx = cosx. Here, we used the following 2 trigono-

metric identities: sin(a+ b) = sin a cos b+ cos a sin b, and cos c = 1− 2 sin2 c
2 .

(3) Let f(x) = ex, then by the definition of number e, f ′(0) = 1. f ′(x) = limh→0
ex+h−ex

h =

ex limh→0
eh−1
h = exf ′(0) = ex.

(4) (fg)′(x) = limh→0
f(x+h)g(x+h)−f(x)g(x)

h = limh→0
(f(x+h)g(x+h)−f(x)g(x+h))+(f(x)g(x+h)−f(x)g(x))

h =
f ′g + fg′.

(5)

Lemma. f ′(x) = a if and only if there exists a function ε defined around 0 such that
f(x+ h) = f(x) + ah+ ε(h)h, and limh→0 ε(h) = 0.

Proof. Suppose f ′(x) = a, then f(x + h) = f(x) + ah + f(x + h) − f(x) − ah = f(x) +

ah + [f(x+h)−f(x)h − a]h, and limh→0
f(x+h)−f(x)

h − a = f ′(x) − a = 0, so if we define

ε(h) =

{
f(x+h)−f(x)

h − a, h 6= 0

0, h = 0
, ε satisfies all the requirements in the lemma.

On the other hand, suppose there is a function ε such that f(x + h) = f(x) + ah +

ε(h)h, and limh→0 ε(h) = 0, then f ′(x) = limh→0
f(x+h)−f(x)

h = limh→0
ah+ε(h)h

h = a +
limh→0 ε(h) = a. �



17

Remark. Geometrically, the function ε is the difference between the slope of the secant
line between (x, f(x)) and (x+ h, f(x+ h)) and the slope of the tangent line at (x, f(x)),
and the lemma is saying that the existence of limit is equivalent to the convergence of the
secant line as h→ 0. ε depends on f and x.

Now we can prove the chain rule using the previous lemma:

f(g(x+h)) = f(g(x)+g′(x)h+εg(h)) = f(g(x))+f ′(g(x))(g′(x)h+εg(h)h)+εf (g′(x)h+
εg(h))(g′(x)h+εg(h)h) = f(g(x))+f ′(g(x))g′(x)h+[f ′(g(x))εg(h)+εf (g′(x)h+εg(h)h)(g′(x)+
εg(h))]h, where εf is the ε function corresponding to f and g(x) and εg is the ε function
corresponding to g and x. limh→0[f

′(g(x))εg(h) + εf (g′(x)h+ εg(h)h)(g′(x) + εg(h))] = 0,
so (f(g(x)))′ = f ′(g(x))g′(x).

(6)-(13) follows from (1)-(5). �

Examples:

1. Function y(x) satisfy x2 + yx+ y2 = 3, y(1) = 1. Calculate y′(1) and y′′(1).

Solution: By assumption, F (x) = x2 + y(x)x + (y(x))2 = 3, so F ′ = F ′′ = 0. F ′ =
2x + y + y′x + 2y′y = 0 so y′(1) = −1. F ′′ = 2 + y′ + y′′x + y′ + 2y′′y + 2y′y′ = 0, so
3y′′ + 2 = 0, y′′ = −2/3. (Sorry I made a mistake on this problem in the morning.)

2. (csc−1)′′

Solution 1: If y = csc−1(x) then x = csc y = 1
sin y , so sin y = 1

x , y = sin−1 1
x . Now use the

chain rule, (csc−1(x))′ = (sin−1 1
x)′ =

− 1
x2√

1− 1
x2

= − 1
|x|
√
x2−1 , and (csc−1(x))′′ = (|x|

√
x2−1)′

x2(x2−1) =

x
|x|
√
x2−1+ |x|x√

x2−1

x2(x2−1) = |x|(2x2−1)
x3(x2−1)

3
2

.

Here we do not need to deal with x = 0 because 0 is not in the domain of csc−1.

