- 1. Let $A = 4$. Let $x_1 = a, a > 0$. $x_{n+1} = (x_n + A/x_n)/2$
	- (a) Show that if $x_n = x_n + 1$, then $a = \pm 2$.
	- (b) If $a = 1$, write down the first few x_n .
	- (c) Can you see any pattern?
- 2. Let $A = 4$. For each n, let a_n be an integer between 0 and $3ⁿ 1$, such that:
	- $x_1 = a$, where $a = 1$ or 2.
	- For every *n*, let q_n be an integer between 0 and 3^{n+1} , such that x_nq_n-1 is a multiple of 3^{n+1} .
	- Now x_{n+1} is chosen such that $2x_{n+1} x_n Aq_n$ is a multiple of 3^{n+1} .
	- (a) Let $a = 1$ or 2, write down the next few terms.
	- (b) Can youshow that the process can always continue?
	- (c) Can you see any pattern?
- 1. We can show that x_n has a limit as follows: it is easy to see that for all $n \geq 2, x_n > \sqrt{A}$. Now

$$
|x_{n+1}^2 - A| = \left| \frac{(x_n^2 - A)^2}{4x_n^2} \right| \le \frac{1}{4} |x_n^2 - A|
$$

2. Suppose $a = 1$ (the case of $a = 2$ is analogous). To show that this process can always continue on, induction on n to show that all x_n exists and $x_n - 1$ is a multiple of 3. Let $s_n = x_n + A(1 - (x_n - 1) + (x_n - 1)^2 - \cdots +$ $(-1)^n(x_n-1)^n$, then x_{n+1} equals the remainder of $s_n/2$ divided by 3^{n+1} if s_n is even, the remainder of $(s_n + 3^{n+1})/2$ divided by 3^{n+1} if s_n is odd. We can verify that $x_{n+1} - 1$ is a multiple of 3 as well.

We can also prove by induction on n that $x_n^2 - A$ is a multiple of 3^n .

If A is not a perfect power, say equals 7, neither approach will converge to a fixed integer, so we need to introduce broader classes of numbers as limits of such sequences, which we call completion. In the first case we carry out completion and get the set of real numbers \mathbb{R} , in the second we get the set of p adic integers \mathbb{Z}_p .