
1 Probability and random variables

� Probability: 𝑆 sample space (all possible states of the system), 𝐹 ⊂ 𝒫(𝑆)
a 𝜎-algebra, 𝑃 : 𝐹 → R a measure, such that 𝑃 (𝑆) = 1.

� Random variable: 𝑋 : 𝑆 → R, such that preimages of open sets are in
𝐹 (i.e. has a well defined probability).

� Cumulative distribution function of random variable: 𝐹𝑋(𝑡) = 𝑃 (𝑋 ≤
𝑡).

� Probability distribution of random variable: 𝑔 such that 𝐹𝑋(𝑡) =∑︀
𝑥≤𝑡,𝑥∈𝐶 𝑔(𝑥).

� Probability density function: 𝑓 such that 𝐹𝑋(𝑡) =
∫︀ 𝑡

−∞ 𝑓(𝑠)𝑑𝑠.

� Two random variables have the same distribution if they have the same
cdf.

Example: uniform distribution:

� 𝑆 a finite interval [𝑎, 𝑏]

� 𝐹 : Set of Borel sets on 𝑆 (sets with a well defined “length”)

� 𝑃 : Borel measure (“length”) divided by 𝑏− 𝑎

� 𝑋 = 𝑖𝑑.

1.1 Expectation of random variables and their functions

� 𝑋 is a random variable, the expectation of 𝑋 is 𝐸[𝑋] =
∫︀
𝑆
𝑋𝑑𝑃 .

� The variance of 𝑋 is 𝐸[(𝑋 − 𝐸[𝑋])2].

� The 𝑘-th moment of 𝑋 is 𝐸[𝑋𝑘].

� The moment generating function of 𝑋 is 𝐸[𝑒𝑋𝑡] (two sided Laplace
transform)

� The characteristic function of 𝑋 is 𝐸[𝑒𝑖𝑡𝑋 ] (Fourier transform)

Since expectation is defined via integration, one can use the properties of
integration to prove statements regarding expectation.

Example: Chebyshev’s theorem: 𝐸[𝑋] = 0, 𝐸[𝑋2] = 1, then 𝑃 (|𝑋| <
𝑘) ≥ 1 − 1

𝑘2 .
Proof:

1 = 𝐸[𝑋2] =

∫︁
𝑆

𝑋2𝑑𝑃 ≥ 𝑘2
∫︁
|𝑋|≥𝑘

1𝑑𝑃 = 𝑘2(1 − 𝑃 (|𝑋| < 𝑘))
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Example: If 𝑋 has p.d.f. 𝑓𝑋 , then 𝐸[𝑔(𝑋)] =
∫︀∞
−∞ 𝑔𝑓𝑥𝑑𝑡. We prove it when

𝑔(𝑋) is bounded via Fubini’s theorem:

𝐸[𝑔(𝑋)] =

∫︁
𝑆

𝑔(𝑋)𝑑𝑃

=

∫︁
𝑔(𝑋)≥0

∫︁ 𝑔(𝑋)

0

1𝑑𝑦𝑑𝑃 −
∫︁
𝑔(𝑋)<0

∫︁ 0

𝑔(𝑋)

1𝑑𝑦𝑑𝑃

=

∫︁ ∞

0

∫︁
𝑔−1([𝑦,∞])

𝑓𝑋(𝑡)𝑑𝑡𝑑𝑦 −
∫︁ 0

−∞

∫︁
𝑔−1([−∞,𝑦])

𝑓𝑋(𝑡)𝑑𝑡𝑑𝑦

=

∫︁ ∞

−∞
𝑔𝑓𝑥𝑑𝑡

There is a multivariate version of this formula, and one can also write down
𝐸[𝑔(𝑋)] when only the c.d.f. of 𝑋 is known (via Fubini’s theorem or integra-
tion by parts).

Can you write down a random variable with neither probability distribution
nor p.d.f.?

Can you write down a random variable with no expectation?

1.2 Independence and conditional probability for random
events

� 𝐴,𝐵 ∈ 𝐹 are independent iff 𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐴)𝑃 (𝐵).

� If 𝑃 (𝐵) ̸= 0, 𝑃 (𝐴∩𝐵) = 𝑃 (𝐵)𝑃 (𝐴|𝐵). Here 𝑃 (𝐴|𝐵) is the conditional
probability of 𝐴 when 𝐵 is known to happen.

1.3 Joint distribution, marginal distribution, conditional
distribution

1.3.1 Joint distribution

� 𝑋 and 𝑌 are two random variables. The joint cumulative distribution
function is 𝐹 (𝑠, 𝑡) = 𝑃 (𝑋 ≤ 𝑠, 𝑌 ≤ 𝑡).

� If 𝐹 (𝑠, 𝑡) =
∑︀

(𝑥,𝑦)∈𝐶,𝑥≤𝑠,𝑦≤𝑡 𝑔(𝑠, 𝑡), we call 𝑔 the joint probability dis-
tribution.

� If 𝐹 (𝑠, 𝑡) =
∫︀
(−∞,𝑠]×(−∞,𝑡]

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 we call 𝑓 the joint probability

density function.

� 𝑋 and 𝑌 are called independent iff the joint c.d.f. is 𝐹 (𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌 (𝑦).

� The covariance between 𝑋 and 𝑌 is 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])]
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Example: 𝑋 and 𝑌 are two independent random variable with uniform
distribution on [0, 1]. What is the joint distribution function of 𝑋 and 𝑌 ? How
about 𝑚𝑎𝑥(𝑋,𝑌 ) and 𝑚𝑖𝑛(𝑋,𝑌 )? What are their covariances?

1.3.2 Marginal distribution

Knowing the joint c.d.f. of 𝑋 and 𝑌 , the c.d.f. of 𝑋 or 𝑌 are called the
marginal cumulative distribution function, their p.d. or p.d.f. the marginal
p.d. or marginal p.d.f.

1.3.3 Conditional distribution

� If 𝐴 is a set such that 𝑃 (𝑌 ∈ 𝐴) > 0, then the conditional cumulative
distribution function of 𝑋 is 𝐹𝑋|𝑌 ∈𝐴(𝑡) = 𝑃 (𝑋 ≤ 𝑡|𝑌 ∈ 𝐴) = 𝑃 (𝑋 ≤
𝑡 ∩ 𝑌 ∈ 𝐴)/𝑃 (𝑌 ∈ 𝐴). The conditional p.d.f., conditional p.d. and
conditional expectation are defined similarly.

� If 𝑃 (𝑌 ∈ 𝐴) = 0 there isn’t a definition of conditional distribution that
works in all cases. For example, if 𝑋,𝑌 has joint p.d.f. 𝑓𝑋,𝑌 , and the
marginal p.d.f. of 𝑌 , denoted as 𝑓𝑌 (𝑦) =

∫︀
R 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥, exists and

is non zero at 𝑦0, then the conditional p.d.f. at 𝑌 = 𝑦0 is defined as
𝑓𝑋|𝑌=𝑦0

= 𝑓𝑋,𝑌 (𝑥, 𝑦0)/𝑓𝑌 (𝑦0). The conditional c.d.f. is its integral.

Remark: The definition of conditional distribution for the case 𝑃 (𝑌 ∈
𝐴) = 0 depends on 𝑌 and not just 𝑌 −1(𝐴). For example, if 𝑍 = 𝑌 𝑒𝑋 ,
𝑓𝑋|𝑌=0 ̸= 𝑓𝑋|𝑍=0.

Example: 𝑋 is a random variable with uniform distribution on [0, 1], 𝑃 (𝑌 =
1|𝑋 = 𝑝) = 𝑝 (i.e. 𝑃 (𝑌 = 1|𝑋 ∈ 𝐴) =

∫︀
𝐴
𝑝𝑑𝐹𝑥(𝑝)), 𝑃 (𝑌 = 0|𝑋 = 𝑝) = 1 − 𝑝.

Find the conditional distribution of 𝑋 when 𝑌 = 1.

When there are 𝑁 random variables, 𝑁 ≥ 3, the joint/marginal/conditional
distributions can be defined analogously.

2 Special probability distributions, central limit
theorem

2.1 Special discrete distributions

� Bernoulli distribution: 𝑓(1) = 𝜃, 𝑓(0) = 1 − 𝜃.

� Binomial distribution (sum of iid Bernoulli): 𝑓(𝑥) =

(︂
𝑛
𝑥

)︂
𝜃𝑥(1 −

𝜃)𝑛−𝑥, 𝑥 = 0, 1, . . . , 𝑛.
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� Negative Binomial distribution (waiting time for the 𝑘-th success of

iid trials): 𝑓(𝑥) =

(︂
𝑥− 1
𝑘 − 1

)︂
𝜃𝑘(1 − 𝜃)𝑥−𝑘, 𝑥 = 𝑘, 𝑘 + 1, . . . . When 𝑘 = 1

it is the geometric distribution.

� Hypergeometric distribution (randomly pick 𝑛 elements at random
from 𝑁 elements, the number of elements picked from a fixed subset of 𝑀

elements) 𝑓(𝑥) =

(︂
𝑀
𝑥

)︂(︂
𝑁 −𝑀
𝑛− 𝑥

)︂(︂
𝑁
𝑛

)︂−1

.

� Poisson distribution (limit of binomial as 𝑛 → ∞, 𝑛𝜃 → 𝜆) 𝑓(𝑥) =
𝜆𝑥𝑒−𝜆/𝑥!.

� Multinomial distribution 𝑓(𝑥1, . . . 𝑥𝑘) =

(︂
𝑛

𝑥1, . . . , 𝑥𝑘

)︂
𝜃𝑥1
1 . . . 𝜃𝑥𝑘

𝑘 ,∑︀
𝑖 𝑥𝑖 = 𝑛, 𝜃𝑖𝜃𝑖 = 1.

� Multivariate Hypergeometric distribution 𝑓(𝑥1, . . . , 𝑥𝑘) =
∏︀

𝑖

(︂
𝑀𝑖

𝑥𝑖

)︂
·(︂

𝑁
𝑛

)︂−1

.
∑︀

𝑖 𝑥𝑖 = 𝑛,
∑︀

𝑖 𝑀𝑖 = 𝑁 .

2.2 Special continuous distributions

� Uniform distribution: 𝑓(𝑥) =

{︃
1/(𝑏− 𝑎) 𝑥 ∈ (𝑎, 𝑏)

0 𝑥 ̸∈ (𝑎, 𝑏)
.

� Normal distribution: 𝑓(𝑥) = 1
𝜎
√
2𝜋

𝑒−
(𝑥−𝜇)2

2𝜎2 .

� Multivariate Normal distribution: 𝑥 ∈ R𝑑, Σ positive definite 𝑑 × 𝑑

symmetric matrix, 𝑓(𝑥) = (2𝜋)−𝑑/2|Σ|−1/2𝑒−
1
2 (𝑥−𝜇)𝑇Σ−1(𝑥−𝜇).

� 𝜒2 distribution 𝑑: degrees of freedom. Squared sum of 𝑑 normal distri-

butions: 𝑓(𝑥) =

{︃
1

2𝑑/2Γ(𝑑/2)
𝑥

𝑑−2
2 𝑒−𝑥/2 𝑥 > 0

0 𝑥 ≤ 0
.

� Exponential distribution 𝑓(𝑥) =

{︃
1
𝜃 𝑒

−𝑥/𝜃 𝑥 > 0

0 𝑥 ≤ 0
.

� Gamma-distribution: 𝑓(𝑥) =

{︃
1

𝛽𝛼Γ(𝛼)𝑥
𝛼−1𝑒−𝑥/𝛽 𝑥 > 0

0 𝑥 ≤ 0

� Beta distribution: (conjugate prior of Bernoulli distribution) 𝑓(𝑥) ={︃
Γ(𝛼+𝛽)
Γ(𝛼)Γ(𝛽)𝑥

𝛼−1(1 − 𝑥)𝛽−1 𝑥 ∈ (0, 1)

0 𝑥 ̸∈ (0, 1)
.
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2.3 Law of Large Numbers and Central Limit Theorem

2.3.1 Convergence

� Convergence in distribution: cdf pointwise convergence.

� Convergence almost surely: 𝑃 (lim𝑖 𝑋𝑖 ̸= 𝑋) = 0.

Example: 𝑋 uniform on [0, 1], 𝑌𝑖 =

{︃
1 ∃𝑛 ∈ Z(𝑋 + 𝑛 ∈ [

∑︀𝑖
𝑗=1

1
𝑗 ,
∑︀𝑖+1

𝑗=1
1
𝑗 ])

0 otherwise
.

Then 𝑌𝑖 converges to 0 in distribution but not almost surely.

2.3.2 CLT and weak LLN

Levy’s continuity theorem: If 𝜑𝑋𝑗
→ 𝜑𝑋 pointwise, then 𝑋𝑗 converges to

𝑋 in distribution.

Weak Law of Large Numbers 𝑋𝑖 i.i.d. with expectation 𝜇. 𝑆𝑛 =
1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖. Then 𝑆𝑛 converges to 𝜇 in distribution.

(Levy’s) Central Limit Theorem 𝑋𝑖 i.i.d. with expectation 𝜇 and vari-

ance 𝜎2 > 0. 𝑌𝑛 =
√︁

1
𝑛𝜎2

∑︀
𝑖(𝑋𝑖 − 𝜇), then 𝑌𝑛 converges in distribution to

standard normal distribution (normal distribution with 𝜇 = 0 and 𝜎2 = 1).

Proof of both theorems (assume 𝑋𝑖 bounded): Taylor expansion of the char-
acteristic function.

One can also use the continuity of moment generating function, which is the
argument in the textbook.

2.3.3 Strong Law of Large Numbers

Borel-Cantelli Lemma𝐴𝑖 events, 𝑖 = 1, 2, . . . ,
∑︀

𝑖(𝐴𝑖) < ∞, then 𝑃 (∩𝑖(∪𝑗>𝑖𝐴𝑗)) =
0. (the probability of infinitely many 𝐴𝑖 happening is 0)

Proof: 𝑃 (∩𝑖(∪𝑗>𝑖𝐴𝑗)) ≤ 𝑃 (∪𝑗>𝑖𝐴𝑗) ≤
∑︀

𝑗>𝑖 𝑃 (𝐴𝑗) which converges to 0 as
𝑖 → ∞.

Strong Law of Large Numbers 𝑋𝑖, 𝑖 = 1, 2, . . . i.i.d. (independent with
identical distribution) and 𝐸(𝑋𝑖) = 𝜇, then 𝑌𝑛 = 1

𝑛

∑︀𝑛
𝑖=1 𝑋𝑖 converges a.s. to

constant 𝜇.

Proof (assume 𝑋𝑖 bounded by 𝑀): Suppose 𝑉 𝑎𝑟(𝑋𝑖) = 𝑚.
√︀

𝑛
𝑚 (𝑌𝑛−𝜇) has

expectation 0 and variance 1, so 𝑃 (|𝑌𝑛 − 𝜇| > 𝐶
√︀

𝑚
𝑛 ) < 1/𝐶2 by Chebyshev’s

theorem. Now let 𝑛𝑘 = 𝑘4, 𝐶𝑘 = 𝑘, then 𝑌𝑛𝑘
= 𝑌𝑘4 converges a.s. to 𝜇 by

Borel-Cantelli.
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𝑌𝑛 = (⌊𝑛1/4⌋4𝑌⌊𝑛1/4⌋4+𝑋⌊𝑛1/4⌋4+1+· · ·+𝑋𝑛)/𝑛 = 𝑌⌊𝑛1/4⌋4+(𝑀+|𝜇|)𝑛−⌊𝑛1/4⌋4
𝑛 .

The first term converges to 𝜇 as 𝑛 → ∞, and the second converges to 0.

3 Sample statistics

3.1 Some important distributions

� Standard Normal Distribution: 𝒩 (0, 1)

� 𝜒2(𝑘): squared sum of 𝑘 independent standard normal distribution.

� 𝑡 distribution: 𝑍 standard normal, 𝑌 ∼ 𝜒2(𝑘), 𝑍 and 𝑌 independent, then
𝑇 = 𝑍√

𝑌/𝑘
is said to have 𝑡-distribution with 𝑘 degrees of freedom.

� 𝐹 distribution: 𝑈 and 𝑉 independent, 𝑈 ∼ 𝜒2(𝑚), 𝑉 ∼ 𝜒2(𝑛), then

𝐹 = 𝑈/𝑚
𝑉/𝑛 is said to have 𝐹 distribution with degrees of freedom 𝑚 and 𝑛,

3.2 Sample statistics

𝑋1, . . . 𝑋𝑛 i.i.d. (independent with identical distributions). Sample statistics: a
random variable computed from 𝑛 other random variables.

� Sample mean: 𝑋 =
∑︀

𝑖 𝑋𝑖

𝑛

– 𝐸[𝑋] = 𝐸[𝑋1], 𝑉 𝑎𝑟(𝑋) = 1
𝑛𝑉 𝑎𝑟(𝑋1).