Solution 2: Use the inverse rule, (csc−1(x))′ = 1
csc′(csc−1 x)

= − 1
cos(csc−1 x)

sin2(csc−1 x)

= − sin2(csc−1 x)√
1−sin(csc−1 x)

.

Because if u = csc−1(x) then x = 1
sinu , so sin(csc−1 x) = sinu = 1

x , (csc−1(x))′ =
− 1
x2√

1− 1
x2

.

Then do the same calculation as in Solution 1.

3. (tan−1(ln(x)))′

Solution: By chain rule, tan−1(ln(x)))′ =
1
x

1+(ln(x))2
.
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Other topics on derivative

(1) The normal line of a plane curve γ through a point P on γ is the line passes through
P and is orthogonal to the tangent line of γ at P .

Example: Find the tangent line and normal line of y2 + xy + x2 = 3 at (1, 1).

Example: Exercise 52

(2) Calculate the composition of trigonometric and inverse trigonometric function:

Example: cos(sec−1(x)): if y = sec−1 x, then x = sec y = 1
cos y , so sec is the composition

of 1
x and cos. We know that (f ◦g)−1 = g−1 ◦f−1, so sec−1(x) = cos( 1x), cos(sec−1(x)) = 1

x .

Example: tan(sin−1 x).

(3) Calculate the derivative of products. (
∏
i fi)

′ = (
∑

i
f ′i
fi

)
∏
i fi. (proved by induction

or by applying ln on both sides)

Calculate ((1 + x2)(1 + x4)(1 + x6)(1 + x8))′

(4) Use derivative to calculate limit:

Calculate limx→0(1 + x)
1
x

Calculate limx→0
sinx
sin 3x

Homework from 3.1-3.7

3.1.18, 3.3.64: the slope of the tangent line is the derivative.

3.1.32: the ”rate of change” is the derivative.

(*)3.1.35: calculate the derivative of f(x) =

{
x2 sin(1/x), x 6= 0

0, x = 0
at x = 0 by definition.

3.2.8, 3.2.12, 3.3.2, 3.3.6, 3.3.36, 3.5.2, 3.5.6, 3.5.18, 3.5.26, 3.6.6, 3.6.18, 3.6.28, 3.6.34,
3.6.55, 3.6.82: calculation of derivative with the rules.

3.3.54: use differentiation rules.

3.4.10: maximum iff derivative is 0.



19

(*)3.2.28, 3.2.30, 3.4.10: sketching derivative.

(*)3.5.57: use the limit of sin(x)/x.

(*)3.7.16, 3.7.20, 3.7.30: implicit differentiation.

The number e

Theorem 2. e = limx→0(1 + x)1/x

Proof. limx→0(1 + x)1/x = limx→0(e
ln(1+x)

x ) = elimx→0
ln(1+x)−ln(1)

x = e(ln)
′(1) = e. �

Remark 3. We will see later or in Calc 2 that e =
∑

n
1
n! .
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Word problems with differentiation

Steps:
1. Name the variables.
2. Write down the given numbers (if there are any).
3. Write down the relation between variables as equations.
4. Differentiate (often w.r.t. time).
5. Find the answer.

Example 0: A point moves on the unit circle x2 + y2 = 1. If x(t0) = 0.6, y(t0) = 0.8,
x′(t0) = 1, x′′(t0) = 0, find y′(t0) and y′′(t0).

Example 1: Point A is moving on the positive y-axis downwards with speed 1, and is
currently at (0, 1), point B is moving on the positive x-axis and the distance between them
is always

√
2. Find the speed of point B and the midpoint of line segment AB.

Example 2: (from Kepler’s laws to universal gravitation) The orbit of a planet around
its sun is ρ(a+ sin θ) = 1, where a > 1.

(1) Find the relationship between dρ
dt and dθ

dt .

(2) If we further assume ρ2 dθdt = 1, write d2

dt2
(ρ cos θ) as a function of ρ and θ.

