
1. Introduction

Square-tiled translation surfaces are lattice surfaces because they are branched covers
of the flat torus with a single branched point. Many non-square-tiled examples of lattice
surfaces arise from “deforming” certain square-tiled surfaces. These includes Veech’s reg-
ular n-gon, Ward’s surface, and, more generally, the Bouw-Möller surfaces, which were
discovered by Bouw-Möller [BM10]. They arises from abelian normal covers of the flat
pillowcase. Hooper [Hoo13] gave a translation-surface-theoretic description of these exam-
ples by introducing a class of Thurston-Veech diagrams called ”grid graphs”, and Wright
[Wri13]proved the equivalence of the construction in [Hoo13] and [BM10]. Here we formal-
ize the construction of Bouw-Möller surfaces by studying the lattice surface that arises from
deforming a certain marked square-tiled surface M according to a certain cohomology class
α ∈ H1(M,Σ;C). Our approach lead to a new class of Thurston-Veech diagram similar to
Hooper’s but not new lattice surfaces. We hope that it can provide some insights on what
makes Bouw-Möller’s construction works.

We will show that:

Theorem 1.1. If a lattice surface arises from deforming an abelian branched cover of flat
pillowcase M according to a relative cohomology class α, its affine diffeomorphism group
is commensurable with the affine diffeomorphism group of M , and it also preserves the
Thurston-Veech structure in the two diagonal directions, then its Thurston-Veech diagram
must be one of the three types described in Section 4 and 5. As a consequence, the surface
must be one of the followings cases:

1. a branched cover of the regular 2n-gon branched at the cone point.
2. a branched cover of a Bouw-Möller surface.
3. a branched cover of the regular n-gon branched at the mid-point of edges.

We start by describing the square-tiled surfaces we will deform. To do so, we use the
same notation as in [Wu14], which we now review. As shown in Figure 1, let P be the flat
pillowcase built from a pair of unit squares by identifying edges with the same label. The
two squares are labeled as B1 and B2, the four cone points are labeled as z1, z2, z3 and
z4, and the four edges are labeled as e1, e2, e3, and e4.

Let G be a finite abelian group. Let g = (g1, g2, g3, g4) ∈ G4 be a 4-tuple of elements in
G such that g1g2g3g4 = 1. We denote the simple loop around zj that travels in counter-
clockwise direction on P , with base point in B1, as lj . The surface we will deal with,
M = M(G,g), is the branched abelian cover of the pillowcase P with deck group G in-
duced by the group homomorphism π1(P − {z1, z2, z3, z4}) = 〈l1, l2, l3, l4|l1l2l3l4 = 1〉 → G
that sends the element in π1(P − {z1, z2, z3, z4}) represented by lj to gj ∈ G.

The decomposition of P into two squares in figure 1 leads to a cell decomposition on
M(G,g). This cell structure can be described as |G| copies of pairs of squares, labeled
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by an element g ∈ G and an index k ∈ {1, 2} as Bk
g , as shown in figure 2, that are glued

together by identifying edges with the same label in such a way that the arrows are in the
same direction.
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For example, the cell structure of the surface M(Z/4, (1, 1, 1, 1)) (the Wollmilchsau
[FM08, HS]) is presented as in Figure 3.

Let Σ be the preimage of {z1, z2, z3, z4}. The flat structure on P induces a half trans-
lation structure on M with cone points in Σ. When the orders of g1, g2, g3 and g4 in G
are all even, this induced half translation structure is also a translation structure, which
is the only case we will deal with in this paper. If some of the gi have odd orders, we
can replace G by a larger group G′ and replace M with a double cover M ′ such that the
orders of all gi in G′ are even. As in [Wri13] and [Wu14], the action of G on the relative
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cohomology of marked translation surface (M,Σ) induces a decomposition of H1(M,Σ;C)
into irreducible representations. Hence we have decomposition H1(M,Σ;C) =

⊕
ρH

1(ρ),

where ρ goes through all the irreducible representations of G, and H1(ρ) is the sum of all
the irreducible G-subspaces isomorphic to ρ. This decomposition is preserved by a finite
index subgroup of the Affine diffeomorphism group Aff(M), which we denote as Γ.