Proof:

𝐸[𝑋] = 𝐸[
1

𝑛

∑︁
𝑖

𝑋𝑖] =
1

𝑛

∑︁
𝑖

𝐸[𝑋𝑖] = 𝐸[𝑋1]

𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋1])2] =
1

𝑛2
𝐸[

∑︁
𝑖

(𝑋𝑖 − 𝐸[𝑋𝑖)
2] =

1

𝑛
𝑉 𝑎𝑟(𝑋1)

– If 𝑋1 ∼ 𝒩 (𝜇, 𝜎2), 𝑋 ∼ 𝒩 (𝜇, 𝜎2/𝑛).
Proof: By calculation using MGF.

– If 𝑛 → ∞,
√︁

𝑛
𝑉 𝑎𝑟(𝑋1)

(𝑋 − 𝐸[𝑋1]) converges to standard normal by

distribution.
Proof: This is just central limit theorem.

� Sample variance: 𝑆2 = 1
𝑛−1

∑︀
𝑖(𝑋𝑖 −𝑋)2 = 1

𝑛−1 (
∑︀

𝑖 𝑋
2
𝑖 − 𝑛𝑋

2
).

– 𝐸[𝑆2] = 𝑉 𝑎𝑟(𝑋1).
Proof:

𝐸[𝑆2] =
1

𝑛− 1

∑︁
𝑖

𝐸[(𝑋𝑖−𝑋)2] =
1

𝑛− 1

∑︁
𝑖

𝐸[(
𝑛− 1

𝑛
𝑋𝑖−

∑︁
𝑗 ̸=𝑖

1

𝑛
𝑋𝑗)

2]
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=
1

𝑛− 1

∑︁
𝑖

⎛⎝ (𝑛− 1)2

𝑛2
𝐸[𝑋2

𝑖 ] +
∑︁
𝑗 ̸=𝑖

1

𝑛2
𝐸[𝑋2

𝑗 ] −
∑︁
𝑗 ̸=𝑖

2𝑛− 2

𝑛2
𝐸[𝑋𝑖]𝐸[𝑋𝑗 ]

+
∑︁

𝑗 ̸=𝑖,𝑘 ̸=𝑖,𝑗 ̸=𝑘

2

𝑛2
𝐸[𝑋𝑗 ]𝐸[𝑥𝑘]

⎞⎠
= 𝐸[𝑋2

1 ] − 𝐸[𝑋1]2 = 𝑉 𝑎𝑟(𝑋1)

– If 𝑋1 ∼ 𝒩 (𝜇, 𝜎2), then

* 𝑋 and 𝑆2 are independent
Proof: Calculate joint cdf, do a change of variables.

*
(𝑛−1)𝑆2

𝜎2 ∼ 𝜒2(𝑛− 1)
Proof:

(𝑛− 1)𝑆2

𝜎2
+ 𝑛

(𝑋 − 𝐸[𝑋1])2

𝜎2
=

1

𝜎2

∑︁
𝑖

(𝑋𝑖 − 𝐸[𝑋1])2 ∼ 𝜒2(𝑛)

Now use moment generating function and the independence be-
tween 𝑆2 and 𝑋.

*
𝑋−𝜇
𝑆/

√
𝑛
∼ 𝑡(𝑛− 1).

Proof: By definition of 𝑡-distribution.

– If 𝑆2
1 is the sample variance of 𝑛1 i.i.d. 𝒩 (𝜇, 𝜎2) random variables

𝑌𝑖, 𝑆
2
2 the sample variance of 𝑛2 i.i.d. 𝒩 (𝜇′, 𝜎′2) random variables

𝑍𝑗 independent from 𝑌𝑖, then
𝑆2
1/𝜎

2
1

𝑆2
2/𝜎

2
2
∼ 𝐹 (𝑛1 − 1, 𝑛2 − 1)

Proof: By definition of 𝐹 -distribution.

� Order statistics The 𝑘-th order statistics is the 𝑘-th smallest element in
{𝑋𝑖}, denoted as 𝑌𝑘. Then, if 𝑋1 has pdf 𝑓 , then

𝑓𝑌𝑘
(𝑡) =

𝑑

𝑑𝑡
𝐹𝑌𝑘

(𝑡) = lim
𝛿→0

𝐹𝑌𝑘
(𝑡 + 𝛿) − 𝐹𝑌𝑘

(𝑡)

𝛿

= lim
𝛿→0

1

𝛿

(︂
𝑛

𝑘 − 1, 1, 𝑛− 𝑘

)︂
(

∫︁ 𝑡

−∞
𝑓𝑑𝑠)𝑘−1

∫︁ 𝑡+𝛿

𝑡

𝑓𝑑𝑠(

∫︁ ∞

𝑡+𝛿

𝑓𝑑𝑠)𝑛−𝑘

=
𝑛!

(𝑘 − 1)!(𝑛− 𝑘)!
(

∫︁ 𝑡

−∞
𝑓𝑑𝑠)𝑘−1𝑓(𝑡)(

∫︁ ∞

𝑡

𝑓𝑑𝑠)𝑛−𝑘
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3.3 PDF of 𝜒2-, t- and F- distributions

3.3.1 𝜒2

Let 𝑋𝑖 be iid standard normal, their joint distribution is

𝑓(𝑥1, . . . 𝑥𝑛) = (2𝜋)−𝑛/2𝑒−
∑︀

𝑖 𝑥
2
𝑖 /2

Hence the pdf of 𝜒2 is:

𝑓𝜒2(𝑛)(𝑟) =
𝑑

𝑑𝑟

∫︁
∑︀

𝑖 𝑥
2
𝑖≤𝑟

(2𝜋)−𝑛/2𝑒−
∑︀

𝑖 𝑥
2
𝑖 /2𝑑𝑥1 . . . 𝑑𝑥𝑛

which is easy to see must be proportional to 𝑟
𝑛−2
2 𝑒−𝑟/2.

3.4 𝑡

Let 𝑋 and 𝑌 be independent with pdf: 𝑓𝑋(𝑥) = 1√
2𝜋

𝑒−𝑥2/2 and 𝑓𝑌 (𝑦) =

1
2𝑑/2Γ(𝑑/2)

𝑦
𝑑−2
2 𝑒−𝑦/2. Then

𝑓𝑡(𝑑)(𝑠) =
𝑑

𝑑𝑠
𝑃 (𝑋 ≤ 𝑠

√︀
𝑌/𝑑) =

𝑑

𝑑𝑠

∫︁ ∞

0

𝑑𝑦

∫︁ 𝑠
√

𝑦/𝑑

−∞
𝑑𝑥

1√
2𝜋

𝑒−𝑥2/2 1

2𝑑/2Γ(𝑑/2)
𝑦

𝑑−2
2 𝑒−𝑦/2

=

∫︁ ∞

0

𝑑𝑦
√︀
𝑦/𝑑

1√
2𝜋

𝑒−𝑠2𝑦/2𝑑 1

2𝑑/2Γ(𝑑/2)
𝑦

𝑑−2
2 𝑒−𝑦/2

Do change of variables 𝑧 = (𝑠2/𝑑 + 1)𝑦 we get that it is proportional to

(𝑠2/𝑑 + 1)−
𝑑+1
2 .

The calculation for the pdf of 𝐹 is similar.

4 Point estimators and their properties

Basic setting:

� ℱ : a family of possible distributions (represented by a family of cdf, pdf,
or pd)

� 𝜃 : ℱ → R population parameter

� 𝑋1, . . . 𝑋𝑛 i.i.d. with distribution 𝐹 ∈ ℱ

� 𝜃 = 𝜃(𝑋1, . . . , 𝑋𝑛) a function of 𝑋𝑖, which is an estimate of 𝜃(𝐹 ), is called
a point estimate.

Example: ℱ : all distributions with an expectation, then 𝑋 is a point esti-
mate of the expectation.

𝜃 is a point estimate of 𝜃.
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� The bias is 𝐸[𝜃] − 𝜃. 𝜃 is called unbiased if 𝐸[𝜃] = 𝜃.

� The variance is 𝑉 𝑎𝑟(𝜃).

� 𝜃 is called minimum variance unbiased estimate if it has the smallest
variance among all unbiased estimates.

� 𝜃1 and 𝜃2 are two unbiased estimates, the relative efficiency is the ratio of
their variance. When they are biased, one can use the mean squared error
𝐸[(𝜃 − 𝜃)2] instead.

� 𝜃 is called asymptotically unbiased if bias converges to 0 as 𝑛 → ∞.

� 𝜃 is called consistent if 𝜃 converges to 𝜃 in distribution.

Example: Estimate of the expectation and variance of binomial distribution

� Expectation can be estimated by sample mean, which is unbiased and
consistent.

� Variance can be estimated by sample variance which is unbiased and con-
sistent, or 𝑋(1 −𝑋), which is consistent but biased.

Example: Estimate 𝑡 for uniform distribution on [0, 𝑡].
The following estimates are all unbiased and consistent:

� 2𝑋

�
𝑛+1
𝑛 𝑀𝑎𝑥(𝑋𝑖)

� 𝑀𝑎𝑥(𝑋𝑖) + 𝑀𝑖𝑛(𝑋𝑖)

Can you calculate their variance? Which is the best among the three?

Answer:

𝑉 𝑎𝑟(2𝑋) =
4

𝑛
· 𝑉 𝑎𝑟(𝑋1) =

𝑡2

3𝑛

𝑉 𝑎𝑟(
𝑛 + 1

𝑛
𝑀𝑎𝑥(𝑋𝑖)) =

(𝑛 + 1)2

𝑛2
· 𝑛! ·

∫︁ 𝑡

0

𝑑𝑥𝑛

∫︁ 𝑥𝑛

0

𝑑𝑥𝑛−1· · ·
∫︁ 𝑥2

0

𝑑𝑥1 ·
(𝑥𝑛 − 𝑡)2

𝑡𝑛

=
(𝑛 + 1)2

𝑛

∫︁ 𝑡

0

(𝑥𝑛 − 𝑛𝑡
𝑛+1 )2𝑥𝑛−1

𝑛

𝑡𝑛
𝑑𝑥𝑛 =

𝑡2

𝑛(𝑛 + 2)

𝑉 𝑎𝑟(𝑀𝑎𝑥(𝑋𝑖) + 𝑀𝑖𝑛(𝑋𝑖)) =
𝑛!

𝑡𝑛
·
∫︁ 𝑡

0

𝑑𝑥𝑛

∫︁ 𝑥𝑛

0

𝑑𝑥1

∫︁ 𝑥𝑛

𝑥1

𝑑𝑥𝑛−1 . . . 𝑑𝑥2 ·(𝑥𝑛+𝑥1−𝑡)2

=
𝑛(𝑛− 1)

𝑡𝑛

∫︁ 𝑡

0

𝑑𝑥𝑛

∫︁ 𝑥𝑛

0

𝑑𝑥1(𝑥𝑛 + 𝑥1 − 𝑡)2(𝑥𝑛 − 𝑥1)𝑛−2 =
2𝑡2

(𝑛 + 1)(𝑛 + 2)
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If an asymptotically unbiased estimate has variance → 0 when 𝑛 → ∞, it
must be consistent.

Cramer-Rao inequality:

𝑉 𝑎𝑟(𝜃) ≥ 1

𝑛𝐸[( 𝑑
𝑑𝜃 log 𝑓)2]

When equality is reached we get minimal variance unbiased estimate.

Example: 𝑋𝑖 iid normal, then 𝑋 is MVUE.

𝑉 𝑎𝑟(𝑋) = 𝜎2/𝑛

1

𝑛𝐸[( 𝑑
𝑑𝜃 log 𝑓)2]

=
1

𝑛𝐸[(𝑋 − 𝜇)2/𝜎4]
= 𝜎2/𝑛

5 Method of moments, Maximum likelihood

5.1 MLE

Suppose 𝑋𝑖 ∼ 𝐹 ∈ ℱ , i.i.d., where ℱ is the family of possible distributions of
𝑋𝑖, and 𝐹 is unknown and belongs to ℱ . We want to find a point estimate for
some function 𝜃 : ℱ → R. The Method of Maximal Likelihood is:

𝜃(𝑋1, . . . 𝑋𝑘)𝑀𝐿𝐸 = 𝜃(arg max
𝐹∈ℱ

𝐿(𝑋1, . . . 𝑋𝑘, 𝐹 )

� When 𝐹 is a continuous distribution with p.d.f. 𝑓(𝑥), let 𝐿(𝑥1, . . . , 𝑥𝑘, 𝐹 ) =∏︀
𝑖 𝑓(𝑥𝑖)

� When 𝐹 is a discrete distribution with p.d. 𝑔(𝑥) = 𝑃 (𝑋 = 𝑥), let
𝐿(𝑥1, . . . , 𝑥𝑘, 𝐹 ) =

∏︀
𝑖 𝑔(𝑥𝑖)

Example: 𝑋𝑖 i.i.d. and has binomial distribution with 𝑛 = 5 and unknown
𝑝, find MLE for 𝑝.

Answer: If 𝑋𝑖 satisfies the binomial distribution with 𝑛 = 5 and let 𝑝 be
some unknown value, the likelihood function is:

𝐿(𝑋1, . . . 𝑋𝑘) =
∏︁
𝑖

(︂
5

𝑋𝑖

)︂
𝑝𝑋𝑖(1 − 𝑝)5−𝑋𝑖

The 𝑝 that maximizes it is 𝑝 =
∑︀

𝑖 𝑋𝑖

5𝑘 , hence 𝑝𝑀𝐿𝐸 =
∑︀

𝑖 𝑋𝑖

5𝑘
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Example: 𝑋𝑖 i.i.d. and has uniform distribution on [𝑎, 𝑎+ 𝑡]. Find MLE for
𝑎 and 𝑡.

Answer: If [𝑎, 𝑎 + 𝑡] fails to contain any of the 𝑋𝑖 the likelihood must be 0,
so 𝑎 ≤ min{𝑋𝑖}, 𝑎+ 𝑡 ≥ max{𝑋𝑖}. To maximize the likelihood in this case, one
need to minimize 𝑡, hence �̂�𝑀𝐿𝐸 = min{𝑋𝑖} and 𝑡𝑀𝐿𝐸 = max{𝑋𝑖}−min{𝑋𝑖}.

Example: 𝑋𝑖 i.i.d. and has normal distribution with expectation 𝜇 variance
𝜎2. Find MLE for 𝜎2.

Answer: Write down the likelihood function, take derivative for both 𝜇 and
𝜎2 and set both to be 0, we get that 𝜎2

𝑀𝐿𝐸 = 1
𝑛

∑︀
𝑖(𝑋𝑖 −𝑋).

5.2 MOM

MOM is a less popular approach but does have some advantages in some situ-
ations.

Empirical distribution: Given 𝑥1, . . . 𝑥𝑘 ∈ R, the empirical distribution 𝑋 ′

is defined as 𝑃 (𝑋 ′ = 𝑥𝑖) = 𝑚𝑖

𝑘 where 𝑚𝑖 is the multiplicity of 𝑥𝑖.

Method of moments means estimating the parameters in such a way that the
first few moments of 𝑋𝑖 under these parameters match the first few moments
of empirical distribution obtained from 𝑋1, . . . 𝑋𝑘, i.e. the sample moments
𝑀 ′

𝑛 = 1
𝑘

∑︀
𝑖 𝑋

𝑛
𝑖 .

Example: 𝑋𝑖 i.i.d. uniform on [𝑎, 𝑎 + 𝑡], find MOM estimate for 𝑎 and 𝑡.

Example: 𝑋𝑖 i.i.d. exponential, 𝑓(𝑥) = 1
𝑐 𝑒

−𝑥/𝑐, find MOM estimate for 𝑐.

Example: 𝑋𝑖 i.i.d. binomial with 𝑝 = 1
2 . Find MOM and MLE for 𝑛. Are

they the same?

5.3 Point estimate for non i.i.d. random variables

� ℱ : a family of possible joint distributions (represented by a family of joint
cdf, joint pdf, or joint pd)

� 𝜃 : ℱ → R population parameter

� 𝑋1, . . . 𝑋𝑛 ∼ 𝐹 ∈ ℱ

� 𝜃 = 𝜃(𝑋1, . . . , 𝑋𝑛) a function of 𝑋𝑖, which is an estimate of 𝜃(𝐹 ), is called
a point estimate.

One can define bias, variance and consistency similar to the i.i.d. case. The
MLE (and MAP which will be discussed later) works for non i.i.d. case as well!
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Example: 𝑋1, . . . 𝑋𝑛 uniform on [𝑎, 𝑎 + 𝑡], 𝑌1, . . . , 𝑌𝑛 uniform on [𝑏, 𝑏 + 𝑡],
find MLE of 𝑡.

6 Midterm 1 review

Some key topics:

� pdf from cdf, probability from pdf, expectation from pdf.

� LLN and CLT

� Sample mean and sample variance: general case and normal population

� Bias, variance, mean squared error and consistency for point estimate
Ways to check consistency:

– Definition

– LLN

– mean squared error

� MLE

Review problem:

1. 𝑋𝑖 i.i.d. 𝑃 (𝑋𝑖 = 0) = 𝑎, 𝑃 (𝑋𝑖 = 1) = 𝑏, 𝑃 (𝑋𝑖 = 2) = 𝑐, 𝑎 + 𝑏 + 𝑐 = 1.
Find 𝐸[𝑋𝑖], the MLE of 𝐸[𝑋𝑖], and the bias and variance of said MLE. Find
𝑉 𝑎𝑟(𝑋𝑖) and its MLE. Are these MLEs consistent?