(3) Do the same for ρ sin θ.
(4) Write the acceleration of the planet as a function of ρ and θ.

Solution for Example 2:

(1) ρ′(a+ sin θ) + ρθ′ cos θ = 0

(2) Because ρ2θ′ = 1, ρ′(a + sin θ) + cos θ
ρ = 0, ρ′ = − cos θ. Hence, (ρ cos θ)′ =

ρ′ cos θ − ρθ′ sin θ = − cos2 θ − sin θ
ρ = cos2 θ − (a + sin θ) sin θ = 1 − a sin θ, (ρ cos θ)′′ =

(1− a sin θ)′ = − a
ρ2

cos θ.

(3) Similar to (2), we have (ρ sin θ)′′ = − a
ρ2

sin θ.

(4) From (2), (3), we know the acceleration is a
ρ2

in the direction towards the origin.

3.11 Standard linear approximation and differential

If f is differentiable at a, we call f(a+ h) ≈ f(a) + hf ′(a) the standard linear approxi-
mation. We can also let x = a+ h and write it as f(x) ≈ f(a) + (x− a)f ′(a).
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Formula like sin′(x) = cosx can be written as d sinx = cosxdx. Here the symbol d
followed by a function is called a differential.

4.1 Critical points

a is called a critical point of f if f ′(a) = 0, or a is in the interior of D(f) and f ′(a)
is undefined.

Remark 4. Sorry, I made a mistake in class in the definition of critical points.

Exercises:

1. Find the domain, range, and derivative of y = ln(lnx).

2. Find the derivative of sin(cot−1 x).

3. Let f(x) =

{
x2 sin(ln |x|), x 6= 0

0, x = 0
. Find all its critical points.

We call a a local maximum of f , if there is an open interval I containing a such that
f(a) ≥ f(x) for all x in I ∩D(f). Local minimum is defined similarly.

Theorem 3. If f is differentiable at a, a is a local maximum or local minimum, then
f ′(a) = 0.

Theorem 4. If f is continuous and is defined on a finite closed interval [a, b], then it
reaches its maximum and minimum somewhere on [a, b].

The above theorem follows from the following property of real numbers:

Lemma 5. Let {xn} be an infinite sequence of real numbers in a finite closed interval I,
there must be some y ∈ I such that any open interval containing y also contains infinitely
many xn.

Examples:

Find the maximum and minimum of the following functions:

1.
√
x− x2

2. ex + e−x

4.2, 4.3 Mean Value Theorem and its applications

Theorem 6. 1. If f is continuous on [a, b] and differentiable on (a, b), f(a) = f(b), then
there is some c ∈ (a, b) such that f ′(c) = 0.
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2. If f is continuous on [a, b] and differentiable on (a, b), then there is some c ∈ (a, b) such

that f ′(c) = f(b)−f(a)
b−a .

Corollary 1. 1. If f ′(x) = 0 on an interval I then f is constant on that interval.
2. If f ′ = g′ on an interval I then f − g is constant on that interval.
3. If f ′ > 0 on an interval I then f is increasing on I, If f ′ < 0 on an interval I then f
is decreasing on I.

Examples: 1. Show that ex − 100x2 has at most 3 zeros.

2. Show that ln(ab) = ln a+ ln b

3. Consider function f(x) =

{
x2 sin(1/x) + x/10, x 6= 0

0, x = 0
.

f ′(x) =

{
2x sin(1/x)− cos(1/x) + 0.1, x 6= 0

0.1, x = 0
. f ′(0) > 0 but f is neither increasing nor

decreasing on any interval containing 0. Consider the derivative: 2x sin(1/x)− cos(1/x) +
0.1, the first term is small for small x, the second term oscillates between ±1, so the deriv-
ative oscillates between 1.1 and −0.9 as x → 0. In other words, any interval I containing
x must have some region where f ′ > 0 and some region where f ′ < 0, hence f can not be
increasing or decreasing on I.

