
1. A first example

1.1. From infinite translation surface map to end-periodic map.
We begin with an infinite half-translation surface M0

∞ described as in Fig-
ure 1 and an affine map f0 defined as follows: the surface is horizontally

stretched by
√
5−1
2 and vertically shrinked by 2√

5−1 , then the part to the left

of the vertical dashed line is sent to the part above the horizontal dashed
line, while the part to the right of the vertical dashed line is rotated by π
and sent to the part below the horizontal dashed line.

Let M1
∞ be the double cover of M0

∞ which is an infinite translation sur-
face. More precisely, consider two copies of the polygon in figure 1: P0 and
P1. For each pair of edges in figure 1 with the same label, if they are in the
same direction, we glue the pairs in P0 and P1 together; if they are in the
different direction, we glue the edges in P0 to the edges in P1 in the opposite
direction. Let f1 be the lift of f0 that sends the part of P0 to the left of the
vertical dashed line to the part of P0 above the horizontal dashed line of the
same leaf.
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Figure 1

Now we “blow up” M1
∞ into M3

∞ as shown in figure 2. The “blow up”
proceeds as follows: start with the polygonal region in figure 1. Replace each
red dot in the boundary with a short arc gn, and add a line at the top-left
corner which is divided into short segments hn. Glue all the other edges
according to the previous paragraph, then we get an infinite (topological)
surface M2

∞ with boundary whose boundary curves are gn and hn. f1 lifts
to f2, which sends gn to gn+1 and hn to hn+1. Keep the gluing relations
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on all other sides. Let M3
∞ be the double of M2

∞ along its boundary, and
f3 be a diffeomorphism from M3

∞ to itself which is identical to f2 when
double cover of f2. Now f3 is an end-periodic map (c.f. [F97, CC]). This
“blow up” process reverses the Handel-Miller construction [CC], where pair
of invariant laminations, hence an affine map on half-translation surface, is
obtained from an end-periodic map.
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Figure 2. This is one of the two leaves of X∞. gi and hi are the
boundary curves. S∞ is its double.

The map F̃ is defined as sending the region to the left of the red line to
the region above the blue line, and sending the region to the right of the red
line to the part below the blue line on another leaf.

1.2. From end-periodic map to 3-manifold. Let T be the mapping
torus of M3

∞ with monodromy f3. This is a non compact 3-manifold, since
it is a mapping torus of a non compact surface. The mapping torus con-
struction restricted to the two periodic ends (the attracting one and the
repelling one) forms two cylindrical ends of the 3 manifold as in Figure 3,
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also c.f. [F97]. Hence, it has a natural compactification T by adding two
copies of a closed surface homeomorphic to the quotient of either end of M3

∞
by f3. More precisely, in T , consider the part coming from the suspension of
a neighborhood of the repelling end, and adjoin an ideal point to every flow
line in there. The set of such ideal points is homeomorphic to the quotient of
this neighborhood under the map f3. Similarly, one can do the same thing
with the attracting end. In particular, the boundary curves of these two
periodic neighborhoods (in our case, the green dotted lines in figure 2) are
identified with union of loops C and C ′ on these two boundary surfaces.

Figure 3

1.3. Approximation by a sequence of finite type surfaces. Glue the
two boundary surfaces of T together such that C and C ′ are identified, then
we get a closed 3-manifold with a depth 1 foliation, whose infinite leaves
are from the mapping torus and the compact leaf is from the boundary sur-
face of T , whose dual in H1(N) is denoted as b. Remove a small cylindrical
neighborhood of the compact leaf and glue the two ends of the infinite leaves
togather, we get a fiberation of N on a circle which corresponds to a point
close to b in PH1(N).