Given a translation surface (M,Σ) with a polygonal decomposition, and a 1-form α ∈
H1(M,Σ;C), we now define the “deformation” of (M,Σ) according to α. We have:

Lemma 1.2. Let (M,Σ) be a square-tiled translation surface. If a cohomology class α ∈
H1(M,Σ;C) evaluated on the four sides of any square in M are the coordinates of the four
sides of a convex quadrilateral with non-negative area, then there is a translation surface
X with certain points identified, and a degree 1 map from M to X, such that the pull back
of the translation structure of X is defined by α.

Proof. We construct X and the map M → X as follows: every 2-cell B in M is mapped to
a convex, possibly degenerate, quadrilateral on C with non-negative area, the coordinate
of its four sides are given by α evaluated on the four sides of B. Each of the four sides of B
is sent to the respective side of the quadrilateral linearly. The sides of those quadrilaterals
are then glued to each other by isometry to form X. �

Definition 1.1. We call X and the degree 1 map i : M → X in the previous lemma a
deformation of M according to α.

For example, if we let M = M(Z/30, (1, 11, 29, 19)), α be a 1-form corresponding to (5, 3)
Bouw-Möller surface (which we will describe in Section 5), then the deformation consists
of four translation surfaces of the following shape glued together at their cone points as in
Figure 4.

Labels a . . . h show the gluing of edges, and numbers show the image of 2-cells in M .
Some of these images are convex quadrilaterals, some are triangles, and some (1,5,11,15 in
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the above figure) are collapsed into line segments.

The metric completion of X − i(Σ) may have multiple connected components. Also, the
deformation depends not only on α but also on the choice of cell structure on (M,Σ). We
denote the deformation of M according to α as M → X(α).

Definition 1.2. Let i : (M,Σ) → (X,Σ′) be a deformation of (M,Σ). We say a homeo-
morphism g : (M,Σ)→ (M,Σ) acts on X through an affine diffeomorphism f : X → X, if
the translation structure of X pulled back by i◦g and f ◦ i determine the same cohomology
class in H1(M,Σ;C).

Remark 1.1. In the situation we will consider, we assume that a finite-index subgroup Γ′ of
the affine diffeomorphism group Aut(M) acts on lattice surface X through a finite index
subgroup of Aut(X). Hence by Definition 1.2, Γ′ preserves N(α) = spanC(α, α), and the
action is through a lattice in U(1, 1).
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The decomposition H1(M,Σ) =
⊕

ρH
1(ρ) is Γ-invariant. By replacing Γ′ with Γ′ ∩ Γ,

we will, from now on, always assume that Γ′ is a subgroup with finite index of Γ without
loss of generality. As a consequence, the projection from H1(M,Σ) to each H1(ρ) is Γ′-
equivariant. Hence we have, due to Schur’s Lemma:

Proposition 1.3. Under the assumption of Remark 1.1, the projection from N(α) =
spanC(α, α) to H1(ρ) is either 0, or a Γ′-isomorphism. In the latter case Γ′ acts on H1(ρ)
through a lattice in U(1, 1).

�
From this we know:

Corollary 1.1. Under the assumption of Remark 1.1,

N(α) ⊆
⊕

H1(ρ) is isomorphic to N(α) as Γ′-module

H1(ρ)

�
In section 2 we review the concept of Thurston-Veech structure. In section 3 we review

the discrete Fourier transform which is needed for the proof, and in section 4 and 5 we
prove Theorem 1.1.