4. Show that cosx ≥ 1 − x2/2. Because cos and 1 − x2/2 are both even we only need
to show it for x > 0. Consider F (x) = cosx − (1 − x2/2). F ′(x) = − sinx + x > 0, so
F is increasing when x > 0. We also know that F (0) = 0, so F (x) ≥ 0 for all x ≥ 0, i.e.
cosx ≥ 1− x2/2.

Corollary 2. (First derivative test) c is a local min (max) if f ′ changes from positive to
negative (negative to positive) at c.

Example: f(x) = x3 − x. f ′ = 3x2 − 1, f ′ > 0 when x < −
√
3
3 or x >

√
3
3 , f ′ < 0 when

−
√
3
3 < x <

√
3
3 , so −

√
3
3 is a local max and

√
3
3 is a local min.

Exercises: Find the local max/min of the following functions:

1. xxe−x

Solution: (xxe−x)′ = (ex lnxe−x)′ = (ex lnx−x)′ = (x lnx − x)′ex lnx−x = (lnx + 1 −
1)ex lnx−x = lnxex lnx−x. So by the first derivative test, x = 1 is a local minimum.

2. |x4 − x2|
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Solution: |x4 − x2| =

{
x4 − x2, x ≥ 1 or x ≤ −1

x2 − x4, −1 < x < 1
. By calculating derivative we know

that f(x) = |x4−x2| is decreasing on the following intervals: (−∞,−1), (−
√
2
2 , 0), (

√
2
2 , 1),

and increasing on the following intervals: (−1,−
√
2
2 ), (0,

√
2
2 ), and (1,∞). So 0,±1 are the

local minimums and ±
√
2
2 are the local maximums.

3. sin(x) + sin(x+ 1)

Solution 1: sin(x) + sin(x+ 1) = sin((x+ 1/2)− 1/2) + sin((x+ 1/2) + 1/2) = 2 sin(x+
1/2) cos(1/2). So it reaches local maximum when x = π−1

2 + 2kπ, local minimum when

x = −π−1
2 + 2kπ, where k ∈ Z.

Solution 2: Let f(x) = sin(x) + sin(x + 1), then f ′(x) = cosx + cos(x + 1) = cosx +
cosx cos 1−sinx sin 1 = (1+cos 1) cosx−sin 1 sinx, hence f ′(x) = 0 means tanx = 1+cos 1

sin 1 ,

i.e. x ∈ {xk} where xk = tan−1 1+cos 1
sin 1 + kπ, where k ∈ Z. f ′(x) = (1 + cos 1) cosx −

sin 1 sinx = cosx
sin 1 · (

1+cos 1
sin 1 − tanx), so f ′ is positive between x2k−1 and x2k, and negative

between x2k and x2k+1, hence xk is local max when k is even, local min when k is odd.

4. 1
5x

5 − 2
3x

3 + x− 1
17

Solution: Let f(x) = 1
5x

5 − 2
3x

3 + x − 1
17 . f ′(x) = (x2 − 1)2 ≥ 0, and f ′(x) > 0 when

x 6= ±1. So, f is increasing on (−∞,−1), (−1, 1) and (1,∞), which implies that f is
increasing on R, hence it has no local min or local max.

concavity and second derivative test

f ′′ > 0 implies that f ′ is increasing, which we call “f is concave up”.

f ′′ < 0 implies that f ′ is decreasing, which we call “f is concave down”.

Places where tangent line exists (i.e. f ′ exists or f ′ =∞) and concavity changes
are called inflection points.

By Mean Value Theorem (MVT), concave up implies that any line segment linking two
points on the graph of f lies above the graph of f , and concave down implies that any
line segment linking two points on the graph of f lies below the graph of f . In other
math textbooks ”concave up” is often called ”convex” and ”concave down” is often called
”concave”.
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In the future, when sketching the graph of a function, we need to pay attention to con-
cavity.

