Topics:
- L^2 Betti numbers, Novikov-Shubin invariant, L^2 torsion.
- Determinant and approximation conjecture.

1 Notations and Reviews

$\mathbb{C}[G]$: group algebra of G. $\ell^2(G)$: L^2 summable functions on G, can be seen as a L^2 completion of $\mathbb{C}[G]$. $\mathcal{N}(G)$: G-equivariant (with left G action) bounded linear maps on $\ell^2(G)$. A finite dimensional Hilbert $\mathcal{N}(G)$-module is a G-Hilbert space that G-equivariantly isometrically embedded into $\mathbb{C}^n \otimes \ell^2(G)$. Unless specified otherwise, all spaces are assumed to be finitely dimensional Hilbert G modules.

1.1 Spectral theory of bounded self adjoint operators

Let H be a Hilbert space. A bounded operator A on H is called self adjoint if $A^* = A$, positive if $(Ax, x) > 0$ for all $x \in H$.

E is called a spectral measure if it sends Borel sets in \mathbb{R} to bounded positive self adjoint maps on H, satisfying the following:

- $E(\emptyset) = 0$, $E(\mathbb{R}) = I$
- $E(A)^2 = E(A)$
- $E(A \cap B) = E(A)E(B)$
- If $A \cap B = \emptyset$, $E(A \cup B) = E(A) + E(B)$
- $\forall x, y \in H$, $(E(\cdot)x, y)$ is a \mathbb{C}-measure.

Theorem 1

A is bounded self adjoint on H then there is some spectral measure E such that $A = \int AE(\lambda)$. If f is an analytic function, $f(A) = \int f(\lambda)E(\lambda)$

Remark 1. When H is finite dimensional, $E = \sum \delta_{\lambda_i} v_i v_i^*$.

2 L^2-Betti numbers

2.1 Definitions

- G is a group, f is a G-equivariant self adjoint bounded operator from $\mathbb{C}^n \otimes \ell^2(G)$. The L^2 trace is defined as $tr_G(f) = \sum_i (f(e_i \otimes 1), e_i \otimes 1)$. The L^2-trace of a self map on Hilbert G modules are defined as the composition of projection and this self map.

- Let $M \subset \mathbb{C}^n \otimes \ell^2(G)$ be a Hilbert G module, pr_M the orthogonal projection on M. Then the L^2-dimension is defined as $\dim_G M = tr_G(pr_M)$. (Exercise: prove that the L^2-dimension does not depend on the choice of the embedding.)
• **L^2-chain complex** of finitely dimensional Hilbert G modules is a sequence $\cdots \to C_{k+1} \to C_k \to C_{k-1} \to \cdots$ such that the composition of two successive boundary maps is 0. The homology are $H^{(2)}_k = \ker(C_k \to C_{k-1})/\text{im}(C_{k+1} \to C_k)$.

• Let X be a CW-complex with a free, cellular G left action such that $G \setminus X$ is finite. Then L^2-dimension of the homology of the L^2 completion of the cellular chain complex $(C^{(2)}_\bullet)$ are called the L^2 **Betti numbers** $b^{(2)}_\bullet$.

2.2 Examples

Example 2. $X = \mathbb{R}^2$ tiled by unit cubes, $G = \mathbb{Z}^2$ (with generators a, b), $G \setminus X = T^2$. The L^2 chain complex is

$$0 \to l^2 \to (l^2)^2 \to l^2 \to 0$$

such that $\partial_2(x) = ((xa-x), (x-xb))$, $\partial_1(x, y) = xb-x+ya-y$. By computation we see $H^{(2)}_* = 0$, hence $b^{(2)}_* = 0$.

Example 3. X a double cover of the θ graph unwrapping over one of the two loops, $G = \mathbb{Z}/2$, $G \setminus X$ is the θ-shaped graph. $H^{(2)}_1$ is of dimension 3, $(pr_{H^1_1}(e), e)$ can be computed explicitly, and $b^{(2)}_1 = 3/2, b^{(2)}_0 = 1/2$.

Remark 4.

- When X is a finite simplicial graphs, $pr_{H^1_1}(e)$ can be calculated via spanning trees: Let \mathcal{T} be the set of all spanning trees on X. For any $T \in \mathcal{T}$, let $\text{path}(T, e^-, e^+)$ be the path on T from e^- to e^+. Then

$$pr_{H^1_1}(e) = e - \frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} \text{path}(T, e^-, e^+)$$

- There is also a physical interpretation of $pr_{H^1_1}(e)$ via electrical currents.