In terms of the surface, what this gives us is a map f4 on a finite surface
M4 based on the end-periodic map. M4 is formed by gluing the preimage
of the green dotted loops under some iterate of f3 in the attracting end to
the green dotted loops in the repelling end, and f4 is the same as f3 except
on the last “step” in the attracting end, which, instead of being sent to the
next step, it is sent to the step in the repelling end glued to it. The exact
way it is sent to the repelling end is determined by how we identify the
boundaries of T to form N . Here, we send hn to h−3, gn to g−3, and en−1 to
f1 as shown in figure 2. Varying n we get a sequence of maps on surfaces of
increasing genus, which represents an arithmetic sequence in a fibered cone
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of N .

We can give a flat structure on each finite surface map by invariant mea-
sure laminations, making them two copies of the double cover of half trans-
lation surfaces. In our case, one of them is a cover of the following:

Figure 4. The dilatation constant λ satisfies λ6 − λ4 − λ3 − λ2 + 1 = 0

And, by calculation, we know that the dilatation of f4 on these surfaces
satisfy λn − λn−2 − · · · − λ2 + 1 = 0.

1.4. Fibered face and Teichmüller polynomial. The 1-eigenspace of
f4
∗ on H1(M4;Q) has rank 3 and is generated by the duals of the two loops

formed by hi as well as the dual of the green loops as shown in figure 2.
Hence, the compact 3-manifold has first Betti number 4. The loops formed
by hi are both preserved by f4, hence perturbing a fiberation in those two
directions correspond to doing Dehn twists on embedded tori, which changes
neither genus (i.e. they lie in the kernel of the Thurston norm) nor the
dilatation constant when those loops are collapsed.

2. Other examples

Example 1. Bowman [JB] described such a sequence formed by Arnoux-
Yoccoz surfaces.

Example 2 (Chamanara surface[RC]). Start with the Chamanara surface
(Figure 5) with the Baker’s map, where the part to the right of the vertical
dashed line is sent to the part below the horizontal dashed line:

In the polygon in Figure 5, replace each blue dot in the boundary with a
short arc, and add a line at the top-left corner and a line at the bottom-right
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Figure 5

corner, which are both divided into short segments. Glue all the other edges
according to the previous paragraph, then we get an infinite (topological)
surface with boundary and the affine map lifts to an end-periodic map with
one contracting and one repelling end. Do a double of this infinite surface
along the boundary, and follow the same procedure as described in the pre-
vious section, we get a sequence of finite surface maps approximating the
Baker’s map on the Chamanara surface.

Figure 6 is a surface in the sequence approximating the Chamanara sur-
face.

It’s in strataH(2). The dilatation constant is approximately 1.7221 which
is the root of x4 − x3 − x2 − x+ 1 = 0.

The next surface in this sequence is Figure 7.

It’s in strata H(1, 1). The dilatation constant is approximately 1.8832
which is the root of x5− x4− x3− x2− x+ 1 = 0. In general, the dilatation
constant is a root of xn − xn−1 − · · · − x+ 1 = 0.

Example 3. Consider a piecewise linear map from a square to itself defined
as follows: decomposes the square horizontally into three rectangles of the
same width, stretch them horizontally by 3 and shrink them vertically by
3, then stack them vertically such that the left-most rectangle is put in
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Figure 6

Figure 7

the middle, the middle rectangle is put at the bottom, and the right-most
rectangle is rotated by π and put at the top. This map induces a gluing on
the boundary of the square which makes it into a half-translation surface of
infinite type, as shown in Figure 8.

Pass to a double cover that makes it a translation surface, then replace
the infinite cone points with line segments and do a double along them as
in the previous section, we get a end-periodic map on a infinite-type surface
with one contracting and one repelling end. Following the same process as
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described in the previous section we can get a sequence of finite surface with
pseudo-Anosov maps, one of which is shown in Figure 9.

Figure 9. The dilatation of this pseudo-Anosov map is the largest root
of λ8 − 3λ7 − 2λ5 + 4λ4 − 2λ3 − 3λ+ 1 = 0.

By calculation, the dilatation of these sequence of pseudo-Anosov mapd
satisfies λ8+2n − 3λ7+2n − 2λ5+n + 4λ4+n − 2λ3+n − 3λ+ 1 = 0.
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