Second derivative test: if f ′(a) = 0 and f ′′(a) > 0 then a is local min, if f ′(a) = 0 and
f ′′(a) < 0 then a is a local max.

Example: sketch the graph of x3 − x.

Sketch the graph of tan−1 x.

Sketch the graph of xx.

L’Hospital’s rule

This is a generalization of the argument we used earlier to calculate limits like limx→0
sinx

ln(x+1) .

Theorem 7. 1. If limx→a+ f = limx→a+ g = 0, g and g′ are nonzero on some interval

(a, a+ d), and limx→a+
f ′(x)
g′(x) = A exist, then limx→a+

f(x)
g(x) also exists and equals A.

2. If limx→a+ f = limx→a+ g =∞, g and g′ are nonzero on some interval (a, a+d), and

limx→a+
f ′(x)
g′(x) = A exist, then limx→a+

f(x)
g(x) also exists and equals A.

Example: limx→0
cosx−1
x2

.

limx→0+ x
√
x (Hint: rewrite it as e

ln x

x−1/2 .

Non-example: When f(x) = x2 sin 1
x , g(x) = x, limx→0

f(x)
g(x) = 0, but limx→0

f ′(x)
g′(x) does

not exist.

limx→0
sinx−x
x3

. (answer: −1
6)

limx→0(
1

ln(x+1) −
1
x)

Solution: limx→0(
1

ln(x+1)−
1
x) = limx→0

x−ln(x+1)
x ln(x+1) = limx→0

1− 1
x+1

ln(x+1)+ x
x+1

= limx→0
x

(x+1) ln(x+1)+x =

limx→0
1

1+ln(x+1)+1 = 1
2 .

Remark 5. There are many ways to write 1
ln(x+1) −

1
x into a quotient, but not all are

convenient for the application of l’Hospital rule.

Proof of the L’Hospital’s rule:
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Lemma 8. (Cauchy’s MVT) If f and g are both continuous on [a, b] and differentiable on

(a, b), g(a) 6= g(b), then there is a c ∈ (a, b) such that f ′(c)
g′(c) = f(b)−f(a)

g(b)−g(a) .

Proof of Lemma: Use the MVT on F (x) = f(x)− f(a)− f(b)−f(a)
g(b)−g(a) (g(x)− g(a)).

Remark 6. A common technique for applying MVT is to build functions then use MVT
on them. For example, if we know f(0) = f(1) = 1, f ′′ ≥ −1, then f(x) ≤ 1

8 . To show

that, consider F (x) = f(x)− 1
2x(1− x). Now we only need to show that F ≤ 0. If not, by

MVT, there is some a ∈ (0, 1) such that F (a) > 0, hence there is some b ∈ (0, a) such that
F ′(b) > 0, and some c ∈ (a, 1) such that F ′(c) < 0. Use MVT again, there is some point
m ∈ (b, c) ⊂ (0, 1) such that F ′′(m) = f ′′(m)− (−1) < 0, a contradiction. It is easy to see
that here 1

8 is the best possible bound.

Now we can prove L’Hospital’s rule. The proof of part 1 is in the textbook. The proof
of part 2 is as follows:

Use the definition of limit. Given ε > 0. Because the limit of f ′/g′ is A, there is some
δ > 0 such that on (a, a+ δ), |f ′/g′ − A| < ε/2. Let M = 1000

ε max{|f(a+ δ)|, |g(a+ δ)|},
0 < δ′ < δ such that on (a, a+δ′), |g| > 2

ε max{|g(a+δ)|, |f(a+δ)− (A− ε)g(a+δ)|, |f(a+
δ) − (A + ε)g(a + δ)|}. Now for any x ∈ (a, a + δ′), use Cauchy’s MVT on (a, a + δ), we

have A − ε
2 <

f(x)−f(a+δ)
g(x)−g(a+δ) < A + ε

2 . Hence, f(x) − f(a + δ) = A′(g(x) − g(a + δ)), where

|A′−A| < ε/2. Therefore, f(x)g(x) = A′+ {f(a+δ)−A
′g(a+δ)

g(x) }, and the assumption on δ′ tells us

that the term in {} is bounded by ε
2 . q.e.d.