2. 𝑋𝑖 i.i.d., with pdf 1√
2𝜋

(𝑐𝑒−𝑥2/2 + (1 − 𝑐)𝑒−(𝑥−1)2/2. Find MLE of 𝑐. Is it

consistent?

7 Digression: The idea of substitution

Examples:

� If 𝑋𝑖 i.i.d. with p.d.f. 𝑓 , then likelihood function 𝐿 =
∏︀

𝑖 𝑓(𝑋𝑖). If 𝑌𝑖

i.i.d., 𝑡𝑌𝑖 has 𝜒2(2) distribution (p.d.f. 𝑓(𝑥) = 1
2𝑒

−𝑥/2 when 𝑥 ≥ 0), what
is the likelihood function?

� Let 𝑓𝜃(·) be the p.d.f. of 𝜃, 𝑓𝑋|𝜃(·, 𝑡ℎ𝑒𝑡𝑎) the conditional p.d.f. of 𝑋,
𝑓𝜃|𝑋(·, 𝑋) the conditional p.d.f. of 𝜃, then

𝑓𝜃|𝑋(𝜃, 𝑥) =
𝑓𝜃(𝜃)𝑓𝑋|𝜃(𝑥, 𝜃)∫︀

R 𝑓𝜃(𝜃)𝑓𝑋|𝜃(𝑥, 𝜃)𝑑𝜃
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8 Bayesian statistics

8.1 The basic idea of Bayesian statistics

� Input:

– Some (possibly vector valued) random variable Θ with given distri-
bution (prior)

– Some (possibly vector valued) random variable 𝑋 with known con-
ditional distribution conditioned at a value of Θ, 𝑋 ∼ 𝐹 (𝑋|Θ). (ob-
servable)

� Output: the conditional distribution of Θ conditioned at a value of 𝑋
(posterior) Θ ∼ 𝐹 (Θ|𝑋).

Example 1:

� Prior 𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 1
100 )

� Observable𝑋1, 𝑋2 conditionally i.i.d. when 𝑌 = 𝑦, and their conditional
distribution is Bernoulli with 𝑝 = 1+8𝑌

10 .

Calculation of the posterior:

𝑃 (𝑌 = 1|𝑋1, 𝑋2) =
𝑃 (𝑌 = 1, 𝑋1, 𝑋2)

𝑃 (𝑋1, 𝑋2)

=
𝑃 (𝑋1, 𝑋2|𝑌 = 1)𝑃 (𝑌 = 1)

𝑃 (𝑋1, 𝑋2|𝑌 = 0)|𝑃 (𝑌 = 0) + 𝑃 (𝑋1, 𝑋2|𝑌 = 1)|𝑃 (𝑌 = 1)

=
(9/10)𝑋1+𝑋2(1/10)2−𝑋1−𝑋2 × 1

100

(9/10)𝑋1+𝑋2(1/10)2−𝑋1−𝑋2 × 1
100 + (1/10)𝑋1+𝑋2(9/10)2−𝑋1−𝑋2 × 99

100

=
9𝑋1+𝑋2

9𝑋1+𝑋2 + 99 × 92−𝑋1−𝑋2

So, for example, if we know both 𝑋𝑖 takes a value of 1, then the probability
of 𝑌 = 1 is 9/20.

We can answer many questions using posterior, for example:

� What is the probability of Θ taking value in 𝐴 given 𝑋?

� What is the “most likely” value of Θ? Θ̂𝑀𝐴𝑃 = arg max𝑠 𝑓Θ|𝑋(𝑠), where
𝑓 is p.d.f. when Θ|𝑋 is continuous and p.d. when it is discrete. This is
called the maximum a posteriori (MAP) estimate.

� What is the average value of Θ? Θ̂ = 𝐸[Θ|𝑋]. This is called the Bayesian
point estimate with 𝐿2 lost.

� In general, let 𝑙(·, ·) be a lost function (a positive function such that
𝑙(𝑎, 𝑎) = 0), then Θ̂ = arg min𝜃 𝐸[𝑙(Θ, 𝜃)|𝑋] is called the Bayesian point
estimate.
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8.2 Comparison between non-Bayesian and Bayesian

MLE:

� Input: Assumption on the distribution of 𝑋: 𝑋 ∼ 𝐹 (𝛼). A likelihood
function 𝐿(𝑋,𝛼).

� Output: �̂�𝑀𝐿𝐸 = arg max𝛼 𝐿(𝑋,𝛼).

Bayesian statistics:

� Input: Prior: 𝛼 ∼ 𝐹0, Conditional distribution: 𝑋|𝛼 ∼ 𝐹 (𝛼).

� Calculated output: Posterior: 𝛼|𝑋 ∼ 𝐹 ′(𝑋)

� MAP Point estimate: �̂� = arg max𝛼 𝑓𝑎𝑙𝑝ℎ𝑎|𝑋(𝛼)

� 𝐿2-Bayesian Point estimate: �̂� = 𝐸[𝛼|𝑋].

8.3 Example of point estimate using Bayesian statictics

Example 2:

Input:

� 𝜇 ∼ 𝒩 (0, 1)

� 𝑋𝑖|𝜇 cond. i.i.d., ∼ 𝒩 (𝜇, 1)

Posterior:

𝑓𝜇|𝑋𝑖
(𝑠) =

𝑓𝜇,𝑋𝑖
(𝑠,𝑋1, . . . , 𝑋𝑛)

𝑓𝑋𝑖(𝑋1, . . . 𝑋𝑛)
=

𝑓𝜇,𝑋𝑖
(𝑠,𝑋1, . . . , 𝑋𝑛)∫︀

R 𝑓𝜇,𝑋𝑖
(𝑡,𝑋1, . . . 𝑋𝑛)𝑑𝑡

=

∏︀
𝑖 𝑓𝑋𝑖|𝜇=𝑠(𝑋𝑖)𝑓𝜇(𝑠)∫︀

R
∏︀

𝑖 𝑓𝑋𝑖|𝜇=𝑡(𝑋𝑖)𝑓𝜇(𝑡)𝑑𝑡
=

(2𝜋)−
𝑛+1
2 𝑒−

∑︀
𝑖(𝑋𝑖−𝑠)2/2−𝑠2/2∫︀

R(2𝜋)−
𝑛+1
2 𝑒−

∑︀
𝑖(𝑋𝑖−𝑡)2/2−𝑡2/2𝑑𝑡

So

𝜇|𝑋𝑖 ∼ 𝒩 (

∑︀
𝑖 𝑋𝑖

𝑛 + 1
,

1

𝑛 + 1
)

The MAP and 𝐿2 Bayesian estimate of 𝜇 are both �̂� =
∑︀

𝑖 𝑋𝑖

𝑛+1 .

From the computation above we get:

𝑓𝜇|𝑋(𝑠) ∝ 𝑓𝑋|𝜇=𝑠(𝑋)𝑓𝜇(𝑠)

This works for discrete 𝜇 or 𝑋 as well!

Example 3: 𝑃 uniform on [0, 1], 𝑋|𝑃 ∼ Binomial(5, 𝑃 ), then 𝑓𝑃 |𝑋(𝑠) ∝
𝑠𝑋(1 − 𝑠)5−𝑋 · 1, hence 𝑃 |𝑋 ∼ 𝐵𝑒𝑡𝑎(𝑋 + 1, 6 −𝑋).
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8.4 Hierarchical Models

This section is beyond the scope of our exams.

Often in practice we build “hierarchical models” by stacking multiple layers
of Bayesian and non Bayesian models together. For example:

𝜎2
𝑖 ∼ Γ(𝛼, 𝛽)

𝜎2 ∼ Γ(𝛼′, 𝛽′)

𝜇𝑖 ∼ 𝒩 (0, 𝜎2)

𝑋𝑖𝑗 ind. ∼ 𝒩 (𝜇𝑖, 𝜎
2
𝑖 )

How would you estimate 𝜎𝑖 and 𝜇𝑖 from the values of 𝑋𝑖𝑗?

We will talk about models like this if we have more time at the end of the
semester.

8.5 More Examples

Example 4: 𝑡 has p.d.f. 𝑓𝑡(𝑥) =

{︃
0 𝑥 < 0

𝑒−𝑥 𝑥 > 0
. 𝑃 (𝑌 = 𝑛|𝑡) = (1 − 𝑒−𝑡)𝑒−𝑛𝑡.

Knowing 𝑌 , find 𝑡𝑀𝐴𝑃 and 𝐸[𝑡|𝑌 ].

Example 5: 𝑎, 𝑡 indep. ∼ Uniform([0, 1]). 𝑋𝑖|𝑎, 𝑡 i.i.d. ∼ Uniform([𝑎, 𝑎 + 𝑡]),
find 𝑡𝑀𝐴𝑃 .

Answer: 𝑀 = max(𝑋𝑖), 𝑚 = min(𝑋𝑖), then:

𝑓𝑎,𝑡|𝑋𝑖
∝

{︃
𝑡−𝑛 0 ≤ 𝑎 ≤ 𝑚 ≤ 𝑀 ≤ 𝑎 + 𝑡 ≤ 𝑎 + 1

0 otherwise

So

𝑓𝑡|𝑋𝑖
∝

{︃
𝑡−𝑛 · (min(1,𝑚) − (𝑀 − 𝑡)) 𝑀 − min(1,𝑚) ≤ 𝑡 ≤ 1

0 otherwise

𝑡𝑀𝐴𝑃 = min(1,
𝑛

𝑛− 1
(𝑀 − min(1,𝑚)))

9 Hypothesis testing

9.1 Definitions

� Problem: want to know if the distribution of 𝑋 satisfy certain propositions
(null hypothesis), for example:

– Will the coronavirus kill more than a million people in the end?
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– Will the expectation of our midterm 2 grade be better than midterm
1?

– Is the performance of a machine learning algorithm better than ran-
dom chance?

� Solution: Find a random variable 𝑍 (test statistics) depending on 𝑋
and a set 𝐴 (critical region), and reject the hypothesis when 𝑍 ∈ 𝐴.

� (𝑍,𝐴) is called a statistical test to null hypothesis 𝐻0.

� If 𝑍 ∈ 𝐴 ⇐⇒ 𝑍 ′ ∈ 𝐴′ we consider (𝑍,𝐴) and (𝑍 ′, 𝐴′) to be the same
test.

� If 𝐻0 completely determines 𝑃 (𝑍 ∈ 𝐴) (simple hypothesis), 𝑝 = 𝑃 (𝑍 ∈
𝐴|𝐻0) is called the significance level.

The key reasoning behind statistical tests: Suppose 𝐻0 is true. If (𝑍,𝐴)
is a test with a very small significance level, then 𝑍 ∈ 𝐴 is highly
unlikely. If, however, we do actually observe that 𝑍 ∈ 𝐴, then this
can only tell us that 𝐻0 is unlikely to be true. It is basically a kind of
“statistical” proof by contradiction.

Example 1: Suppose your grade for midterm 1 is 𝑋1, your grade for midterm
2 is 𝑋2, 𝑌 = 𝑋2 − 𝑋1 satisfies normal distribution with variance 25. How do
we test the null hypothesis 𝐸[𝑌 ] = 0?

� Answer 1: 𝑍 = 𝑌 , 𝐴 = (−∞,−𝑀) ∪ (𝑀,∞).

𝑝 = 𝑃 (𝑌 < −𝑀∪𝑌 > 𝑀 |𝐻0) = 𝑃 (𝑌 < −𝑀 |𝑌 ∼ 𝒩 (0, 25))+𝑃 (𝑌 > 𝑀 |𝑌 ∼ 𝒩 (0, 25))

= 2

∫︁ ∞

𝑀

1√
50𝜋

𝑒−𝑡2/50𝑑𝑡

� Answer 2: 𝑍 = 𝑌 , 𝐴 = (𝑀,∞), 𝑝 =
∫︀∞
𝑀

1√
50𝜋

𝑒−𝑡2/50𝑑𝑡

� Answer 3: 𝑍 = 𝑌 , 𝐴 = (−𝑀,𝑀), 𝑝 =
∫︀𝑀

−𝑀
1√
50𝜋

𝑒−𝑡2/50𝑑𝑡

Which of the three is more reasonable?

� Alternative hypothesis: an alternative to the null hypothesis 𝐻0, called
𝐻1.

� 𝑃 (𝑍 ∈ 𝐴|𝐻0) is called significance level or type I error.

� If 𝐻1 is a simple hypothesis, 𝑃 (𝑍 ̸∈ 𝐴|𝐻1) is called type II error.

� If 𝐻1 is a simple hypothesis, 1 − 𝑃 (𝑍 ̸∈ 𝐴|𝐻1) = 𝑃 (𝑍 ∈ 𝐴|𝐻1) is called
(statistical) power
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� If 𝑋 ∼ 𝐹 (𝜃), 𝜋(𝜃) = 𝑃 (𝑍 ∈ 𝐴|𝜃) is called the power function. If
𝐻0 : 𝜃 = 𝜃0, 𝐻1 : 𝜃 = 𝜃1, then p-value is 𝜋(𝜃0) and power is 𝜋(𝜃1).

In Example 1, let 𝑌 = 𝒩 (𝜃, 25), what is the power function of the three tests?

Answer: Let 𝑓(𝑦) = 1√
50𝜋

𝑒−𝑦2/50. Then for Test 1,

𝜋1(𝜃) =

∫︁
(−∞,−𝑀)∪(𝑀,∞)

𝑓(𝑡− 𝜃)𝑑𝑡 =

∫︁
(−∞,−𝑀−𝜃)∪(𝑀−𝜃,∞)

𝑓(𝑠)𝑑𝑠

So 𝑑𝜋
𝑑𝜃 = 𝑓(𝑀 − 𝜃) − 𝑓(−𝑀 − 𝜃), which is positive when 𝜃 > 0 and negative

when 𝜃 < 0. So, if the alternative hypothesis is 𝜃 = 𝜃1 >> 0 or 𝜃 = 𝜃1 << 0,
it is possible to find some 𝑀 which make significance level small and power large.

For Test 2,

𝜋2(𝜃) =

∫︁
(𝑀,∞)

𝑓(𝑡− 𝜃)𝑑𝑡 =

∫︁
(𝑀−𝜃,∞)

𝑓(𝑠)𝑑𝑠

So 𝑑𝜋
𝑑𝜃 = 𝑓(𝑀 − 𝜃) > 0. So if the alternative hypothesis is 𝜃 = 𝜃1 >> 0 it is

possible to find some 𝑀 which make significance level small and power large.
In other words, this test can only capture the case when 𝐸[𝑌 ] > 0 but not
𝐸[𝑌 ] < 0, which is consistent with our expectation.

For Test 3, the power function is

𝜋3(𝜃) =

∫︁
(−𝑀,𝑀)

𝑓(𝑡− 𝜃)𝑑𝑡 =

∫︁
(−𝑀−𝜃,𝑀−𝜃)

𝑓(𝑠)𝑑𝑠

So 𝑑𝜋
𝑑𝜃 = −𝑓(𝑀 − 𝜃) + 𝑓(−𝑀 − 𝜃) which is negative when 𝜃 > 0 and positive

when 𝜃 < 0, so as a consequence the type I and type II errors always sum up to
something larger than 1, which means that it is a very bad test.

Example 2: 𝑌𝑖 i.i.d. ∼ 𝒩 (𝜃, 25), 𝐻0 : 𝜃 = 0. What is the power function for
the test (𝑌 , (−∞,−𝑀) ∪ (𝑀,∞))?

Example 3: 𝑌𝑖 i.i.d. Bernoulli distribution with parameter 𝜃, 𝐻0 : 𝜃 = 0.5.
What is the power function for the test (𝑌 , (0, 1/2 − 𝜖) ∪ (1/2 + 𝜖, 1))?

Example 4: 𝑋𝑖 𝑖 = 1, . . . 6 𝑖.𝑖.𝑑., Bernoulli with 𝑃 (𝑋𝑖 = 1) = 𝑝. 𝐻0 : 𝑝 = 0.5,
𝐻1 : 𝑝 = 0.9. Test statistics: 𝑍 =

∑︀
𝑖 𝑋𝑖. 𝐴 = [𝑀, 6], 𝑀 is an integer.

Then power function is:

𝜋(𝑝) = 𝑃 (𝑍 ≥ 𝑀 |𝑝) =

6∑︁
𝑖=𝑀

(︂
6

𝑖

)︂
𝑝𝑖(1 − 𝑝)6−𝑖

p-value is 𝜋(0.5) = 1
64

∑︀6
𝑖=𝑀

(︀
6
𝑖

)︀
. Power is 𝜋(0.9) =

∑︀6
𝑖=𝑀

(︀
6
𝑖

)︀
(0.9)𝑖(0.1)6−𝑖.
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� 𝑀 = 6: significance=0.0156, power=0.531

� 𝑀 = 5: significance=0.109, power=0.886

� 𝑀 = 4: significance=0.344, power=0.984

There is trade-off between significance and power. Which 𝑀 to choose de-
pends on the purpose of the test, in particular whether false positive or false
negative would be more costly.