2. Thurston-Veech diagram

Recall that a Thurston-Veech structure [T+88] on a translation surface consists of two
tuples of positive integers {ri} and {r′j}, and a pair of transverse cylinder decompositions

{Ci} and {C ′j}, with moduli {Mi} and {M ′j} respectively, such that Mi1/Mi2 = ri1/ri2 ,

M ′j1/M
′
j2

= r′j1/r
′
j2

. A Thurston-Veech structure on a translation surface induces two

parabolic affine diffeomorphisms γ and γ′ given by two multitwists on {Ci} and {C ′j}
respectively. The intersection configuration of the two cylinder decompositions can be rep-
resented by a Thurston-Veech diagram, which is a ribbon graph constructed as follows:
each vertex represents a cylinder, an edge between two vertices stands for an intersection
of two cylinders, and the cyclic order among all edges associating with each vertex encodes
the order of these intersections on the cylinder represented by this vertex.

On a square-tiled surface M , the two diagonal directions are periodic, and cylinder
decompositions on these two directions form a Thurston-Veech structure. We call the
cylinders from the bottom-left to top-right {Ci}, and the cylinders from the bottom-right
to top-left {C ′j}. The Thurston-Veech diagram that arises from this Thurston-Veech struc-
ture can be constructed explicitly as follows: we get a square-tiled coned flat surface by
gluing the squares with the same edge pairing as in M but with all the gluing directions
flipped, which we denote as FM . Now each vertex in the square tiling of FM corresponds
to a cylinder in M formed by triangles, as illustrated in Figure 5.

Here the 4 triangles I, II, III and IV that form a cylinder in the bottom-left to top-
right direction become the 4 triangles around P after the re-gluing, just as triangles that
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form the cylinder between the two red arrows become the 4 triangles around Q after the
re-gluing. Furthermore, the intersection of these two cylinders is represented by the edge
PQ. The cyclic orders among the edges can be seen from blue and red arrows. Hence, the
Thurston-Veech diagram is the 1-skeleton of FM , with the cyclic orders in clockwise and
counterclockwise direction alternatively by columns as illustrated in Figure 6.

In our case when M is a cover of the pillowcase, FM is always orientable. Because in the
gluing process described above, any two adjacent squares are always glued with orientation
reversed, we can define an orientation on FM as either the orientation of all the B1

g after

the regluing, or the opposite of the orientation of all B2
g after regluing. Also, because M is
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a normal cover, all cylinders in the same diagonal direction have the same circumference
and width hence the same moduli, i.e. ri = r′j = 1 for all i, j.

Definition 2.1. We say that a 1-form α ∈ H1(M,Σ) preserves a cylinder decomposition
{Ci} on M , if α evaluated on all paths contained in all the boundary curves of these
cylinders are parallel. We say α preserves a Thurston-Veech structure, if it preserves both
cylinder decompositions, and the multitwists γ, γ′, which are induced by to the Thurston-
Veech structure, preserve spanC(α, α).

A cohomology class α that satisfies the assumption of Remark 1.1 must preserve at
least two parabolic elements, and, thereby, two cylinder decompositions. Here, we assume
that it preserves the two cylinder in the two diagonal directions of M . We denote the
set of elements of H1(M,Σ;C) that preserves the two cylinder decomposition in the diag-
onal directions as L(M,Σ), and the set of those elements in L that further preserve the
Thurston-Veech structure in the diagonal directions as N (M,Σ). Furthermore, we denote
by L′ and N ′ the set of those elements in L and N whose value on bottom-left-to-top-right
diagonals are in R, and whose value on bottom-right-to-top-left diagonals are in

√
−1R.

Any element in L or N can be made into an element in L′ or N ′ after an affine transfor-
mation.

The circumference, width and moduli of Ci under α is defined as the base, height and
moduli of the parallelogram formed by α evaluated on the boundary circle and α evaluated
on a path that crosses the cylinder once from right to left.

Let V = V (FM) be the space of real valued functions on the vertices of FM . Let
Ψ : L′ → V be the map defined as follows: given any element α ∈ L′, Ψ(α) send a vertex
to the width under α of the cylinder it represents. It is a bijective map. Because ri = r′j = 1,

the fact that multitwists γ and γ′ preserve spanC(α, α) implies that any Ci with non-zero
width have the same moduli, and those with width 0 also have 0 circumference. After an
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affine action we can make all the cylinders to have either identical moduli λ > 0 or zero
width and zero circumference. Hence, by [T+88], we have:

Lemma 2.1. [T+88] Let A be the adjacency matrix of the Thurston-Veech diagram, then
up to an affine action, α satisfies A(Ψ(α)) = λΨ(α).