Summary on sketching the graph of a function

When sketching the graph of a function, pay attention to the following: domain, symme-
try, critical points, limit points, boundary points, monotonicity, inflection points, concavity,
asymptotes, intersection with x and y axis.

When the exact positions of certain points can not be written down explicitly, sketch its
approximated position.

Example: sketch the graph of e−
1
x .

4.6 Applications of max & min

Example 1: Find the maximum volume of right circular cones with surface area S.

Solution: A right circular cone with radius r and height h has volume V = 1
3πr

2h and

surface area S = πr2 + 1
2

√
r2 + h2 ·2πr = πr(r+

√
r2 + h2). Fix S, solve for h with respect

to r we get h = 1
r ·

√
S
π ·

√
S
π − 2r2, hence V = 1

3πr
2h = 1

3

√
πS · r

√
S
π − 2r2. Use the first
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derivative test we know that V reaches its maximum when r = 1
2

√
S
π , and the maximum

is S
3
2

3·2
3
2 π

1
2

.

Example 2: (maximum sustainable yield) ky(C − y)−M = 0, maximize M .

Example 3: (the dual of Example 1) Find the minimal surface area of right circular
cones with volume V .

Solution: A right circular cone with radius r and height h has volume V = 1
3πr

2h and

surface area S = πr2 + 1
2

√
r2 + h2 ·2πr = πr(r+

√
r2 + h2). Fix V , solve for h with respect

to r we get h = 3V
πr2

, hence S = πr(r +
√
r2 + h2) = πr(r +

√
r2 + 9V 2

π2r4
). Use the first

derivative test we know that S reaches its minimum when r = (9V
2

8π2 )
1
6 , and the minimum

is 3
2
3 · 2 · π

1
3 · V

2
3 .

4.7 Newton’s Method

xn+1 = xn − f(xn)/f ′(xn)

Situations in which it converges slowly or does not converge: non-existence or non-
continuous derivative, the starting point is too far away, f ′(x∗) = 0 where x∗ is the root
we are trying to find, etc.

4.8 Antiderivative

F ′ = f , then F is called an antiderivative of f . The collection of all antiderivatives of f
is called the indefinite integral of f :

∫
f(x)dx.

By MVT, if f is defined on an interval, two antiderivatives of f must differ by a constant.
So, if F ′ = f then

∫
fdx = F + C.

Example:
∫

(x+ 1)dx,
∫

secx tanx+ exdx,
∫

sin 2x+ cosxdx.

Terminal velocity: if dv
dt = g − kv2, then t =

∫
1

g−kv2dv.

Unlike differentiation, it is hard to find the antiderivative of elementary function sym-
bolically. The computer algebra system Maxima implemented an algorithm for symbolic
integration. You can read the source code (in Common Lisp) here:
http://sourceforge.net/p/maxima/code/ci/master/tree/src/risch.lisp
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5.1 Area, upper/lower/midpoint sums

The concept of integration is based on our intuition about area.

The problem of finding displacement from velocity, and finding the average of a function,
can be reduced to finding area.

To estimate the area below a function f , which is defined on a finite interval [a, b], we
can decompose [a, b] into n subintervals of equal length, and define the following concepts:

(1) Upper sum: b−a
n

∑n−1
k=0 Mk, where Mk is the maximum of f on [a + k(b−a)

n , a +
(k+1)(b−a)

n ]. When the maximum does not exist, use the smallest upper bound.

(2) Lower sum: b−a
n

∑n−1
k=0 mk, where mk is the minimum of f on [a + k(b−a)

n , a +
(k+1)(b−a)

n ]. When the minimum does not exist, use the greatest lower bound.