9.2 Likelihood ratio test

Recall that the likelihood function is 𝐿(𝑥, 𝜃) = 𝑓𝑋|𝜃(𝑥), which is the p.d.f.
when 𝑋 is continuous and p.d. when 𝑋 is discrete. The Neyman-Pearson test
for 𝐻0 : 𝜃 = 𝜃0, 𝐻1 : 𝜃 = 𝜃1 is:

(𝑋, {𝑥 : 𝐿(𝑥, 𝜃0)/𝐿(𝑥, 𝜃1) ≤ 𝑘})

Example 4, Neyman-Pearson test: 𝑝0 = 0.5, 𝑝1 = 0.9

𝐿(𝑋1, . . . , 𝑋6, 𝑝0) =
∏︁
𝑖

𝑝𝑋𝑖
0 (1 − 𝑝0)1−𝑋𝑖 =

1

26

𝐿(𝑋1, . . . , 𝑋6, 𝑝1) =
∏︁
𝑖

𝑝𝑋𝑖
1 (1 − 𝑝1)1−𝑋𝑖

= 0.9
∑︀

𝑖 𝑋𝑖 · 0.16−
∑︀

𝑖 𝑋𝑖 = 0.16 · 9
∑︀

𝑖 𝑋𝑖

So likelihood ratio decreases with
∑︀

𝑖 𝑋𝑖.

Sometimes we need to consider composite hypothesis, i.e. cases when
𝐻0 and 𝐻1 does not completely determine the distribution of 𝑋. Suppose
𝐻0 : 𝜃 ∈ 𝐷0, 𝐻1 : 𝜃 ∈ 𝐷1, the likelihood ratio test becomes:

(𝑋, {𝑥 :
sup𝜃∈𝐷0

𝐿(𝑥, 𝜃)

sup𝜃∈𝐷0∪𝐷1
𝐿(𝑥, 𝜃)

≤ 𝑘})

How would you do likelihood ratio test for the following examples:

� 𝑋𝑖 i.i.d. Bernoulli(p). 𝐻0 : 𝑝 = 0.5, 𝐻1 : 𝑝 ̸= 0.5.

� 𝑋𝑖 i.i.d. 𝒩 (𝜇, 1). 𝐻0 : 𝜇 = 0, 𝐻1 : 𝜇 ̸= 0.

Answer:

� Likelihood under 𝐻0 is

𝐿0 =
∏︁
𝑖

0.5𝑋𝑖(1 − 0.5)1−𝑋𝑖 = 0.5𝑛
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maximum likelihood under 𝐻0 or 𝐻1 is

𝐿1 = sup
𝑝

∏︁
𝑖

𝑝𝑋𝑖 (1 − 𝑝)1−𝑋𝑖

= sup
𝑝

𝑝
∑︀

𝑖 𝑋𝑖(1 − 𝑝)𝑛−
∑︀

𝑖 𝑋𝑖

= (
∑︁
𝑖

𝑋𝑖/𝑛)
∑︀

𝑖 𝑋𝑖(1 −
∑︁
𝑖

𝑋𝑖/𝑛)𝑛−
∑︀

𝑖 𝑋𝑖

It is easy to see that the likelihood ration 𝐿0/𝐿1, as a function of
∑︀

𝑖 𝑋𝑖, is
symmetric with regards to 𝑛/2, and takes its maximum at

∑︀
𝑖 𝑋𝑖 = 𝑛/2.

So the likelihood ratio test must be of the form: |
∑︀

𝑖 𝑋𝑖 − 𝑛/2| ≥ 𝐶 for
some 𝐶.

� Likelihood under 𝐻0 is

𝐿0 =
∏︁
𝑖

1√
2𝜋

𝑒−𝑋2
𝑖 /2 = (2𝜋)−𝑛/2𝑒−

∑︀
𝑖 𝑋2

𝑖
2

maximum likelihood under 𝐻0 or 𝐻1 is

𝐿1 = sup
𝜇

∏︁
𝑖

1√
2𝜋

𝑒−(𝑋𝑖−𝜇)2/2

= sup
𝜇

(2𝜋)−𝑛/2𝑒−
∑︀

𝑖(𝑋𝑖−𝜇)2

2

= (2𝜋)−𝑛/2𝑒−
∑︀

𝑖 𝑋2
𝑖 −(

∑︀
𝑖 𝑋𝑖)

2/𝑛

2

So

𝐿0/𝐿1 = 𝑒−
(
∑︀

𝑖 𝑋𝑖)
2

2𝑛

So the likelihood ratio test must be of the form |
∑︀

𝑖 𝑋𝑖| ≥ 𝐶.

9.3 Proof of Neyman-Pearson Lemma

Neyman-Pearson test has the highest power for given significance, and lowest
significance level for given power.

Proof in continuous case: Let 𝑋 taking value in R𝑛, 𝑘 be the threshold of
the Neyman-Pearson test with significance 𝛼. In other words,∫︁

𝑓𝑋|𝐻0
(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘

𝑓𝑋|𝐻0
(𝑥)𝑑𝑥 = 𝛼

Then its power is 𝛽0 =
∫︀

𝑓𝑋|𝐻0
(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘
𝑓𝑋|𝐻1

(𝑥)𝑑𝑥.
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Suppose another test (𝑍,𝐴) has significance 𝛼, then by definition of condi-
tional p.d.f., ∫︁

R𝑛

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻0
(𝑥)𝑑𝑥 = 𝛼

While the power is∫︁
R𝑛

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻1
(𝑥)𝑑𝑥

=

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻1
(𝑥)𝑑𝑥 +

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

>𝑘

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻1
(𝑥)𝑑𝑥

= 𝛽0 −
∫︁

𝑓𝑋|𝐻0
(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘

𝑃 (𝑍 ̸∈ 𝐴|𝑋)𝑓𝑋|𝐻1
(𝑥)𝑑𝑥 +

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

>𝑘

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻1
(𝑥)𝑑𝑥

≤ 𝛽0 −
1

𝑘

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘

𝑃 (𝑍 ̸∈ 𝐴|𝑋)𝑓𝑋|𝐻0
(𝑥)𝑑𝑥 +

1

𝑘

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

>𝑘

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻0
(𝑥)𝑑𝑥

= 𝛽0 −
1

𝑘

∫︁
𝑓𝑋|𝐻0

(𝑥)

𝑓𝑋|𝐻1
(𝑥)

≤𝑘

𝑓𝑋|𝐻0
(𝑥)𝑑𝑥 +

1

𝑘

∫︁
R𝑛

𝑃 (𝑍 ∈ 𝐴|𝑋)𝑓𝑋|𝐻0
(𝑥)𝑑𝑥

= 𝛽0

10 Examples of hypothesis testing

10.1 Significance and p-value

𝑋 ∼ 𝐹 (𝜃), 𝐻0 : 𝜃 ∈ 𝐷0.
Suppose a family of statistical tests with parameter 𝑘 is 𝑋 ∈ 𝐴(𝑘).
Then:

� The significance level of the test 𝑋 ∈ 𝐴(𝑘) is 𝛼 = sup𝜃∈𝐷0
𝑃 (𝑋 ∈ 𝐴(𝑘)|𝜃)

� The p-value for 𝑥, which is an observed value of 𝑋, is

𝑝 = inf
𝑘∈{𝑘:𝑥∈𝐴(𝑘)}

sup
𝜃∈𝐷0

𝑃 (𝑋 ∈ 𝐴(𝑘))

� Suppose the test 𝑋 ∈ 𝐴(𝑘0) has significance level 𝛼0. Then 𝑥 ∈ 𝐴(𝑘0)
(i.e. 𝑋 = 𝑥 results in rejection of 𝐻0 under this test) implies that 𝑥 has
a p-value no larger than 𝛼0, and 𝑥 has p-value less than 𝛼0 implies that
𝑥 ∈ 𝐴(𝑘0).

Proof: Let 𝛼(𝑘) = sup𝜃∈𝐷0
𝑃 (𝑋 ∈ 𝐴(𝑘)|𝜃), then because 𝑃 (𝑋 ∈ 𝐴(𝑘)|𝜃)

is non-increasing, 𝑘 ↦→ 𝛼(𝑘) is non increasing. Furthermore, by assump-
tion, 𝛼(𝑘0) = 𝛼0, and 𝛼(𝑘) > 𝛼0 =⇒ 𝑘 > 𝑘0, and the p-value for 𝑥
is

𝑝 = inf
𝑘∈{𝑘:𝑥∈𝐴(𝑘)}

𝛼(𝑘)
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Suppose 𝑥 ∈ 𝐴(𝑘0), then the p-value of 𝑥 is 𝑝 = inf𝑘∈{𝑘:𝑥∈𝐴(𝑘)} 𝛼(𝑘) ≤
𝛼(𝑘0) = 𝛼0.

Now suppose the p-value of 𝑥 is less than 𝛼0, then there is some 𝑘′ such
that 𝑥 ∈ 𝐴(𝑘′) and 𝛼(𝑘′) < 𝛼0. Hence, 𝑘′ ≤ 𝑘0, 𝑥 ∈ 𝐴(𝑘′) ⊂ 𝐴(𝑘0).

� Suppose a statistical test with significance level 0.05 is used to test covid-
19, null hypothesis being not having covid-19. If your test come out posi-
tive, what do you know about your probability of getting covid-19?

� Let 𝑝 be a function that sends observed value 𝑋 to a p-value. What can
you say about the c.d.f. of random variable 𝑝(𝑋)?

10.2 Some Examples

Example 1

𝑋𝑖 i.i.d., Bernoulli distribution with parameter 𝑝. 𝐻0 : 𝑝 = 𝑝0, 𝐻1 : 𝑝 ̸= 𝑝0.

Likelihood ratio test: ∏︀
𝑖 𝑝

𝑋𝑖
0 (1 − 𝑝0)1−𝑋𝑖

sup𝑝

∏︀
𝑖 𝑝

𝑋𝑖(1 − 𝑝)1−𝑋𝑖
≤ 𝑘

𝑝
∑︀

𝑖 𝑋𝑖

0 (1 − 𝑝0)𝑛−
∑︀

𝑖 𝑋𝑖

( 1
𝑛

∑︀
𝑖 𝑋𝑖)

∑︀
𝑖 𝑋𝑖(1 − 1

𝑛

∑︀
𝑖 𝑋𝑖)𝑛−

∑︀
𝑖 𝑋𝑖

≤ 𝑘

log(𝐿𝐻𝑆) = 𝑛𝑋(log(𝑝0) − log(𝑋)) + 𝑛(1 −𝑋)(log(1 − 𝑝0) − log(1 −𝑋))

Which is non positive and 0 iff 𝑋 = 𝑝0. So for 𝑘 close to 1 the test should be of
the form:

|𝑋 − 𝑝0| > 𝜖

From CLT, if 𝑛 >> 1, under 𝐻0,
√︁

𝑛
𝑝0(1−𝑝0)

· (𝑋 − 𝑝0) has distribution close

to 𝒩 (0, 1), so the test with significance level 𝛼 is roughly |𝑋 − 𝑝0| ≥ Φ−1(1 −
𝛼/2)

√︁
𝑝0(1−𝑝0)

𝑛 where Φ is the cdf of 𝒩 (0, 1). The reason is that under 𝐻0, if a

test of the form |𝑍| ≥ 𝑐 has significance 𝛼, where 𝑍 ∼ 𝒩 (0, 1), then

𝛼 = 𝑃 (𝑍 ≤ 𝑐 ∪ 𝑍 ≥ 𝑐) = 2𝑃 (𝑍 ≥ 𝑐) = 2(1 − Φ(𝑐))

So 𝑐 = Φ−1(1 − 𝛼/2). Now let 𝑍 =
√︁

𝑛
𝑝0(1−𝑝0)

· (𝑋 − 𝑝0) one gets the answer.

And the p-value for given 𝑋 = 𝑥 is

𝑝 = inf{𝛼 : |𝑥− 𝑝0| ≥ Φ−1(1 − 𝛼/2)

√︂
𝑝0(1 − 𝑝0)

𝑛
}
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= 2(1 − Φ(

√︂
𝑛

𝑝0(1 − 𝑝0)
· |𝑥− 𝑝0|))

Suppose 𝑛 = 100, 𝑝0 = 0.5, 60 of the 𝑋𝑖 has a value of 1 and 40 has a value
of 0. We want to test if 𝐻0 : 𝑝 = 𝑝0 is true with a significance level 0.05.

� Method 1: The test with significance level 0.05 is roughly |𝑋 − 𝑝0| ≥
Φ−1(1 − 0.05/2)

√︁
𝑝0(1−𝑝0)

𝑛 = 0.0980. 𝑋 − 𝑝0 = 0.1 which is larger than

the threshold, hence we should reject 𝐻0.

� Method 2: Calculate the p-value, we get 𝑝 = 2(1 − Φ(
√︁

𝑛
𝑝0(1−𝑝0)

· |𝑋 −
𝑝0|)) = 0.0455 ≤ 0.05, so we should reject 𝐻0.

As a review:

� Significance level of a test: highest possible probability of false positive
under 𝐻0. It is a increasing function of the threshold 𝑘.

� p-value of a possible value of 𝑋: the significance level of the test with the
lowest threshold that rejects 𝐻0.

� How to test 𝐻0 with given significance level 𝛼:

– Method I: Find the threshold 𝑘 corresponding to 𝛼, test the observed
value of 𝑋 using threshold 𝑘.

– Method II: Find the p-value corresponding to the observed value of
𝑋, compare it with 𝛼.

Example 2

𝑋𝑖 i.i.d. 𝒩 (𝜇, 𝜎2), here 𝜇 and 𝜎2 are both unknown. 𝐻0 : 𝜇 = 0, 𝐻1 : 𝜇 ̸= 0.

Likelihood ratio test:

sup𝜎2(2𝜋𝜎2)−𝑛/2
∏︀

𝑖 𝑒
−𝑋2

𝑖 /2𝜎
2

sup𝜇,𝜎2(2𝜋𝜎2)−𝑛/2
∏︀

𝑖 𝑒
−(𝑋𝑖−𝜇)2/2𝜎2 ≤ 𝑘

Do the optimization we get the optimal 𝜇 is 𝑋, the optimal 𝜎2 in denom-
inator is 1

𝑛

∑︀
𝑖 𝑋

2
𝑖 , and the optimal 𝜎2 in the numerator is 1

𝑛

∑︀
𝑖(𝑋𝑖 − 𝑋) =

1
𝑛

∑︀
𝑖 𝑋

2
𝑖 −𝑋

2
. (Recall examples we did in MLE).

Hence

log(𝑘) ≥ log(𝐿𝐻𝑆) = −𝑛

2
(log(

1

𝑛

∑︁
𝑖

𝑋2
𝑖 ) − log(

1

𝑛

∑︁
𝑖

𝑋2
𝑖 −𝑋

2
)) +

𝑛

2
− 𝑛

2

=
𝑛

2
log(1 − 𝑋

2

1
𝑛

∑︀
𝑖 𝑋

2
𝑖

) = ℎ(| 𝑋√︀
𝑆2/𝑛

|)
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Where ℎ(𝑡) = 𝑛
2 log(1 − 1

1+ 1
(𝑛−1)𝑡2

).

So the LRT must be of the form

⃒⃒⃒⃒
𝑋√
𝑆2/𝑛

⃒⃒⃒⃒
≥ 𝑀 . From the definition of

𝑡-distribution, we know that if

𝑋𝑖 ∼ 𝒩 (0, 𝜎2)

Then
(𝑛− 1)𝑆2/𝜎2 ∼ 𝜒(𝑛− 1)

𝑋/
√︀

𝜎2/𝑛 ∼ 𝒩 (0, 1)

So
𝑋√︀
𝑆2/𝑛

=
𝑋/

√︀
𝜎2/𝑛√︀

((𝑛− 1)𝑆2/𝜎2)/(𝑛− 1)
∼ 𝑡(𝑛− 1)

For any observed value 𝑥𝑖, let 𝑥 and 𝑠2 be the sample mean and sample variance,
then the largest threshold 𝑀 which yield positive result (which corresponds to
the smallest 𝑘) is:

𝑀0 =

⃒⃒⃒⃒
⃒ 𝑥√︀

𝑠2/𝑛

⃒⃒⃒⃒
⃒

The p-value, which is the significance level of the test with threshold 𝑀0, is:

𝑝 = 𝑃 (

⃒⃒⃒⃒
⃒ 𝑋√︀

𝑆2/𝑛

⃒⃒⃒⃒
⃒ ≥ 𝑀0|

𝑋√︀
𝑆2/𝑛

∼ 𝑡(𝑛− 1))

= 2(1 − 𝑇 (

⃒⃒⃒⃒
⃒ 𝑥√︀

𝑠2/𝑛

⃒⃒⃒⃒
⃒)

Where 𝑇 is the cdf of 𝑡(𝑛− 1).
Example 3

𝑋𝑖 i.i.d. 𝒩 (𝜇, 𝜎2), here 𝜇 and 𝜎2 are both unknown. 𝐻0 : 𝜇 ≤ 0, 𝐻1 : 𝜇 > 0.

