Kazhdan's theorem for canonical metric on graphs

Farbod Shokrieh, Chenxi Wu

May 28, 2019

Farbod Shokrieh, Chenxi Wu Kazhdan's theorem for canonical metric on graphs

An elementary question

Let G be a finite metric graph, $l : E(G) \to \mathbb{R}^+$ the length function. For any spanning tree T, $w(T) = \prod_{e \notin T} l(e)$ For any edge e,

$$I_{can}(e) = \frac{\sum_{e \notin T} w(T)}{\sum_{T} w(T)}$$

Example, cont.

э

Theorem [Shokrieh, W]

- G: finite metric graph
- $G \leftarrow G_1 \leftarrow G_2 \leftarrow \ldots$: infinite tower of regular covers
- $\pi_i: G_i \to G$ covering maps
- $I_i: E(G) \to \mathbb{R}$, such that $\pi_i^* I_i = I_{can}$

Then *l_i* converges.

In the example above, if $\cap_i \pi_1(G_i) = 1$, the limit will be $(11 - \sqrt{41})/10$, $(\sqrt{41} - 1)/20$.

Interpretation of I_{can}

- Counting spanning trees.
- **2** Foster's coefficient for resistor network: $I_{can}(e) = \frac{I(e)}{I(e) + \text{Effective resistance of } G \setminus e}$
- Graph version of the canonical/Arakelov metric (Zhang, Baker-Farber, Chinburg-Rumely, Amini, etc): {\omega_i}: orthonormal basis of harmonic 1-forms

$$I(e)I_{can}(e) = \max_{\|w\| \leq 1, \omega \text{ harmonic } 1-form} |\omega(e)|^2 = \sum_i \omega_i^2(e)$$

Analogies between graphs and surfaces:

- Outer Space vs. Teichmuller space
- Berkovich space

Theorem [Kazhdan, 70s]

- S: a compact Riemann surface
- $d_{can}^S = \sum_i |\omega_i|^2$; $\{\omega_i\}$: Orthonormal basis of $\Omega^1(S)$
- $S \leftarrow S_1 \leftarrow S_2 \leftarrow \ldots$: infinite tower of regular covers, $\cap_i \pi_1(S_i) = 1$
- d_i : Riemannian metrics on S whose pull-back on S_i are the $d_{can}^{S_i}$

Then d_i converges uniformly to a multiple of the hyperbolic metric.

• "Graph version" of hyperbolicity and uniformization

- Define the limit metric.
- Opper bound: monotonicity in collapsing subgraphs
- Same volume: Lück's appromimation

Theorem [Lück]

X: CW complex with Γ -action which is free and cellular, X/Γ finite, $\Gamma = \Gamma_0 \supset \Gamma_1 \supset \ldots$ finite index normal subgroups of Γ , $\cap_i \Gamma_i = 1$. Then

$$\lim_{t\to\infty}\frac{b_j(X/\Gamma_i)}{[\Gamma:\Gamma_i]}=b_j^{L^2}(X)$$

The above-mentioned result can be generalized to the following cases with identical proofs:

- Zhang's admissible metric
- Compact Riemann surfaces and Riemannian manifolds.
- Compact flat surfaces with Delaunay triangulation.

• . . .

References

- S. Zhang, Admissible pairing on a curve, Invent. Math. 112(1993), no. 1, 171-193
- Curtis T. McMullen, Entropy on Riemann surfaces and the Jacobians of finite covers, Comment. Math. Helv. 88(2013), no. 4, 953-964
- Wolfgang Lück, Approximating L2-invariants by their finite-dimensional analogues, Geom. Funct. Anal.4(1994), no. 4, 455-481
- Farbod Shokrieh and Chenxi Wu, Canonical measures on metric graphs and a Kazhdan's theorem, Invent. Math. (2019), no. 3, 819-862
 - Hyungryul Baik, Farbod Shokrieh and Chenxi Wu, Limits of canonical forms on towers of Riemann surfaces. Crelle (2019)