(3) Mid-point sum: b−a
n

∑n−1
k=0 f(a+

(k+ 1
2
)(b−a)
n ).

(4) Left-end-point sum: b−a
n

∑n−1
k=0 f(a+ k(b−a)

n ).

(5) Right-end-point sum: b−a
n

∑n−1
k=0 f(a+ (k+1)(b−a)

n ).

If the upper sum and lower sum converges to a common limit S as n → ∞, S must be
the area.

Example: find the area below f(x) = x, x ∈ [0, 1].

Example: (Archimedes, c. 250 BCE) find the area of a unit disc from the area of regular
n-gons.

Example: find the area below f(x) = sinx, x ∈ [0, π/2].

Solution: The n-th lower sum is π
2n

∑n−1
k=0 sin kπ

2n = π
2n

1
sin π

4n
sin π

4n

∑n−1
k=0 sin kπ

2n =
π
2n

sin π
4n
·∑n−1

k=0 [cos(
(k− 1

2
)π

2n )−cos(
(k+ 1

2
)π

2n )] =
π
2n

sin π
4n
· [
∑n−1

k=0 cos(
(k− 1

2
)π

2n )−
∑n

k=1 cos(
(k− 1

2
)π

2n )] =
π
2n

sin π
4n
·

[cos(− π
4n)−cos(π2−

π
4n)]. When n→∞, the lower sum converges to 1. A similar calculation

will show that the upper sum converges to 1 when n→∞. Hence, this area is 1.

5.2 The summation symbol

Example: calculate the following:∑10
k=1 2k − 1

Let S = 1 + 3 + 5 + 7 + · · ·+ 19, then S = 19 + 17 + · · ·+ 3 + 1. Add the two equations,
we get 2S = (1 + 19) + (3 + 17) + · · ·+ (19 + 1) = 20× 10 = 200, so S = 100.



28 ∑n
k=0(−1)n

When n is even, the sum is 1− 1 + 1− 1 + 1− 1 + · · ·+ 1 = 1 + (−1 + 1) + (−1 + 1) +
(−1+1)+ · · ·+(−1+1) = 1. When n is odd, the sum is 1−1+1−1+1−1+ · · ·+1−1 =
(1− 1) + (1− 1) + · · ·+ (1− 1) = 0.∑100

k=0 3−n

Let S =
∑100

k=0 3−n, then 1
3S = 1

3

∑100
k=0 3−n =

∑101
k=1 3−n. Hence, 1

3S − S = 3−101 − 30 =

3−101 − 1, S = 3−101−1
3−1−1 . In general, when p 6= 1,

∑N
n=0 p

n = pN+1−1
p−1 .

5.3 Riemann integration

Definition 1. Partition finite interval [a, b] into n subintervals with end points a = x0 <
x1 < · · · < xn = b, choose ck ∈ [xk−1, xk], then

∑n
k=1 f(ck)(xk − xk−1) is called the

Riemann sum. If, as the partition gets finer, for arbitrary choice of ck, the Riemann sum
converges to a number I, then we call I the Riemann integral of f from a to b, denoted as∫ b
a f(x)dx.

Note that this definition works only for bounded function on finite interval.

When b < a we define
∫ b
a fdx = −

∫ a
b fdx.

As a (somewhat challenging) exercise on the ε− δ language, one can prove the following:

Theorem 9.
∫ b
a f(x)dx exists if and only if the upper sum and lower sum defined in section

5.1 both converges to the same limit as n→∞. And
∫ b
a f(x)dx equals that limit.

Geometrically, the definite integral is the “signed area” between the graph of f and the
x-axis.

Properties:

(1)
∫ b
a c1f(x) + c2g(x)dx = c1

∫ b
a f(x)dx+ c2

∫ b
a g(x)dx.

(2)
∫ b
a f(x)dx+

∫ c
b f(x)dx =

∫ c
a f(x)dx.

(3) f ≥ 0, a < b, then
∫ b
a f(x)dx ≥ 0.