Likelihood ratio test:

sup𝜇≤0,𝜎2(2𝜋𝜎2)−𝑛/2
∏︀

𝑖 𝑒
−(𝑋𝑖−𝜇)2/2𝜎2

sup𝜇,𝜎2(2𝜋𝜎2)−𝑛/2
∏︀

𝑖 𝑒
−(𝑋𝑖−𝜇)2/2𝜎2 ≤ 𝑘

The likelihood ratio is 1 if
∑︀

𝑖 𝑋𝑖 ≤ 0, and the same as Example 2 if
∑︀

𝑖 𝑋𝑖 >
0. Hence, the LRT is of the form:⃒⃒⃒⃒

⃒ 𝑋√︀
𝑆2/𝑛

⃒⃒⃒⃒
⃒ ≥ 𝑀 and 𝑋 > 0

Hence
𝑋√︀
𝑆2/𝑛

≥ 𝑀
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Hence, for given significant level 𝛼 we let

𝑀 = 𝑇−1(1 − 𝛼)

For given value 𝑥𝑖 we can calculate the p-value as

𝑝 = 1 − 𝑇 (
𝑥√︀
𝑠2/𝑛

)

Where 𝑥 and 𝑠2 are the calculated sample mean and sample variance.

Some conceptual questions

� Suppose a statistical test with significance level 0.05 is used to test covid-
19, null hypothesis being not having covid-19. If your test come out posi-
tive, what do you know about your probability of getting covid-19?

� Let 𝑝 be a function that sends observed value 𝑋 to a p-value. What can
you say about the c.d.f. of random variable 𝑝(𝑋) when 𝐻0 is true?

Answer:

� Nothing. Because 𝑃 (infected|tested positive) can not be calculated from
𝑃 (tested positive|uninfected) which is known to be 0.05.

� The c.d.f. of 𝑝(𝑋) at any value 𝑞 ∈ [0, 1] is bounded from above by 𝑞.

Midterm 2 will cover up to here.

10.3 Commonly used statistical tests

Some common hypothesis testing problems have well known tests, which are
usually either LRT or approximated LRT. We will illustrate via examples how
to use some of the tests in Chapter 13 of the textbook.

Usually a statistical test is stated as follows:

Testing 𝐻0 against 𝐻1, test statistics 𝑧 = 𝑧(𝑋), critical region of
size (significance level) 𝛼 is 𝑧 ∈ 𝐷𝛼.

For example, for the One sample, One sided t-test:
𝑋1, . . . 𝑋𝑛, i.i.d. ∼ 𝒩 (𝜇, 𝜎2). Testing 𝜇 ≤ 0 against 𝜇 > 0. Test

statistics 𝑡 = 𝑋√
𝑆2/𝑛

Critical region 𝑡 ≥ 𝑇−1(1 − 𝛼), where 𝑇 is the cdf

of 𝑡(𝑛− 1).
To make use of it, say 𝑛 = 5 and 𝑋𝑖 are −1, 0, 1, 2, 1. The 𝑡 statistics can

be calculated as 1.1767. 𝑇−1(1 − 0.05) = 2.1318, so we can not reject 𝐻0 when
significance level is chosen to be 0.05. The minimal 𝛼 such that 1.1767 is in the
critical region is 1 − 𝑇 (1.1767) = 0.1523, so the p-value is 0.1523.

If 𝑋𝑖 are 0, 1, 2, 3, 4 however, 𝑡 = 2.8284 ≥ 2.1318, so reject 𝐻0 under signif-
icance level 0.05. The p-value is 0.0237.
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Sometimes we make use of a test indirectly by transforming the observed
random variables: from some observed random variables 𝑋, we build random
variables 𝑌 , and use a known test on 𝑌 . For example: 𝑋𝑖 𝑖 = 1, . . . 10 i.i.d.
𝒩 (𝜇1, 𝜎

2
1), 𝑌𝑖, 𝑖 = 1, . . . 10, i.i.d. 𝒩 (𝜇2, 𝜎

2
2), 𝑋𝑖 and 𝑌𝑗 are all independent.

Want to test if 𝜇1 = 𝜇2. One way to do so would be to consider 𝑍𝑖 = 𝑋𝑖 − 𝑌𝑖,
which are i.i.d.normal, and test if their expectation is 0.

This approach usually won’t give us the most powerful test as we are losing
information during the transformation. However in many situations this is good
enough.

10.3.1 Tests about expectation and variance

𝑋𝑖 i.i.d. 𝑖 = 1, . . . , 𝑛, ∼ 𝒩 (𝜇, 𝜎2).

� Test 𝜇 = 𝜇0 against 𝜇 ̸= 𝜇0. 𝑡 = 𝑋−𝜇0√
𝑆2/𝑛

, critical region |𝑡| ≥ 𝐹−1
𝑡(𝑛−1)(1 −

𝛼/2), where 𝐹𝑡(𝑛−1) is the c.d.f. of 𝑡(𝑛− 1).

� Test 𝜇 ≤ 𝜇0 against 𝜇 > 𝜇0, same 𝑡 as above, critical region 𝑡 ≥ 𝐹−1
𝑡(𝑛−1)(1−

𝛼, 𝑛− 1).

� Test 𝜎2 = 𝜎2
0 : 𝜒2 = (𝑛− 1)𝑆2/𝜎2

0 , critical region 𝜒2 ∈ (0, 𝐹−1
𝜒(𝑛−1)(𝛼/2)] ∪

[𝐹−1
𝜒(𝑛−1)(1 − 𝛼/2),∞)

� Test 𝜎2 ≤ 𝜎2
0 against 𝜎2 > 𝜎2

0 : 𝜒 same as above, critical region 𝜒2 ≥
𝐹−1
𝜒(𝑛−1)(1 − 𝛼).

� Test 𝜎2 ≥ 𝜎2
0 against 𝜎2 < 𝜎2

0 : 𝜒 same as above, critical region 𝜒2 ≤
𝐹−1
𝜒(𝑛−1)(𝛼).

𝑋𝑖, 𝑖 = 1, . . . 𝑛1 i.i.d. 𝒩 (𝜇1, 𝜎
2
1), 𝑌𝑖 𝑖 = 1, . . . 𝑛2 i.i.d. 𝒩 (𝜇2, 𝜎

2
2), 𝑋𝑖, 𝑌𝑗 indep.

� Test for 𝜇1 = 𝜇2 against 𝜇1 ̸= 𝜇2, knowing 𝜎2
1 and 𝜎2

2 . 𝑧 = 𝑥−𝑦√
𝜎2
2/𝑛1+𝜎2

2/𝑛2

.

Critical region |𝑧| ≥ 𝐹−1
𝒩 (0,1)(1 − 𝛼/2).

� If 𝜎2
𝑖 unknown but number of samples is large, can approximate them with

𝑆2.

� 𝜎2
1 = 𝜎2

2 but unknown, test 𝜇1 = 𝜇2 against 𝜇1 ̸= 𝜇2:

𝑡 =
𝑋 − 𝑌√︂

(1/𝑛1 + 1/𝑛2) ·
(︁

(𝑛1−1)𝑆2
𝑋+(𝑛2−1)𝑆2

𝑌

𝑛1+𝑛2−2

)︁
Critical region |𝑡| ≥ 𝐹−1

𝑡(𝑛1+𝑛2−2)(1 − 𝛼/2).

� One sided tests are similar.
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𝑋𝑖, 𝑖 = 1, . . . 𝑛1 i.i.d. 𝒩 (𝜇1, 𝜎
2
1), 𝑌𝑖 𝑖 = 1, . . . 𝑛2 i.i.d. 𝒩 (𝜇2, 𝜎

2
2), 𝑋𝑖, 𝑌𝑗

indep.

� Testing 𝜎2
1 = 𝜎2

2 against 𝜎2
1 ̸= 𝜎2

2 . 𝑓 = 𝑆2
𝑋/𝑆2

𝑌 . Critical region 𝑓 ∈
(0, 𝐹−1

𝐹 (𝑛1−1,𝑛2−1)(𝛼/2)] ∪ [𝐹−1
𝐹 (𝑛1−1,𝑛2−1)(1 − 𝛼/2),∞).

� One sided tests are similar.

One can check by calculation that all these tests have the significance level
𝛼.

The final exam is open book so one doesn’t need to memorize any of these
statistical tests, just need to know how to use them would be enough!

10.3.2 Pearson’s 𝜒2-test for Goodness of fit

𝑋𝑖 i.i.d. taking values at {1, 2, . . .𝑚}. Test for null hypothesis: 𝑃 (𝑋 = 𝑗) = 𝑒𝑗 ,
where 𝑒𝑗 = 𝑓(𝑗, 𝜃1, . . . , 𝜃𝑘). Let 𝑛𝑗 be the number of 𝑋𝑖 taking value 𝑗. Then
likelihood ratio test gives:

sup𝜃1,...,𝜃𝑘

∏︀
𝑗 𝑒

𝑛𝑗

𝑗

sup𝑝𝑗 ,
∑︀

𝑗 𝑝𝑗=1

∏︀
𝑗 𝑝

𝑛𝑗

𝑗

≤ 𝑘

The optimal 𝑝𝑗 is 𝑛𝑗/𝑛 where 𝑛 =
∑︀

𝑗 𝑛𝑗 . So

log(𝐿𝐻𝑆) =
∑︁
𝑗

𝑛𝑗(− log(
𝑛𝑗/𝑛

𝑒𝑗
)) =

∑︁
𝑗

𝑛𝑗(− log(1 +
𝑛𝑗 − 𝑛𝑒𝑗

𝑛𝑒𝑗
))

Taylor expansion at 𝑛𝑗 = 𝑛𝑒𝑗 , we get approximated LRT:

∑︁
𝑗

(𝑛𝑗 − 𝑛𝑒𝑗)
2

𝑒𝑗
≥ 𝑚

When 𝑛 is large, and with some additional assumptions, the test statistics ∼
𝜒2(𝑚− 𝑘 − 1).

11 Midterm 2 Review

� MOM

� Bayesian-based point estimates: expectation of posterior, MAP, etc.

� Neyman-Pearson test (the proof that it is optimal will not be tested in
the exam)

� Likelihood ratio test

� Significance, power, and p-value
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12 Confidence interval

Setting: 𝑋 has p.d.f. (or p.d.) 𝑓(𝑥, 𝜃), where 𝜃 is unknown.

� Point estimate: find a random variable 𝜃 based on 𝑋, which is close to
𝜃.

� Hypothesis testing: given 𝜃0, we can tell how unlikely it is to get the
observed value of 𝑋 if 𝜃 = 𝜃0.

� Confidence interval is related to both of these concepts:

– Conceptually, confidence interval is an extension of point estimate:
this is a random variable taking value in the set of sets, such that 𝜃
is in it with probability 1 − 𝛼.

– Mathematically, confidence intervals are equivalent to certain types
of statistical tests.

The 1 − 𝛼-confidence interval of 𝜃 is a set 𝐼(𝑋) depending on 𝑋, such
that for any possible value of 𝜃, 𝑃 (𝜃 ∈ 𝐼(𝑋)|𝜃) = 1 − 𝛼.

Equivalence between confidence intervals and statistical tests:

� If 𝑋 ∈ 𝐷(𝜃0) is a statistical test of the null hypothesis 𝐻0 : 𝜃 = 𝜃0,
which has significance level 𝛼. Then 𝐼(𝑋) = {𝜃0 : 𝑋 ̸∈ 𝐷(𝜃0)} is a 1 − 𝛼
confidence interval for 𝜃.

� If 𝐼(𝑋) is a 1−𝛼 confidence interval for 𝑋, then 𝜃0 ̸∈ 𝐼(𝑋) is a statistical
test of the null hypothesis 𝐻0 : 𝜃 = 𝜃0.

Proof:

� Suppose 𝑃 (𝑋 ∈ 𝐷(𝜃)|𝜃) = 𝛼. Let

𝐼(𝑋) = {𝜃 : 𝑋 ̸∈ 𝐷(𝜃)}

then
𝑃 (𝜃 ∈ 𝐼(𝑋)|𝜃) = 𝑃 (𝑋 ̸∈ 𝐷(𝜃)|𝜃)

= 1 − 𝑃 (𝑋 ∈ 𝐷(𝜃)|𝜃) = 1 − 𝛼

� Suppose 𝑃 (𝜃 ∈ 𝐼(𝑋)|𝜃) = 1 − 𝛼. Let

𝐷(𝜃0) = {𝑋 : 𝜃0 ̸∈ 𝐼(𝑋)}

Then
𝑃 (𝑋 ∈ 𝐷(𝜃)|𝜃) = 𝑃 (𝜃 ̸∈ 𝐼(𝑋)|𝜃)

= 1 − 𝑃 (𝜃 ∈ 𝐼(𝑋)|𝜃) = 𝛼
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In some textbooks the CI is defined as 𝑃 (𝜃 ∈ 𝐼(𝑋)|𝜃) ≥ 1 − 𝛼, then, they
should correspond to statistical tests of significance level ≤ 𝛼. They will not be
the focus of this course, but in case we need to mention them in examples, let’s
call them CI with confidence level at least 1 − 𝛼.

Example 1: 𝑋 normal distribution with expectation 𝜇 and variance 1. Find
the 0.95 confidence interval for 𝜇.

Likelihood ratio test for 𝐻0 : 𝜇 = 𝜇0 against 𝐻1 : 𝜇 ̸= 𝜇0:

𝑒−(𝑋−𝜇0)
2/2

sup𝜇 𝑒
−(𝑋−𝜇)2/2

≤ 𝑘

The optimal 𝜇 is 𝑋, so the LRT is

|𝑋 − 𝜇0| ≥
√︀

−2 log(𝑘)

Let Φ be the c.d.f. of standard normal distribution. The significance level is the
probability of success under null hypothesis, and under null hypothesis, 𝑋 −𝜇0

is standard normal. So,

𝛼 = 2(1 − Φ(
√︀

−2 log(𝑘)))

So the test
|𝑋 − 𝜇0| ≥ Φ−1(0.975)

Is a test with significance level 𝛼, the confidence interval is

𝐼(𝑋) = {𝜇 : |𝑋 − 𝜇| ≤ Φ−1(0.975)} = [𝑋 − Φ−1(0.975), 𝑋 + Φ−1(0.975)]

One sided confidence interval: Sometimes we want the confidence in-
terval to be one sided, like 𝐼 = [𝑎(𝑋),∞). The statistical test associated to
it should be 𝑚𝑢 < 𝑎(𝑋), in other words, it should only reject null hypothesis
𝜇 = 𝜇0 if 𝜇0 is too small. Hence, let’s consider 𝐻0 : 𝜇 = 𝜇0 and 𝐻1 : 𝜇 > 𝜇0,
then the LRT becomes

𝑒−(𝑋−𝜇0)
2/2

sup𝜇≥𝜇0
𝑒−(𝑋−𝜇)2/2

≤ 𝑘

So the optimal 𝜇 is 𝜇0 if 𝑋 ≤ 𝜇0, 𝑋 if 𝑋 > 𝜇0. So the test is

𝑋 − 𝜇0 ≥
√︀
−2 log(𝑘)

When 𝑘 < 1, and everything when 𝑘 = 1. So

𝛼 = 0.05 = 1 − Φ(
√︀
−2 log(𝑘))

𝑋 − 𝜇0 ≥ Φ−1(0.95)

𝐼(𝑋) = {𝜇 : 𝑋 − 𝜇 ≤ Φ−1(0.95)} = [𝑋 − Φ−1(0.95),∞)

28



In general, if 𝐼(𝑋) is one-sided, e.g. of the form [𝐴(𝑋),∞), the
corresponding statistical test must be of the form 𝜃0 ≤ 𝛼(𝑋). In other
words, the null hypothesis can be rejected is only if 𝜃0 is too small,
i.e. when 𝜃0 < 𝜃. Hence the power function of the test must be no
more than 𝛼 on (−∞, 𝜃0], and one can pick the alternative hypothesis
as 𝜃0 < 𝜃.

� As an exercise, read Chapter 11 and Chapter 13. For every statistical test
in 13.2-13.6, find the corresponding confidence interval, if there are any,
from 11.2-11.7.

� True or false: suppose based on the statistics up to today, the reproductive
number 𝑅0 of covid-19 has a 95% confidence interval [2.1, 2.5]. Then the
probability of 𝑅0 being between 2.1 and 2.5 is 0.95. (Answer: False)

� True or false: suppose after the covid-19 outbreak we found a very good
model for estimating the 𝑅0 of an epidemic, and this model gives a 95%
confidence interval to the 𝑅0 of the next pandemic. Then, the probability
of 𝑅0 lying in this confidence interval is 0.95. (Answer: True)

The next part in blue will not be in the exam:

One can create some analogy of hypothesis testing and confidence interval
under Bayesian statistics as well, which is conceptually much simpler but com-
pletely different from the ones we learn in the non-Bayesian setting:

� Recall that the output of Bayesian statistics is the posterior, i.e. condi-
tional distribution of 𝜃 conditioned at 𝑋.

� For a hypothesis 𝐻 : 𝜃 ∈ 𝐷, we can calculate its probability under this
posterior 𝑃 (𝜃 ∈ 𝐷|𝑋), and reject it when this probability is small.