�
When α ∈ L′, the assumption of Lemma 1.1 can be further rewritten as a condition on

the image of Ψ:

Lemma 2.2. Assuming α ∈ L′, the assumption of Lemma 1.1 is equivalent to the fact that
no pair of adjacent vertices of FM can be assigned values of opposite signs by Ψ(α), and
there is an edge such that neither of its end points are assigned 0.

Proof. If assumption of Lemma 1.1 holds, any square Bk
j will be sent to a convex quadri-

lateral with non-negative area under the flat structure defined by α. The two diagonals of
this quadrilateral cut it into 4 small triangles of non-negative area. If two non-degenerate
cylinders in the cylinder decompositions described above intersect, its intersection must be
a rectangle formed by two of those small triangles hence must have non-negative signed
area, i.e. Ψ(α) can not assign values of opposite signs for any pair of adjacent vertices. At
least one of these rectangles must have positive area, hence there is at least one pair of
adjacent vertices such that Ψ(α) is non-zero on both.

On the other hand, if Ψ(α) does not assign values of opposite signs for any pair of adja-
cent vertices, we can build a translation surface X as follows: each parallelogram formed by
the intersection of some Ci and C ′j are sent to a Ψ(α)(vi)-by-Ψ(α)(vj) rectangle, where vi
and vj are vertices in FM that represent Ci and C ′j respectively. As illustrated in Figure 7,
the sides of these rectangles are glued in the same order as the gluing of the parallelograms
on M , which means that α satisfies the assumption of Lemma 1.1.

Figure 7.

�
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Remark 2.1. When α satisfies the assumption of Lemma 1.1, we can decompose X(α) into
a union of (possibly degenerated) cylinders in two ways, and choose the map i : M → X(α)
such that these two cylinder decompositions are the images of {Ci} and {C ′j}.

Let S be the category of square-tiled surfaces with morphisms being continuos maps
that send squares isometrically to squares. Our construction of FM , L(M), N (M) and
V (FM) from M are functorial. More precisely,

Lemma 2.3. A S-morphism ξ : M →M ′ induces canonically a S-morphism Fξ : FM →
FM ′, ξ∗ : L′(M ′) → L′(M), and (Fξ)∗ : V (FM ′) → V (FM) and the following diagram
commute:

L′(M ′) → L′(M)
↓ Ψ ↓ Ψ

V (FM ′) → V (FM)

Furthermore, ξ∗ sends N ′ to N ′.

�

Remark 2.2. (Fξ)∗ can be described more concretely as follows: for any f ∈ V (FM ′), any
vertex in FM , (Fξ)∗f(v) = f(Fξ(v)) if Fξ preserves the cyclic order among the edges
associated to v, and (Fξ)∗f(v) = −f(Fξ(v)) if it reverses the cyclic order.

Remark 2.3. F2 is the same as the identity functor 1S . Hence F : S → S is an isomorphism.

Now we consider the question of finding α ∈ N ′ that satisfies the assumption of Lemma
1.1 and that a subgroup of Aff(M) of finite index acts on N(α) as a lattice. We say such
α satisfies property (L). Now we analyze all possible 1-forms with property (L).

Let e be the identity element in G. Let γ1 be the element in Γ that preserve the button-

right corner of B1
e and has derivative

(
1 −2
0 1

)
; let γ2 be the element in Γ that preserve

the button-right corner of B1
e and has derivative

(
1 0
−2 1

)
; let γ3 be the element in Γ that

preserve the button-right corner of B1
e and has derivative

(
3 −2
2 −1

)
, and let γ4 be the

element in Γ that preserve the button-right corner of B1
e and has derivative

(
3 2
−2 −1

)
.