Example: Calculate:

(1)
∫ b
a 1dx

(2)
∫ 1
−1 f(x)dx such that f(0) = 0 and f(x) = 1 for x 6= 0

(3)
∫ 1
−1 |x|dx

(4)
∫ 1
−1
√

4− x2dx
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(5)
∫ 1
−1
√

4− x2 − |x|dx
(6)

∫ 3
0 f(x)dx where f(x) = 1− x when 0 ≤ x ≤ 2 and f(x) = x− 3 when 2 < x ≤ 3.

5.4 Fundamental Theorem of Calculus

Theorem 10. If f is continuous on [a, b], then

(1) d
dt

∫ x
a f(t)dt = f(x)

(2) If F ′ = f , then F (b)− F (a) =
∫ b
a f(x)dx

Examples: Calculate:

(1)
∫ 2
1

1
x

(2)
∫
f(x)dx, where f(x) =

{
sinx, x ≤ 0

x, x > 0
.

(3) d
dx

∫ x2
0 e−t

2
dt

(4)
∫ 1
−1 1 + x+ exdx

Remark 7.
∫ b
a f(t)dt and

∫
f(t)dt look similar but they are conceptually COMPLETELY

DIFFERENT. Fixing f , the former formula depends on a and b, while the second formula
is a function of t. The FTC tells us that when f is continuous, they are related by the
following formula:

∫
f(x)dx =

∫ x
a f(t)dt+ C.

Theorem 11. Any continuous function is integrable.

Theorem 12. (Intrgral MVT) If f is continuous, there is some c in [a, b] such that f(c) =∫ b
a f(t)dt

This is a consequence of the intermediate value theorem and positivity. This is weaker
than the MVT but sometimes more convenient.

Substitution

From Chain rule F (g(x))′ = g′(x)F ′(g(x)), we know that if the function we are integrat-
ing can be written in the form of g′(F ′(g(x))) then its indefinite integral is F (g(x)). Or,∫
u′(x)f(u(x))dx =

∫
f(u)du.

Example:
∫

sinx cosx2dx∫
sin(2x− 1)dx
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Review for prelim 3

4.4 Concavity and sketching
Concave up: f ′ increase.
Concave down: f ′ decrease.
Inflection point: f ′ exist or is infinity, and concavity changes.
Second derivative test: f ′(c) = 0, f ′′(c) < 0 implies local max, f ′(c) = 0, f ′′(c) > 0

implies local min.
Graphing: domain, symmetry, critical points, inflection points, increasing/decreasing,

concave up/concave down, asymptotes, intersection with x- and y-axis.
Example: Sketch f(x) = x3e−x.

4.5 L’Hospital’s Rule
To use L’Hospital’s rule, we must make sure (1) the limit is of the form of 0

0 or ∞∞ , and
(2) the derivative of the numerator and denominator has a limit.

Example: limx→0(sinx)tanx

4.6 Example: The longest side of a right-angled triangle has length 1. What is its largest
possible area?

4.8 Indefinite integral
Remember the constant C when calculating indefinite integral.

Chapter 5:
Example: Find the area between y = x3 − x and the x axis.

Calculate
∫ 2
1

dx√
5−2x .

5.6 Substitution for definite integral, symmetry, area between curves

Substitution for definite integral:
∫ b
a u
′(x)f(u(x))dx =

∫ u(b)
u(a) f(u)du.

Example:
∫ π/3
π/4 (cosx)1/3 sin3 xdx.

Symmetry: Example:
∫ 1
−1

sinx
|x| dx.

Area between curves:

(1) Find the intersection points first. Example: find the area between y = sinx,
y = cosx, x = 0 and x = 2π.

(2) Sometimes it is more convenient to integrate in the y direction. Example:
∫ 1
0 sin−1 xdx.

More examples of substitution:
∫

secxdx (Hint: let u = sinx)
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dx√
a2−x2 (Hint: let x = a sin t)