� The 1 − 𝛼-credible interval is 𝐽(𝑋) such that 𝑃 (𝜃 ∈ 𝐽(𝑋)|𝑋) = 1 − 𝛼.

Example 2: normal approximation of binomial distribution
𝑋 ∼ 𝐵(𝑛, 𝑝), 𝑛 >> 1, 𝑝 not too close to 0 or 1. Want CI of 𝑝.
From what we learned some weeks ago, we have an approximated LRT based

on CLT which says that the test for 𝑝 = 𝑝0 against 𝑝 ̸= 𝑝0 with significance
level 𝛼 is

|𝑋/𝑛− 𝑝0| ≥
√︂

𝑝0(1 − 𝑝0)

𝑛
· Φ−1(1 − 𝛼/2)

Where Φ is the cdf of standard normal.

So the approximated 1 − 𝛼 CI is

{𝑝 : |𝑋/𝑛− 𝑝| ≤
√︂

𝑝(1 − 𝑝)

𝑛
· Φ−1(1 − 𝛼/2)} = [𝑝1, 𝑝2]
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Where

𝑋/𝑛− 𝑝1 =

√︂
𝑝1(1 − 𝑝1)

𝑛
· Φ−1(1 − 𝛼/2)

𝑝2 −𝑋/𝑛 =

√︂
𝑝2(1 − 𝑝2)

𝑛
· Φ−1(1 − 𝛼/2)

Because 𝑛 >> 0, 𝑝1, 𝑝2 ≈ 𝑋/𝑛, we have

[𝑝1, 𝑝2] = [𝑋/𝑛−
√︂

𝑋(𝑛−𝑋)

𝑛3
· Φ−1(1 − 𝛼/2),

𝑋/𝑛 +

√︂
𝑋(𝑛−𝑋)

𝑛3
· Φ−1(1 − 𝛼/2)]

Example 3: Exponential distribution

𝑋 has p.d.f. 𝑓(𝑥) =

{︃
𝑐𝑒−𝑐𝑥 𝑥 ≥ 0

0 𝑥 ≤ 0
. Find the one sided CI of the form

(0, 𝐴].
LRT with 𝐻0 : 𝑐 = 𝑐0 and 𝐻1 : 𝑐 < 𝑐0.

𝑐0𝑒
−𝑐0𝑋

sup𝑐≤𝑐0 𝑐𝑒
−𝑐𝑋

≤ 𝑘

If 𝑋 ≤ 1/𝑐0 the LHS is 1, if 𝑋 > 1/𝑐0, the optimal 𝑐 in denominator is 1/𝑋,
and we get

log(𝑐0) −𝑋𝑐0 ≤ log(𝑘) − log(𝑋) − 1

𝑐0𝑋 − log(𝑋) ≥ log(𝑐0) + 1 − log(𝑘)

The LHS is an increasing function, so the test must be of the form 𝑋 ≥ 𝑀 . If
we want the significance level to be 𝛼,

𝛼 = 𝑃 (𝑋 ≥ 𝑀 |𝑐 = 𝑐0) =

∫︁ ∞

𝑀

𝑓(𝑠)𝑑𝑠

So 𝑀 = − log(𝛼)/𝑐0. The one sided CI is now

{𝑐 : 𝑋 ≤ − log(𝛼)/𝑐} = (0,− log(𝛼)/𝑋]

Example 4: Making use of the F-test
Suppose there are 2 independent i.i.d. normal samples 𝑋𝑖, 𝑖 = 1, . . . 𝑛1, 𝑌𝑗 ,

𝑗 = 1, . . . 𝑛2, with variance 𝜎2
1 and 𝜎2

2 respectively. Want the one sided CI of
𝜎2
1/𝜎

2
2 of the form (0, 𝐴].

𝐻0 : 𝜎2
1/𝜎

2
2 = 𝑟, 𝐻1 : 𝜎2

1/𝜎
2
2 < 𝑟. Let 𝑌 ′

𝑗 = 𝑟1/2𝑌𝑗 , then the test is for
𝑉 𝑎𝑟(𝑋𝑖) = 𝑉 𝑎𝑟(𝑌 ′

𝑗 ) against 𝑉 𝑎𝑟(𝑋𝑖) ≤ 𝑉 𝑎𝑟(𝑌 ′
𝑗 ), use one sided F-test with

significance level 𝛼 is:

𝑆2
𝑋/𝑆2

𝑌 ′ = 𝑆2
𝑋/(𝑟𝑆2

𝑌 ) ≤ 𝐹−1
𝐹 (𝑛1−1,𝑛2−1)(𝛼)
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So CI with CL 1 − 𝛼 is

{𝑟 : 𝑆2
𝑋/(𝑟𝑆2

𝑌 ) ≥ 𝐹−1
𝐹 (𝑛1−1,𝑛2−1)(𝛼)}

= (0,
𝑆2
𝑋

𝑆2
𝑌 𝐹

−1
𝐹 (𝑛1−1,𝑛2−1)(𝛼)

]

In the textbook they used the relationship 𝐹−1
𝐹 (𝑛1−1,𝑛2−1)(𝛼) = (𝐹−1

𝐹 (𝑛2−1,𝑛1−1)(1−
𝛼))−1.

The CI for 𝑡-, 𝜒2- etc. tests are analogous.

When 𝑛1 >> 1, 𝑛2 >> 1, CLT allow us to do normal approximation for the
𝜒2 distribution. This can also be used to derive approximated CI for the ratio
of variance:

By definition, 𝜒2(𝑘) is the squared sum of 𝑘 standard normal, so CLT tells
us, if 𝑋 ∼ 𝜒2(𝑘), when 𝑘 → ∞, 𝑋−𝑘√

2𝑘
→ standard normal.

(𝑛1 − 1)𝑆2
𝑋

𝜎2
1

∼ 𝜒2(𝑛1 − 1)

So
(𝑛1 − 1)(𝑆2

𝑋 − 𝜎2
1)

𝜎2
1

√
2𝑛1 − 2

→ 𝒩 (0, 1)

Similarly
(𝑛2 − 1)(𝑆2

𝑌 − 𝜎2
2)

𝜎2
2

√
2𝑛2 − 2

→ 𝒩 (0, 1)

Hence the distribution of 𝑆2
𝑋−𝑟𝑆2

𝑌 is approximately 𝒩 (𝜎2
1−𝑟𝜎2

2 ,
2𝜎4

1

𝑛1−1 +
2𝜎4

2

𝑛2−1 ) ≈
𝒩 (𝜎2

1 − 𝑟𝜎2
2 ,

2𝑆4
𝑋

𝑛1−1 +
2𝑟2𝑆4

𝑌

𝑛2−1 ), so the test is

𝑆2
𝑋 − 𝑟𝑆2

𝑌 ≤ Φ−1(1 − 𝛼)

√︃
2𝑆4

𝑋

𝑛1 − 1
+

2𝑟2𝑆4
𝑌

𝑛2 − 1

You can now use this to get a corresponding approximated CI.
Of course there are many other ways to get CI or, through CLT, approxi-

mated CI. Can you write down a few more for this problem?
Extra Example: Normal approximation 𝑋𝑖 i.i.d., 𝑖 = 1, . . . 𝑛1, 𝑌𝑗 i.i.d.,

𝑗 = 1, . . . 𝑛2, both have bounded variance. Find the approximated CI of 𝐸[𝑋𝑖]−
𝐸[𝑌𝑗 ] using CLT on both 𝑋𝑖 and 𝑌𝑗 , where the variances are estimated via LLN
using 𝑆2.

CLT plus LLN implies that∑︀
𝑖(𝑋𝑖 − 𝐸[𝑋𝑖])√︀

𝑆2
𝑋𝑛1

→ 𝒩 (0, 1)
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∑︀
𝑗(𝑌𝑗 − 𝐸[𝑌𝑗 ])√︀

𝑆2
𝑌 𝑛2

→ 𝒩 (0, 1)

So we can approximate 𝑋 and 𝑌 by 𝒩 (𝐸[𝑋𝑖], 𝑆
2
𝑋/𝑛1) and 𝒩 (𝐸[𝑌𝑖], 𝑆

2
𝑌 /𝑛2)

respectively, and 𝑋−𝑌 can be approximated by (𝐸[𝑋𝑖]−𝐸[𝑌𝑖], 𝑆
2
𝑋/𝑛1+𝑆2

𝑌 /𝑛2),

so the CI is [𝑋 − 𝑌 − 𝐹−1
𝒩 (0,1)(1 − 𝛼/2)

√︀
𝑆2
𝑋/𝑛1 + 𝑆2

𝑌 /𝑛2, 𝑋 − 𝑌 + 𝐹−1
𝒩 (0,1)(1 −

𝛼/2)
√︀

𝑆2
𝑋/𝑛1 + 𝑆2

𝑌 /𝑛2].

13 Linear Regression

13.1 Single variable LR

Setting: 𝑥1, . . . 𝑥𝑛 real numbers, 𝑌1, . . . 𝑌𝑛 independent, 𝑌𝑖 ∼ 𝒩 (𝑐𝑥𝑖, 𝜎
2). How

do we estimate 𝑐 and 𝜎2?

13.1.1 MLE for 𝑐 and 𝜎2

Likelihood function:

𝐿 =
∏︁
𝑖

𝑓𝑌𝑖(𝑌𝑖) = (2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)
2/(2𝜎2)

log(𝐿) = −𝑛

2
(log(2𝜋) + log(𝜎2)) − 1

2𝜎2

∑︁
𝑖

(𝑌𝑖 − 𝑐𝑥𝑖)
2

𝜕

𝜕𝑐
log(𝐿) = − 1

2𝜎2

∑︁
𝑖

(2𝑥𝑖𝑌𝑖 − 2𝑐𝑥2
𝑖 )

𝑐𝑀𝐿𝐸 =

∑︀
𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

𝜕

𝜕𝜎2
log(𝐿) = − 𝑛

2𝜎2
+

1

2𝜎4

∑︁
𝑖

(𝑌𝑖 − 𝑐𝑥𝑖)
2

𝜎2
𝑀𝐿𝐸 =

1

𝑛

∑︁
𝑖

(𝑌𝑖 − 𝑐𝑀𝐿𝐸𝑥𝑖)
2 =

1

𝑛
(
∑︁
𝑖

𝑌 2
𝑖 − (

∑︁
𝑖

𝑥𝑖𝑌𝑖)
2/

∑︁
𝑖

𝑥2
𝑖 )

13.1.2 Prior on 𝑐, knowing 𝜎2 = 1

Suppose 𝜎2 = 1, 𝑐 has a prior 𝒩 (0, 𝜆).
Posterior will be proportional to

𝑔(𝑐) =
1√
2𝜋𝜆

𝑒−𝑐2/(2𝜆)(2𝜋)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)
2/2

So

𝑐|𝑌𝑖 ∼ 𝒩 (

∑︀
𝑖 𝑋𝑖𝑌𝑖∑︀

𝑖 𝑥
2
𝑖 + 1/𝜆

, (
∑︁
𝑖

𝑥2
𝑖 + 1/𝜆)−1)
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13.1.3 Prior on 𝑐 and 𝜎2

Suppose 𝜎2 has a prior 𝑓(𝑠) =

{︃
𝛼𝑒−𝛼𝑠 𝑠 ≥ 0

0 𝑠 < 0
, 𝑐 has a prior 𝒩 (0, 𝜆𝜎2).

Posterior will be proportional to

𝑔(𝑐, 𝜎2) =
𝛼√
2𝜋𝜆

𝑒−𝑐2/(2𝜆𝜎2)𝑒−𝛼𝜎2

(2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)
2/(2𝜎2)

MAP estimate:

𝑐𝑀𝐴𝑃 =

∑︀
𝑖 𝑋𝑖𝑌𝑖∑︀

𝑖 𝑥
2
𝑖 + 1/𝜆

𝜎2
𝑀𝐴𝑃 =

2(
∑︀

𝑖(𝑌𝑖 − 𝑐𝑀𝐴𝑃𝑥𝑖)
2 + 𝑐2𝑀𝐴𝑃 /𝜆)

𝑛 +
√︀

𝑛2 + 8𝛼(
∑︀

𝑖(𝑌𝑖 − 𝑐𝑀𝐴𝑃𝑥𝑖)2 + 𝑐2𝑀𝐴𝑃 /𝜆)

Similarly we can calculate the expectation of 𝑐 and 𝜎2 under posterior distribu-
tion. It is evident that 𝐸[𝑐|𝑌𝑖] = 𝑐𝑀𝐴𝑃 .

𝐸[𝜎2|𝑌𝑖] =

∫︀∞
0

𝑑𝜎2
∫︀∞
−∞ 𝜎2𝑔(𝑐, 𝜎2)∫︀∞

0
𝑑𝜎2

∫︀∞
−∞ 𝑔(𝑐, 𝜎2)

13.1.4 Test for hypothesis 𝐻0 : 𝑐 = 0 against 𝐻1 : 𝑐 ̸= 0, knowing
𝜎2 = 1

LRT:
(2𝜋)−𝑛/2𝑒−

∑︀
𝑖 𝑌

2
𝑖 /2

sup𝑐(2𝜋)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)2/2
≤ 𝑘

The optimal 𝑐 is
∑︀

𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

from (1), so

−
∑︁
𝑖

𝑌 2
𝑖 +

∑︁
𝑖

(𝑌𝑖 −
∑︀

𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

· 𝑥𝑖)
2 ≤ 2 log 𝑘

(
∑︀

𝑖 𝑥𝑖𝑌𝑖)
2∑︀

𝑖 𝑥
2
𝑖

≥ −2 log 𝑘

So the test should be
|
∑︁
𝑖

𝑥𝑖𝑌𝑖| ≥ 𝑀

Under null hypothesis
∑︀

𝑖 𝑥𝑖𝑌𝑖 ∼ 𝒩 (0,
∑︀

𝑖 𝑥
2
𝑖 ), so significance level is

𝛼 = 2(1 − 𝐹𝒩 (0,1)(
𝑀√︀∑︀

𝑖 𝑥
2
𝑖

))

The test with significance level 𝛼 should be

|
∑︁
𝑖

𝑥𝑖𝑌𝑖| ≥ 𝐹−1
𝒩 (0,1)(1 − 𝛼/2)

√︃∑︁
𝑖

𝑥2
𝑖
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p-value for 𝑌𝑖 = 𝑦𝑖 is

𝑝 = 2(1 − 𝐹𝒩 (0,1)(
|
∑︀

𝑖 𝑥𝑖𝑦𝑖|√︀∑︀
𝑖 𝑥

2
𝑖

))

13.1.5 CI for 𝑐, knowing 𝜎2 = 1

We need statistical test for 𝐻0 : 𝑐 = 𝑐0 against 𝐻0 : 𝑐 ̸= 𝑐0. Let 𝑍𝑖 = 𝑌𝑖 − 𝑐0𝑥𝑖,
then 𝑍𝑖 ∼ 𝒩 (𝑐− 𝑐0)𝑥𝑖, 1). Now make use of the test in (4), we get

|
∑︁
𝑖

𝑥𝑖𝑍𝑖| = |
∑︁
𝑖

𝑥𝑖𝑌𝑖 −
∑︁
𝑖

𝑐0𝑥
2
𝑖 | ≥ 𝐹−1

𝒩 (0,1)(1 − 𝛼/2)

√︃∑︁
𝑖

𝑥2
𝑖

So the corresponding 1 − 𝛼 CI for 𝑐 is

{𝑐 : |
∑︁
𝑖

𝑥𝑖𝑌𝑖 −
∑︁
𝑖

𝑐𝑥2
𝑖 | ≤ 𝐹−1

𝒩 (0,1)(1 − 𝛼/2)

√︃∑︁
𝑖

𝑥2
𝑖 }

= [

∑︀
𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

−
𝐹−1
𝒩 (0,1)(1 − 𝛼/2)√︀∑︀

𝑖 𝑥
2
𝑖

,

∑︀
𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

+
𝐹−1
𝒩 (0,1)(1 − 𝛼/2)√︀∑︀

𝑖 𝑥
2
𝑖

]

13.1.6 Test for hypothesis 𝐻0 : 𝑐 = 0 against 𝐻1 : 𝑐 ̸= 0, with unknown
𝜎2

LRT:
sup𝜎2(2𝜋𝜎2)−𝑛/2𝑒−

∑︀
𝑖 𝑌

2
𝑖 /(2𝜎2)

sup𝑐,𝜎2(2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)2/(2𝜎2)
≤ 𝑘

sup𝜎2(2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖 𝑌
2
𝑖 /(2𝜎2) = (2𝜋 ·

∑︀
𝑖 𝑌

2
𝑖

𝑛
)−𝑛/2𝑒−𝑛/2

sup𝑐,𝜎2(2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)
2/(2𝜎2) = (2𝜋 ·

∑︀
𝑖(𝑌𝑖 − 𝑐𝑥𝑖)

2

𝑛
)−𝑛/2𝑒−𝑛/2

Where 𝑐 =
∑︀

𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

. So the test becomes∑︀
𝑖(𝑌𝑖 − 𝑐𝑥𝑖)

2∑︀
𝑖 𝑌

2
𝑖

≤ 𝑘2/𝑛

∑︁
𝑖

(𝑌𝑖 − 𝑐𝑥𝑖)
2 =

∑︁
𝑖

𝑌 2
𝑖 −

(
∑︀

𝑖 𝑥𝑖𝑌𝑖)
2∑︀

𝑖 𝑥
2
𝑖

So we can rewrite the test as

|
∑︀

𝑖 𝑥𝑖𝑌𝑖/
√︀∑︀

𝑖 𝑥
2
𝑖√︁

1
𝑛−1 · (

∑︀
𝑖 𝑌

2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)2∑︀

𝑖 𝑥
2
𝑖

)
| ≤ 𝑀
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By calculation (using multivariable calculus and linear algebra) we can see

that, under null hypothesis,
∑︀

𝑖 𝑌
2
𝑖

𝜎2 ∼ 𝜒2(𝑛),
∑︀

𝑖 𝑌
2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)

2∑︀
𝑖 𝑥

2
𝑖

is independent

from
(
∑︀

𝑖 𝑥𝑖𝑌𝑖)
2∑︀

𝑖 𝑥
2
𝑖

, and 1
𝜎2 · (

∑︀
𝑖 𝑥𝑖𝑌𝑖)

2∑︀
𝑖 𝑥

2
𝑖

∼ 𝜒2(1). So,∑︀
𝑖 𝑥𝑖𝑌𝑖/

√︀∑︀
𝑖 𝑥

2
𝑖√︁

1
𝑛−1 · (

∑︀
𝑖 𝑌

2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)2∑︀

𝑖 𝑥
2
𝑖

)
∼ 𝑡(𝑛− 1)

The 𝑀 for significance level 𝛼 is 𝐹−1
𝑡(𝑛−1)(1 − 𝛼/2).