These elements are liftings of the Dehn twists in the horizontal, vertical and the two diag-
onal directions on P .

Let α ∈ N ′. By Definition 2.1, some power of γ3 and γ4 acts on X(α) as parabolic
affine automorphisms, hence their action on N(α) are parabolic. Because a power of γ3

acts on H1(ρ) as parabolic map if and only if ρ(g1g3) = 1, by Corollary 1.1, N(α) ⊂
⊕ρ∈{ρ:ρ(g1)ρ(g3)=1}H

1(ρ). Hence, α is the pull back of some α′ ∈ N ′(M(G/(g1g3),g)) by a
ordG(g1g3)-fold branched cover M → M1 = M(G/(g1g3),g). Hence X(α) is a branched
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cover of X(α′) branching at i(Σ) ⊂ Σ′.

Because the deck group of M1 is G1 = G/(g1g3), g1g3 = g2g4 = e in G1. As a con-
sequence, FM1 is a compact orientable flat surface with no cone points, hence it must
be a square-tiled torus R2/L where L ⊂ Z2. Furthermore, from the construction of
FM we know that each horizontal cylinder in M corresponds to a horizontal cylinder
of the same width and circumference in FM . Hence (2ordG(g1g2), 0) ∈ L. Similarly,
(0, 2ordG(g1g4)) ∈ L. Let M2 be a (not necessarily connected) square tiled surface such
that FM2 is a 2ordG(g1g2)-by-2ordG(g1g4) torus, then M2 is a branched cover of M1. By
the construction of F , M2 is also a branched abelian cover. Furthermore, the pull back of
any α′ ∈ N (M,Σ) satisfying property (L) would also satisfy property (L). Hence, we have:

Proposition 2.4. Any α satisfying property (L) is related to an α0 ∈ N ′(M2) satisfying
property (L) by finite branched covers, where FM2 is a 2ordG(g1g2)-by-2ordG(g1g4) torus
R2/2ordG(g1g2)Z× 2ordG(g1g4)Z

�
Hence, from now on, we always let FM be a 2s-by-2t rectangular torus.

3. Discrete Fourier Transform

To apply Corollary 1.1, we need to find a decomposition of V that is compatible with the
decomposition H1(M,Σ;C) =

⊕
ρH

1(ρ). We can obtain such a decomposition by Discrete
Fourier Transform.

Let V (FM) = V (Ts,t) be the space of real-valued functions on Z2/(2sZ× 2tZ). By dis-

crete Fourier transform, V has the following direct-sum decomposition: Vs,t =
⊕

λ,µ V
λ,µ
s,t ,

where λ, µ are integers, such that 0 ≤ λ < s/2, 0 ≤ µ < t if s is even, 0 ≤ λ < s/2, 0 ≤ µ <
t, or λ = (s−1)/2 and µ < t/2 if s is odd, and V λ,µ

s,t = spanR(f0,0, f0,1, f1,0, f1,1, g0,0, g0,1, g1,0, g1,1),
where:

f0,0(x, y) =

{
sin(2xπλ/2s) sin(2yπµ/2t), if x+ y is even

0, otherwise

f0,1(x, y) =

{
sin(2xπλ/2s) cos(2yπµ/2t), if x+ y is even

0, otherwise

f1,0(x, y) =

{
cos(2xπλ/2s) sin(2yπµ/2t), if x+ y is even

0, otherwise

f1,1(x, y) =

{
cos(2xπλ/2s) cos(2yπµ/2t), if x+ y is even

0, otherwise

g0,0(x, y) =

{
sin(2xπλ/2s) sin(2yπµ/2t), if x+ y is odd

0, otherwise
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g0,1(x, y) =

{
sin(2xπλ/2s) cos(2yπµ/2t), if x+ y is odd

0, otherwise

g1,0(x, y) =

{
cos(2xπλ/2s) sin(2yπµ/2t), if x+ y is odd

0, otherwise

g1,1(x, y) =

{
cos(2xπλ/2s) cos(2yπµ/2t), if x+ y is odd

0. otherwise

This decomposition is related to, but not the same as the eigenspace decomposition of
discrete Laplacian.