- In general, if G is a finite group, $b^{(2)}_k(X) = b_k(X)/|G|$.

Example 5. X is the universal cover of θ-shaped graph, $G = F_2$ the deck transformation. $pr_{H^1_1}$ can be explicitly calculated (hint: first show that the element in $C^{(2)}_1$ of a complete binary tree whose root is at the root that minimizes the norm has norm 1) $(pr_{H^1_1}(e, e)) = 1/3$, $b^{(2)}_1 = 1$, $b^{(2)}_0 = 0$.

Remark 6. There are alternative interpretations of the computation above through electrical currents and random walks.
2.3 Elementary properties of L^2 dimension, L^2 homology and L^2 Betti numbers

Some elementary properties of L^2 trace:

- $f \leq g \implies tr_G(f) \leq tr_G(g)$
- If f_i is increasing and weakly converging to f, $tr_G f = \sup \{ tr_G(f_i) \}$.
- $f \geq 0$, $tr_G(f) = 0 \iff f = 0$.
- $tr_G(f + \lambda g) = tr_G(f) + \lambda tr_G(g)$
- f, g and h are self-adjoint maps compatible with an exact sequence of Hilbert G modules, then $tr_G(g) = tr_G(f) + tr_G(h)$.
- $f : U \to V$, then $tr_G(f^*f) = tr_G(ff^*)$
- f and g are maps on Hilbert G and H modules, then $tr_{G \times H} f \otimes g = tr_G f \otimes tr_H g$.
- H is a finite index subgroup of G, then $tr_H f = [G : H]tr_G f$

Proof: use definition and functional analysis.

Some elementary properties of L^2-dimensions:

- $dim_G(V) = 0 \iff V = 0$.
- $0 \to U \to V \to W \to 0$ weakly exact (L^2 homology vanishes), then $dim_G(V) = dim_G(U) + dim_G(W)$.
- V_i increasing, $dim_G \bigcup_i V_i = \sup_i dim_G V_i$.
- V_i decreasing, $dim_G \bigcap_i V_i = \inf_i dim_G V_i$.
- U, V are G and H modules respectively, then $dim_{G \times H} U \otimes V = dim_G U \cdot dim_H V$.

Theorem 2
Let $0 \to C_* \to D_* \to E_* \to 0$ be an exact sequence of chains of G-modules, then there is a long exact sequence which is weakly exact.

Some elementary properties of L^2 Betti numbers

- $f : X \to Y$ cellular G-equiv maps between free G cell complexes, with induced map on homology isomorphism for $p < d$ and surjective for $p = d$, then so are the induced maps on L^2 homology. (proof: chain homotopy, then use long exact sequence)
- X free G cell complex with $G \setminus X$ finite. Then $\chi(G \setminus X) = \sum_k (-1)^k b_k^{(2)}(X)$.

• X is a cocompact d-dimensional manifold, then $b_p^{(2)} = b_{d-p}^{(2)}$.

• Künneth formula for products, formula for wedges, connected sums for manifolds of dimension at least 3, Morse inequalities all same as the usual Betti numbers.

• If X is connected, $b_0^{(2)} = 1/|G|$.

$[G:H] < \infty$, then X seen as H complex has L^2-Betti numbers $[G:H]$ of it seen as G complex.

Theorem 3

If a cellular map of a finite connected complex, T_f its mapping tori, $\pi_1(T_f) \to G \to \mathbb{Z}$ for some G, then the G-cover of T_f, denoted as $\overline{T_f}$ and seen as G-complex has zero L^2 Betti numbers.

Proof. Let G_n be the preimage of $n\mathbb{Z}$ in $G \to \mathbb{Z}$. Then $\overline{T_f}$ has n-times as much L^2-Betti numbers, however $G_n \backslash T_f = T_{f,n}$ has bounded number of cells, hence all Betti number has to be 0. □

Remark 7. The rationality of $b_k^{(2)}$ for cofinite complexes are called Atiyah conjecture. It is known to be true for some classes of groups but not true in general.

3 Approximation for subgroups of finite index

Theorem 4

X is a cell complex with free cellular G action as before, $G\backslash X$ finite. $G \supset G_1 \ldots$ normal subgroups such that $\cap_i G_i = 1$, $[G : G_i] < \infty$, then $b_k^{(2)}(X) = \lim_{i \to \infty} b_k^{(2)}(G_i \backslash X)$, the latter as G/G_i complexes.