13.1.7 CI for 𝑐, unknown 𝜎2

Use the same technique as in (5), and the test in (6), we get

[

∑︀
𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

−𝐹−1
𝑡(𝑛−1)(1−𝛼/2)·

√︁
(
∑︀

𝑖 𝑌
2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)2∑︀

𝑖 𝑥
2
𝑖

)√︀
(𝑛− 1)

∑︀
𝑖 𝑥

2
𝑖

,

∑︀
𝑖 𝑥𝑖𝑌𝑖∑︀
𝑖 𝑥

2
𝑖

+𝐹−1
𝑡(𝑛−1)(1−𝛼/2)·

√︁
(
∑︀

𝑖 𝑌
2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)2∑︀

𝑖 𝑥
2
𝑖

)√︀
(𝑛− 1)

∑︀
𝑖 𝑥

2
𝑖

]

13.1.8 Digression: Independence of residue and regression coeffi-
cient

This part is just for those who remember linear algebra and multivariable cal-
culus.

We will prove the following: if 𝑌𝑖 i.i.d. normal,
∑︀

𝑖 𝑌
2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)

2∑︀
𝑖 𝑥

2
𝑖

is inde-

pendent from
(
∑︀

𝑖 𝑥𝑖𝑌𝑖)
2∑︀

𝑖 𝑥
2
𝑖

.

Proof: Let 𝑐1 = [𝑥𝑖/
√︀∑︀

𝑖 𝑥
2
𝑖 ]𝑇 ∈ R𝑛. |𝑐1| = 1, so we can find an orthonormal

basis {𝑐1, . . . , 𝑐𝑛} of R𝑛. Let 𝐶 = [𝑐1. . . . 𝑐𝑛]𝑇 , 𝑌 = [𝑌1, . . . 𝑌𝑛]𝑇 , 𝑍 = 𝐶𝑌 .

Because 𝑌𝑖 are i.i.d. normal, the p.d.f. of 𝑌 is 𝑓(𝑦) = 2𝜋𝜎2−𝑛/2
𝑒−

1
2𝑦

𝑇 𝑦, so for
any set 𝐴 ⊂ R𝑛,

𝑃 (𝑍 ∈ 𝐴) = 𝑃 (𝐶𝑌 ∈ 𝐴) =

∫︁
𝐶−1𝐴

(2𝜋𝜎2)−𝑛/2𝑒−
1

2𝜎2 𝑦𝑇 𝑦𝑑𝑦

=

∫︁
𝐴

(2𝜋𝜎2)−𝑛/2𝑒−
1

2𝜎2 𝑧𝑇 𝑧𝑑𝑧

So 𝑍𝑖 i.i.d. 𝒩 (0, 𝜎2).

By calculation it is easy to verify that
∑︀

𝑖 𝑌
2
𝑖 − (

∑︀
𝑖 𝑥𝑖𝑌𝑖)

2∑︀
𝑖 𝑥

2
𝑖

=
∑︀𝑛

𝑖=2 𝑍
2
𝑖 and

(
∑︀

𝑖 𝑥𝑖𝑌𝑖)
2∑︀

𝑖 𝑥
2
𝑖

= 𝑍2
1 , hence they must be independent. The same calculation works

for 𝑌𝑖 ∼ 𝒩 (𝑐𝑥𝑖, 𝜎
2) as well by change of variable 𝑌𝑖 = 𝑐𝑥𝑖 + 𝑌 ′

𝑖 .

13.1.9 Test for 𝐻0 : 𝜎2 = 𝜎2
0 against 𝐻1 : 𝜎2 ̸= 𝜎2

0

Likelihood ratio test:

sup𝑐(2𝜋𝜎
2
0)−𝑛/2𝑒−

∑︀
𝑖(𝑌𝑖−𝑐𝑥𝑖)

2/(2𝜎2
0)

sup𝑐,𝜎2(2𝜋𝜎2)−𝑛/2𝑒−
∑︀

𝑖(𝑌𝑖−𝑐𝑥𝑖)2/(2𝜎2)
≤ 𝑘
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The optimal 𝑐 is
∑︀

𝑖 𝑌𝑖𝑥𝑖∑︀
𝑖 𝑥

2
𝑖

. Let 𝑟2 =
∑︀

𝑖(𝑌𝑖 −
∑︀

𝑖 𝑌𝑖𝑥𝑖∑︀
𝑖 𝑥

2
𝑖

· 𝑥𝑖)
2, log of LHS is

−𝑛

2
log(𝜎2

0) − 𝑟2

2𝜎2
0

+
𝑛

2
log(𝑟2/𝑛) +

𝑛

2
≤ log(𝑘)

Hence the critical region should be of the form 𝑟2/𝑛 ≥ 𝜎2
0𝐴 or 𝑟2/𝑛 ≤ 𝜎2

0𝐵 for
some positive numbers 0 < 𝐵 < 1 < 𝐴. By similar argument as in the previous
slides, under 𝐻0, 1

𝜎2
0
𝑟2 ∼ 𝜒2(𝑛− 1), so significance level

𝛼 = 𝐹𝜒2(𝑛−1)(𝑛𝐵) + 1 − 𝐹𝜒2(𝑛−1)(𝑛𝐴)

log(𝐴) −𝐴 = log(𝐵) −𝐵

In practice, we usually just ignore the second equation and let 𝐹𝜒2(𝑛−1)(𝑛𝐵) =
1 − 𝐹𝜒2(𝑛−1)(𝑛𝐴) = 𝛼/2, hence the test is

1

𝜎2
0

∑︁
𝑖

(𝑌𝑖 −
∑︀

𝑖 𝑌𝑖𝑥𝑖∑︀
𝑖 𝑥

2
𝑖

· 𝑥𝑖)
2 ̸∈ [𝐹−1

𝜒2(𝑛−1)(𝛼/2), 𝐹−1
𝜒2(𝑛−1)(1 − 𝛼/2)]

13.1.10 CI for 𝜎2

Using the test on the previous slide, we have the CI:⎡⎣∑︀
𝑖(𝑌𝑖 −

∑︀
𝑖 𝑌𝑖𝑥𝑖∑︀
𝑖 𝑥

2
𝑖

· 𝑥𝑖)
2

𝐹−1
𝜒2(𝑛−1)(1 − 𝛼/2)

,

∑︀
𝑖(𝑌𝑖 −

∑︀
𝑖 𝑌𝑖𝑥𝑖∑︀
𝑖 𝑥

2
𝑖

· 𝑥𝑖)
2

𝐹−1
𝜒2(𝑛−1)(𝛼/2)

⎤⎦
Everything below will be beyond the scope of final exam.

13.1.11 Logistic regression

Setting 𝑌𝑖 independent, 𝑌𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑒𝑐𝑥𝑖

1+𝑒𝑐𝑥𝑖
).

Likelihood function

𝐿 =
∏︁
𝑖

𝑦𝑖𝑒
𝑐𝑥𝑖 + (1 − 𝑦𝑖)

1 + 𝑒𝑐𝑥𝑖

It is easy to see that log(𝐿) is concave w.r.t. 𝑐, hence any local maximum is the
MLE, and we can use convex optimization to calculate the optimal 𝑐.

This is a first example of Generalized Linear Models (GLM).

13.2 Higher dimensional linear regression

Setting: 𝑥1, . . . 𝑥𝑛 ∈ R𝑑, 𝑌1, . . . 𝑌𝑛 independent, 𝛽 ∈ R𝑑, 𝑌𝑖 ∼ 𝒩 (𝛽𝑇𝑥𝑖, 𝜎
2).

How do we estimate 𝛽 and 𝜎2?
MLE: Log likelihood is

log(𝐿) = −𝑛

2
(log(2𝜋) + log(𝜎2)) − 1

2𝜎2

∑︁
𝑖

(𝑌𝑖 − 𝛽𝑇𝑥𝑖)
2
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So
𝛽𝑀𝐿𝐸 = arg min

𝛽

∑︁
𝑖

(𝑌𝑖 − 𝛽𝑇𝑥𝑖)
2

Take derivative, we get:

2
∑︁
𝑖

(𝑌𝑖 − 𝛽𝑇𝑥𝑖)𝑥𝑖 = 0

𝛽 = (
∑︁
𝑖

𝑥𝑖𝑥
𝑇
𝑖 )−1(

∑︁
𝑖

𝑌𝑖𝑥𝑖)

The MLE for 𝜎2 is the same as the univariant case.
A special case is linear regression with constant term:
𝑥1, . . . 𝑥𝑛 ∈ R, 𝑌1, . . . 𝑌𝑛 independent, 𝛽 ∈ R𝑑, 𝑌𝑖 ∼ 𝒩 (𝑑 + 𝑐𝑥𝑖, 𝜎

2). Find
MLE for 𝑐 and 𝑑.

Let 𝑥′
𝑖 = [1, 𝑥𝑖]

𝑇 , 𝛽 = [𝑑, 𝑐], then use the formula on the previous slide, we
get

[𝑑, 𝑐]𝑇 =

[︂
𝑛

∑︀
𝑖 𝑥𝑖∑︀

𝑖 𝑥𝑖

∑︀
𝑖 𝑥

2
𝑖

]︂−1 [︂ ∑︀
𝑖 𝑌𝑖∑︀

𝑖 𝑥𝑖𝑌𝑖

]︂
So

𝑑 =

∑︀
𝑖 𝑥

2
𝑖

∑︀
𝑖 𝑌𝑖 −

∑︀
𝑖 𝑥𝑖

∑︀
𝑖 𝑥𝑖𝑌𝑖

𝑛
∑︀

𝑖 𝑥
2
𝑖 − (

∑︀
𝑖 𝑥𝑖)2

𝑐 =
−
∑︀

𝑖 𝑥𝑖

∑︀
𝑖 𝑌𝑖 + 𝑛

∑︀
𝑖 𝑥𝑖𝑌𝑖

𝑛
∑︀

𝑖 𝑥
2
𝑖 − (

∑︀
𝑖 𝑥𝑖)2

13.2.1 Ridge Regression

Suppose 𝜎 = 𝜎0, and we add a prior to 𝛽 as 𝛽 ∼ 𝒩 (0, 𝜆𝜎2
0𝐼𝑑), log of posterior

will be, up to a constant,

− 𝛽𝑇𝛽

2𝜆𝜎2
− 1

2𝜎2

∑︁
𝑖

(𝑌𝑖 − 𝛽𝑇𝑥𝑖)
2

So the MAP estimate for 𝛽 is

𝛽 = arg min𝛽
∑︁
𝑖

(𝑌𝑖 − 𝛽𝑇𝑥𝑖)
2 +

1

𝜆
𝛽𝑇𝛽

𝛽 = (
∑︁
𝑖

𝑥𝑖𝑥
𝑇
𝑖 + 𝐼𝑑/𝜆)−1(

∑︁
𝑖

𝑌𝑖𝑥𝑖)

This works even when 𝑛 < 𝑑.
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13.2.2 Linear Mixed Model

Ridge regression has an alternative formulation as follows: 𝑥𝑖, 𝑥 ∈ R𝑑, 𝑌𝑖, 𝑌
satisfies joint distribution 𝒩 (0, 𝜎2(𝐾 + 𝛿𝐼)), with known 𝜎2 and 𝛿, and where
𝐾 = [𝑥1, . . . 𝑥][𝑥1, . . . 𝑥]𝑇 . Find the conditional expectation of 𝑌 with known
𝑌1, . . . 𝑌𝑛. The log of joint p.d.f. of [𝑌1, . . . , 𝑌𝑛, 𝑌 ]𝑇 is, up to a constant, pro-
portional to

−1

2
[𝑦1, . . . 𝑦𝑛, 𝑦](𝐾 + 𝛿𝐼)−1[𝑦1, . . . 𝑦𝑛, 𝑦]𝑇

Let 𝐾0 = [𝑥1, . . . 𝑥𝑛][𝑥1, . . . 𝑥𝑛]𝑇 , 𝑏 = [𝑥𝑇
1 𝑥, . . . 𝑥

𝑇
𝑛𝑥], then 𝐾+𝛿𝐼 =

[︂
𝐾0 + 𝜆𝐼 𝑏𝑇

𝑏 𝑥𝑇𝑥 + 𝜆

]︂
,

hence

(𝐾 + 𝛿𝐼)−1 =

[︂
* 𝐵𝑇

𝐵 𝐶

]︂
Where

𝐶 = (𝑥𝑇𝑥− 𝑏(𝐾0 + 𝛿𝐼)−1𝑏𝑇 )−1

𝐵 = −(𝑥𝑇𝑥− 𝑏(𝐾0 + 𝛿𝐼)−1𝑏𝑇 )−1𝑏(𝐾0 + 𝛿𝐼)−1

So the conditional distribution for 𝑦 is normal, and the expectation is

𝑦 = − 1

𝐶
𝐵

⎡⎣ 𝑦1
. . .
𝑦𝑛

⎤⎦ = 𝑏(𝐾0 + 𝛿𝐼)−1

⎡⎣ 𝑦1
. . .
𝑦𝑛

⎤⎦
Let 𝑋 = [𝑥1, . . . 𝑥𝑛], 𝑌 = [𝑦1, . . . 𝑦𝑛]𝑇 , then this equals

𝑥𝑇𝑋(𝑋𝑇𝑋 + 𝛿𝐼)−1𝑌 = 𝑥𝑇 (𝑋𝑋𝑇 + 𝛿𝐼)−1𝑋𝑌

= 𝑥𝑇 (
∑︁
𝑖

𝑥𝑖𝑥
𝑇
𝑖 + 𝛿𝐼𝑑)−1(

∑︁
𝑖

𝑦𝑖𝑥𝑖)

So 𝛿 takes the role of 1
𝜆 earlier. This model allows us to get a value for 1

𝜆 , by

setting it as 𝛿𝑀𝐿𝐸 . This is the simplest case of a family of statistical models
called mixed models.

13.2.3 Some questions to think about

� Suppose 𝑥𝑖 ∈ {1, 2, 3}, how do you check 𝐻0 : 𝑌𝑖 ∼ 𝒩 (𝑐𝑥𝑖, 𝜎
2) against

𝐻1 : 𝑌𝑖 ∼ 𝒩 (𝑓(𝑥𝑖), 𝜎
2) where 𝑓 is an arbitrary function?

� How do you check that 𝑌𝑖 ∼ 𝒩 (𝑐𝑥𝑖, 𝜎
2) in general?

14 Final Review

� Probability prerequisites

– Random variables
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– cdf, pdf, p.d.

– Conditional p.d.f.

– Expectation

– LLN, CLT

– sample mean and sample variance

– order statistics

� Point estimate: Basic setting: 𝑋 has a distribution with parameter Θ.

– Point estimate: a random variable Θ̂ which we use to estimate Θ.

– Bias: 𝐸[Θ̂] − Θ.

– Variance: 𝑉 𝑎𝑟(Θ̂).

– Consistency: 𝑋 = [𝑋1, . . . , 𝑋𝑛], 𝑋𝑖 i.i.d., Θ̂ → Θ as 𝑛 → ∞.

– Some ways to show consistency

* Definition.

* Variance and bias goes to 0 (due to Chebyshev’s theorem)

* LLN.

– Ways to find point estimate

* MLE

* MOM

* MAP

* Bayesian point estimate

� Hypothesis testing: Setting: 𝑋 has a distribution with parameter Θ. 𝐻0 :
Θ ∈ 𝐷, 𝐻1 : Θ ∈ 𝐷′, 𝐷 ∩𝐷′ = ∅.

– Statistical test: a random event 𝑍 ∈ 𝐴, where 𝑍 is a random vari-
able defined using 𝑋, 𝐴 the critical region (usually the “tail” of the
distribution of 𝑍).

– Significance level (bound on type I error): supΘ∈𝐷 𝑃 (𝑍 ∈ 𝐴|Θ).

– Power (one minus type II error): 𝑃 (𝑍 ∈ 𝐴|Θ) for some specific Θ ∈
𝐷′.

– p-value: the lowest significance level that result in rejection of 𝐻0.

– Intuition of statistical tests: suppose 𝐻0 is true, then a test with
small significance level is unlikely to be true. So, if we observed that
it is true, probably 𝐻0 isn’t.

– Neyman-Pearson test: 𝐷 and 𝐷′ both consists of a single point Θ0

and Θ1, then test is 𝐿(𝑋,Θ0)/𝐿(𝑋,Θ1) ≤ 𝑘.

– LRT: supΘ0∈𝐷 𝐿(𝑋,Θ0)/ supΘ1∈𝐷∪𝐷′ 𝐿(𝑋,Θ1) ≤ 𝑘.

– How to use known statistical tests.
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� Confidence Intervals: Setting: 𝑋 has a distribution with parameter Θ.

– A 1−𝛼-CI is a set 𝐼(𝑋) depending on 𝑋 such that 𝑃 (Θ ∈ 𝐼(𝑋)|Θ) =
1 − 𝛼.

– CI with CL 1 − 𝛼 are related to statistical tests of significance level
𝛼.

– One sided CIs are usually related to tests where the alternative hy-
pothesis is one sided as well.

Example:

� 𝑋𝑖 i.i.d., 𝑖 = 1, . . . 𝑛, with p.d.f.

𝑓(𝑥) =

{︃
𝑐𝑒−𝑐𝑥 𝑥 ≥ 0

0 𝑥 < 0

� The joint p.d.f. is

𝑓𝑋1,...𝑋𝑛(𝑥1, . . . 𝑥𝑛) =
∏︁
𝑖

𝑓(𝑥𝑖) =

{︃
𝑐𝑛𝑒−𝑐

∑︀
𝑖 𝑥𝑖 min{𝑥𝑖} ≥ 0

0 min{𝑥𝑖} < 0

� The joint c.d.f. is

𝐹𝑋1,...𝑋𝑛(𝑥1, . . . 𝑥𝑛) =
∏︁
𝑖

𝐹𝑋𝑖(𝑥𝑖)

=
∏︁
𝑖

∫︁ 𝑥𝑖

−∞
𝑓(𝑠)𝑑𝑠 =

{︃∏︀
𝑖(1 − 𝑒−𝑐𝑥𝑖) min{𝑥𝑖} ≥ 0

0 min{𝑥𝑖} < 0

� Sample mean and variance:

𝐸[𝑋𝑖] =

∫︁ ∞

0

𝑠𝑐𝑒−𝑐𝑠𝑑𝑠 =
1

𝑐

𝑉 𝑎𝑟(𝑋𝑖) = 𝐸[𝑋2
𝑖 ] − 𝐸[𝑋𝑖]

2 =

∫︁ ∞

0

𝑠2𝑐𝑒−𝑐𝑠𝑑𝑠− 1

𝑐2
=

1

𝑐2

𝐸[𝑋] = 𝐸[𝑋𝑖] =
1

𝑐

𝑉 𝑎𝑟(𝑋) =
1

𝑛
𝑉 𝑎𝑟(𝑋𝑖) =

1

𝑛𝑐2

𝐸[𝑆2
𝑋 ] = 𝐸[

1

𝑛− 1
(
∑︁
𝑖

𝑋2
𝑖 − 𝑛𝑋

2
)] =

1

𝑛− 1
(
2𝑛

𝑐2
− 𝑛(𝑉 𝑎𝑟(𝑋) + 𝐸[𝑋]2))

=
1

𝑛− 1
(
2𝑛

𝑐2
− 1

𝑐2
− 𝑛

𝑐2
) =

1

𝑛− 1
· 𝑛− 1

𝑐2
=

1

𝑐2
= 𝑉 𝑎𝑟(𝑋𝑖)
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� The p.d.f. of min{𝑋𝑖} = 𝑌1 is

𝑓𝑌1(𝑥) =
𝑛!

(1 − 1)!(𝑛− 1)!
𝐹 (𝑥)1−1𝑓(𝑥)(1 − 𝐹 (𝑥))𝑛−1

Where 𝑓 is the p.d.f. of 𝑋𝑖 and 𝐹 is the c.d.f. By calculation, the answer
is

𝑓𝑌1
(𝑥) =

{︃
0 𝑥 < 0

𝑛𝑐𝑒−𝑛𝑐𝑥 𝑥 ≥ 0

� LLN for 𝑋𝑖 implies that as 𝑛 → ∞,

𝑋 → 1

𝑐

� CLT implies that as 𝑛 → ∞,

√
𝑛𝑐2(𝑋 − 1

𝑐
) → 𝒩 (0, 1)

� MLE for 𝑐

𝐿(𝑋𝑖, 𝑐) = 𝑓𝑋1,...𝑋𝑛
(𝑋1, . . . 𝑋𝑛, 𝑐) = 𝑐𝑛𝑒−𝑐

∑︀
𝑖 𝑋𝑖

So
𝑐𝑀𝐿𝐸 =

𝑛∑︀
𝑖 𝑋𝑖

� MOM for 𝑐: First empirical moment is 𝑋, first moment is 1
𝑐 , so

1

𝑐𝑀𝑂𝑀
= 𝑋

𝑐𝑀𝑂𝑀 =
𝑛∑︀
𝑖 𝑋𝑖

= 𝑐𝑀𝐿𝐸

� Suppose prior of 𝑐 has p.d.f. 𝑓𝑐(𝑥) =

{︃
𝑒−𝑥 𝑥 ≥ 0

0 𝑥 < 0
. Then posterior is:

𝑓𝑐|𝑋𝑖
(𝑐) = 𝐶𝑓𝑐(𝑐)𝐿(𝑋1, . . . 𝑋𝑛, 𝑐) = 𝐶𝑐𝑛𝑒−𝑐(

∑︀
𝑖 𝑋𝑖+1)

So

𝑐𝑀𝐴𝑃 =
𝑛∑︀

𝑖 𝑋𝑖 + 1
=

1

𝑋 + 1/𝑛

2(
∑︁
𝑖

𝑋𝑖 + 1)𝑐|𝑋𝑖 ∼ 𝜒2(2𝑛 + 2)

So the Bayesian point estimate with 𝐿2 lost is

𝑐𝐿2,𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 = arg min
𝑐′

𝐸[(𝑐− 𝑐′)2|𝑋𝑖] = 𝐸[𝑐|𝑋𝑖] =
𝑛 + 1∑︀
𝑖 𝑋𝑖 + 1
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� All these point estimates are consistent due to LLN.

� It is easy to see that 2𝑐𝑋𝑖 ∼ 𝜒2(2), so 2𝑐
∑︀

𝑖 𝑋𝑖 ∼ 𝜒2(2𝑛).

� 𝐻0 : 𝑐 = 1, 𝐻1 : 𝑐 = 2. Neyman-Pearson test:

𝑒−
∑︀

𝑖 𝑋𝑖

2𝑛𝑒−2
∑︀

𝑖 𝑋𝑖
≤ 𝑘

So the test should be of the form
∑︀

𝑖 𝑋𝑖 ≤ 𝑀 , significance level is

𝛼 = 𝑃 (
∑︁
𝑖

𝑋𝑖 ≤ 𝑀 |𝑐 = 1) = 𝐹𝜒2(2𝑛)(2𝑀)

So the test with significance level 𝛼 is∑︁
𝑖

𝑋𝑖 ≤
1

2
𝐹−1
𝜒2(2𝑛)(𝛼)

The p-value for 𝑋𝑖 = 𝑥1 is

𝑝 = min{𝛼 :
∑︁
𝑖

𝑥𝑖 ≤
1

2
𝐹−1
𝜒2(2𝑛)(𝛼)} = 𝐹𝜒2(2𝑛)(2

∑︁
𝑖

𝑥𝑖)

� Suppose a test on 𝐻0 : 𝑍 ∼ 𝜒2(𝑘) is 𝑍 ̸∈ (𝐹−1
𝜒2(𝑘)(𝛼/2), 𝐹−1

𝜒2(𝑘)(1 − 𝛼/2)),

then we can apply it to 2𝑐
∑︀

𝑖 𝑋𝑖, and get a test for 𝐻0 : 𝑐 = 𝑐0 as

∑︁
𝑖

𝑋𝑖 ̸∈ (
𝐹−1
𝜒2(2𝑛)(𝛼/2)

2𝑐0
,
𝐹−1
𝜒2(2𝑛)(1 − 𝛼/2)

2𝑐0
)

∑︁
𝑖

𝑋𝑖 ≤
𝐹−1
𝜒2(2𝑛)(𝛼/2)

2𝑐0
or

∑︁
𝑖

𝑋𝑖 ≥
𝐹−1
𝜒2(2𝑛)(1 − 𝛼/2)

2𝑐0

� The CI from the test on 𝐻0 : 𝑐 = 𝑐0 earlier is

{𝑐0 :
∑︁
𝑖

𝑋𝑖 ∈ [
𝐹−1
𝜒2(2𝑛)(𝛼/2)

2𝑐0
,
𝐹−1
𝜒2(2𝑛)(1 − 𝛼/2)

2𝑐0
]}

= [
𝐹−1
𝜒2(2𝑛)(𝛼/2)

2
∑︀

𝑖 𝑋𝑖
,
𝐹−1
𝜒2(2𝑛)(1 − 𝛼/2)

2
∑︀

𝑖 𝑋𝑖
]

� To get one sided CI, use LRT for 𝐻0 : 𝑐 = 𝑐0 against 𝐻1 : 𝑐 > 𝑐0.

𝑐𝑛0 𝑒
−𝑐0

∑︀
𝑖 𝑋𝑖

sup𝑐≥𝑐0 𝑐
𝑛𝑒−𝑐

∑︀
𝑖 𝑋𝑖

≤ 𝑘

So the test is ∑︁
𝑖

𝑋𝑖 ≤ 𝑀
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for some 𝑀 < 𝑛/𝑐0. To make significance level 𝛼, we must let 𝑀 =
𝐹−1

𝜒2(2𝑛)
(𝛼)

2𝑐0
, so the test is

∑︁
𝑖

𝑋𝑖 ≤
𝐹−1
𝜒2(2𝑛)(𝛼)

2𝑐0

The one sided 1 − 𝛼 CI for 𝑐 is

[
𝐹−1
𝜒2(2𝑛)(𝛼)

2
∑︀

𝑖 𝑋𝑖
,∞)

Two types of statistical inference:

� Bayesian approach: Θ has assumed prior distribution, use successive ob-
servation to estimate the posterior, eventually converging to the true value.

� Non-Bayesian, or frequentist approach: Θ is a constant with unknown
value. Use observation to rule out more and more unlikely values of Θ,
until we have an estimate of its true value.

Review Examples:

Example 1 Suppose 𝑋 ∼ 𝐵(𝑛, 𝑝), 𝑛 >> 1.

1. Find the LRT for 𝐻0 : 1/3 ≤ 𝑝 ≤ 2/3

2. Use the CLT to calculate its approximated significance level.

3. Find the approximated p-value for 𝑛 = 9000, 𝑋 = 2900.

LRT:
sup𝑝∈[1/3,2/3]

(︀
𝑛
𝑋

)︀
𝑝𝑋𝑝𝑛−𝑋

sup𝑝

(︀
𝑛
𝑋

)︀
𝑝𝑋𝑝𝑛−𝑋

≤ 𝑘

So

log(𝐿𝐻𝑆) =

⎧⎪⎨⎪⎩
0 𝑋 ∈ [𝑛/3, 2𝑛/3]

𝑋 log( 𝑛
3𝑋 ) + (𝑛−𝑋) log( 2𝑛

3(𝑛−𝑋) ) 𝑋 < 𝑛/3

𝑋 log( 2𝑛
3𝑋 ) + (𝑛−𝑋) log( 𝑛

3(𝑛−𝑋) ) 𝑋 > 2𝑛/3

It is easy to see that this function is increasing when 𝑋 < 𝑛/3, decreasing
when 𝑋 > 2𝑛/3, and takes the same value at 𝑛/3 − 𝑎 and 2𝑛/3 + 𝑎 for any
0 < 𝑎 < 𝑛/3, so the LRT is of the form 𝑋 ̸∈ [𝑛/3 −𝑀, 2𝑛/3 + 𝑀 ]

CLT says that as 𝑛 → ∞, 𝑋−𝑝𝑛√
𝑛𝑝(1−𝑝)

∼ 𝒩 (0, 1). Hence

𝛼 = sup
𝑝∈[1/3,2/3]

𝑃 (𝑋 ≤ 𝑛/3 −𝑀 or 𝑋 ≥ 2𝑛/3 + 𝑚)
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≈ sup
𝑝∈[1/3,2/3]

𝑃 (
𝑋 − 𝑝√︀
𝑛𝑝(1 − 𝑝)

≤ 𝑛/3 −𝑀 − 𝑝𝑛√︀
𝑛𝑝(1 − 𝑝)

or
𝑋 − 𝑝√︀
𝑛𝑝(1 − 𝑝)

≥ 2𝑛/3 + 𝑀 − 𝑝𝑛√︀
𝑛𝑝(1 − 𝑝)

)

If 𝑝 ∈ (1/3, 2/3), as 𝑛 → ∞ the two bounds go to infinity and probability goes
to 0. So we can only use 𝑝 = 1/3 or 𝑝 = 2/3. In both cases, the significance
level is

𝛼 = 1 − Φ(
𝑀√︀
2𝑛/9

)

Where Φ is the c.d.f. of standard normal. The p-value for 𝑛 = 9000, 𝑋 = 2900
is

1 − Φ(
100√
2000

) ≈ 0.0127

Example 2 Suppose 𝑋𝑖 i.i.d. and ∼ 𝒩 (0, 𝜎2), 𝑋 ∼ 𝒩 (𝑎, 𝜎2) is independent
from 𝑋𝑖, 𝐻0 : 𝑎 = 0, 𝐻1 : 𝑎 ̸= 0.

1. If 𝑍−𝑏 satisfies 𝑡(𝑑) distribution (which is the distribution of 𝑋√
𝑌/𝑑

where

𝑋 and 𝑌 are independent, 𝑋 ∼ 𝒩 (0, 1), 𝑌 ∼ 𝜒2(𝑑)), |𝑍| ≥ 𝑀 is a test
for 𝐻0 : 𝑏 = 0. Find the significance level of this test.

2. Find 𝐶𝑛 such that 𝐶𝑛𝑋√∑︀
𝑖 𝑋

2
𝑖

∼ 𝑡(𝑛).

3. Use the test in 1. to find a test for 𝐻0 : 𝑎 = 0 with significance level 𝛼.

Answer:

1. 𝛼 = 𝑃 (|𝑍| ≥ 𝑀 |𝑍 ∼ 𝑡(𝑑)) = 2(1 − 𝐹𝑡(𝑑)(𝑀))

2. Use definition we know that 𝐶𝑛 =
√
𝑛.

3. The test is the random event where the CI does not contain 0. Hence it is

|𝑋
√︂

𝑛∑︀
𝑖 𝑋

2
𝑖

| ≥ 𝐹−1
𝑡(𝑑)(1 − 𝛼/2)

Example 3 𝑋1, 𝑋2 i.i.d. uniform on [𝑎, 𝑎 + 𝑙].

1. Find a CI for 𝑙 of the form [𝐶|𝑋1 −𝑋2|,∞) with CL 1 − 𝛼

2. Use this CI to derive a test for 𝐻0 : 𝑙 = 1 with significance level 𝛼.

Answer:

1. 1 − 𝛼 = 𝑃 (𝑙 ≥ 𝐶|𝑋1 −𝑋2|) = 𝑃 (|𝑋1 −𝑋2| ≤ 𝑙
𝐶 ), so 𝐶 = 1/(1 −

√
𝛼).

2. |𝑋1 −𝑋2| ≥ 1 −
√
𝛼.
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True or false

� Let 𝑍 be a test statistics, 𝐻0, 𝐻 ′
0 two disjoint null hypothesis, if the

significance level of 𝑍 ∈ 𝐶 as a test for 𝐻0 is 0.05, the significance level of
𝑍 ∈ 𝐶 ′ as a test for 𝐻 ′

0 is 0.05, then 𝑍 ∈ 𝐶 ∩ 𝐶 ′ as a test for 𝐻0 ∪𝐻 ′
0 is

no more than 0.05

� If 𝑋𝑖 i.i.d., 𝜃 is a parameter of the distribution of 𝑋𝑖, 𝐼𝑛 a 1 − 𝛼-CI for
𝜃 such that the maximal length goes to 0 as 𝑛 goes to infinity, then the
midpoint of 𝐼𝑛 is a consistent estimator for 𝜃.

Answer: True, False.
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