This can be easily reduced to the following “algebraic” statement:

Proposition 8

Suppose f is a positive self adjoint map on $\mathbb{C}^n \otimes l^2(G)$ induced by a (left) $\mathbb{Z}[G]$ module homomorphism, f_i be the induced maps on $\mathbb{Z}[G/G_i]$, then $\dim_G \ker(f) = \lim_{i \to \infty} \dim_{G/G_i} \ker(f_i)$.

Proof. Step 1: Let K be n^2 of the largest sum of all coeff of an entry in the matrix representing f, then it is larger than the operator norm of both f and f_m.

Step 2: The map can be represented as a right multiplication of a $\mathbb{Z}[G]$-matrix, hence $tr_G(f) = tr_{G/G_i}(f_i)$ for large enough i. Furthermore, for any polynomial p, $tr_G(p(f)) = tr_{G/G_i}(p(f_i))$ for large enough i.

Step 3: Let F, F_i be the spectral density function for f and f_i ($F(\lambda) = \dim_G(E([0,\lambda]))$, $F_i(\lambda) = \dim_{G/G_i}(E_i([0,\lambda]))$). Let \overline{F}, \underline{F} be the lim sup and lim inf of F_i. We shall prove that $\overline{F} \leq F \leq \underline{F}^+$. Let p_n be polynomials above $\chi([0,\lambda])$ and below $\chi([0,\lambda] + 1/n) + 1/n\chi([0, K])$ slightly above that. Then

$$\underline{F}(\lambda) \leq tr_G(p_n(f)) \leq F(\lambda + 1/n) + 1/n$$
And as \(n \to \infty \) the middle term converges to \(F(\lambda) \) due to spectral decomposition.

Step 4: We now prove that \(F_i \) are uniformly right-continuous at 0. This is due to a fact in linear algebra:

Lemma 9. \(f \): self adjoint positive linear map on \(\mathbb{C}^n \). \(K \) a bound on operator norm of \(f \), \(C \) a lower bound on the first non-zero term of characteristic polynomial of \(f \). Then for \(\lambda < 1 \),

\[
\frac{\text{num. of roots in } (0, \lambda)}{n} \leq \frac{-\log(C)}{n(-\log(\lambda))} + \frac{\log(K)}{-\log(\lambda)}
\]

Proof. Count non-zero roots.

Because the matrix is integral \(C \) can be chosen uniformly as 1, which finishes the proof.

Example 10. \(X \) is the universal cover of closed surfaces, \(G \) the deck group.

Example 11. Let \(\Gamma \) be a finite graph, \(\Gamma \leftarrow \Gamma_1 \leftarrow \ldots \) regular covers, for every edge \(e \in \Gamma \), let \(d_i(e) \) be the ratio of spanning trees of \(\Gamma_i \) that doesn’t contain a specific lift of \(e \). Then \(d_i \) converges.

4 Other \(L^2 \) invariants

\(f: U \to V \), \(F \) is the spectral density function such that \(F(\lambda) = \dim_G(\text{im}(Ef^*(\lambda,2))) \).

- **Novikov-Shubin invariants** \(\alpha(F) = \lim \inf_{\lambda \to 0^+} \frac{\log(F(\lambda) - F(0))}{\log \lambda} \)
- **Fuglede-Kadison determinant** \(\det = \exp(\int \log(\lambda) dF) \).
- **\(L^2 \) torsion** \(\rho^{(2)}(X) = -\sum_{p} (-1)^p \det(\partial_p) \). Well defined when all \(L^2 \) Betti numbers equals 0. (Motivation: finite dimensional case).

Remark 12.

- Determinant conjecture: For any group \(G \), any \(\mathbb{Z}[G] \) matrix \(f \), the F-K determinant of \(f^*f \) is at least 1.
- Determinant conjecture implies approximation for any sequence of subgroups.

\(X \) is a mapping torus of pseudo-Anosov with cell decomposition, choose and fix a fundamental domain, \(\rho^{(2)}(X, t, \phi) \) be the \(L^2 \) torsion twisted at some first cohomology class \(\phi \) by \(t \in (0, \infty) \). Then:

- (Lueck, Schink) \(\rho^{(2)}(X, 1, \phi) = -\frac{\text{vol}(X)}{\text{tr}}. \)
- (Liu, Friedl, Lueck) \(\lim_{t \to 0} \frac{\rho^{(2)}(X,t,\phi)}{\log(t)} - \lim_{t \to \infty} \frac{\rho^{(2)}(X,t,\phi)}{\log(t)} = \|\phi\| \).