By the functorial property, the G-action on M induces an action on FM which in-
duces actions on various V λ,µ. More precisely, the action of gi on FM , i = 1, 2, 3, 4, are
translations in the four diagonal directions. By calculation, we know that Ψ−1(V λ,µ) ⊂
H1(ρλ,µ++) +H1(ρλ,µ−+) +H1(ρλ,µ+−) +H1(ρλ,µ−−), where:

ρλ,µ++(g1) = eiπ(1+λ/s+ν/t) ρλ,µ++(g2) = eiπ(1−λ/s+ν/t)

ρλ,µ++(g3) = eiπ(1−λ/s−ν/t) ρλ,µ++(g4) = eiπ(1+λ/s−ν/t)

ρλ,µ−+(g1) = eiπ(1−λ/s+ν/t) ρλ,µ−+(g2) = eiπ(1+λ/s+ν/t)

ρλ,µ−+(g3) = eiπ(1+λ/s−ν/t) ρλ,µ−+(g4) = eiπ(1−λ/s−ν/t)

ρλ,µ+−(g1) = eiπ(1+λ/s−ν/t) ρλ,µ+−(g2) = eiπ(1−λ/s−ν/t)

ρλ,µ+−(g3) = eiπ(1−λ/s+ν/t) ρλ,µ+−(g4) = eiπ(1+λ/s+ν/t)

ρλ,µ−−(g1) = eiπ(1−λ/s−ν/t) ρλ,µ−−(g2) = eiπ(1+λ/s−ν/t)

ρλ,µ−−(g3) = eiπ(1+λ/s+ν/t) ρλ,µ−−(g4) = eiπ(1−λ/s+ν/t)

From [BM10], [Wri13] or Section 7 of [Wu14], we know that if the action of Γ on PH1(ρ)
for any of the ρ±± above is commensurable to a hyperbolic triangle group with parabolic
element, then either (a) λ = 0 and ν|t, or ν = 0 and λ|s or (b) λ|s and ν|t. In case (a) it
is commensurable to the (∞,∞, n)-triangle group, while in case (b) it is commensurable
to a (∞,m, n)-triangle group. By Corollary 1.1, if α satisfies property (L) then Ψ(α) must
be in one of these two types of V λ,µ.

4. The (∞,∞, n) case

In this case, without loss of generality we can assume λ = s/n and ν = 0. Figure 8
shows the sign of the function f0 = f0,0 + g0,0 for n = 5 on vertices of FM .

Points on which f0 = f0,0 + g0,0 is positive or negative form vertical stripes, which are
separated by columns of zeros, hence Ψ−1(f0) defines a singular translation structure on
M by Lemma 2.2. By computation, this translation structure is tiled by regular 2n-gons.
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Figure 8.

These lattice surfaces were first discovered by Veech.

Now we have:

Proposition 4.1. If α ∈ N ′ that satisfies condition (L) such that Ψ(α) ∈ V s/n,0, then up
to an affine action and an automorphism of the square-tiled surface M , Ψ(α) = f0. Hence,
X(α) is tiled by regular 2n-gons up to a SL(2,R)-action.

Proof. Firstly, because the sum of the values of Ψ(α) is 0, by Lemma 2.2, the set of ver-
tices on which Ψ(α) is positive and the set of vertices on which Ψ(α) is negative have to
be separated by vertices on which Ψ(α) is 0. Hence, Ψ(α) must reaches 0 at a certain
vertex. After a G action as well as relabeling if necessary, we can assume this vertex to
be (0, 0) without loss of generality. Hence Ψ(α)(−1, 1)Ψ(α)(1, 1) < 0 or Ψ(α)(x, y) = 0
for all x + y even. If Ψ(α)(−1, 1)Ψ(α)(1, 1) < 0, by Lemma 2.2, Ψ(α)(0, 1) = 0, hence
Ψ(α)(x, y) ∈ f0,0R + g0,0R, hence α is affine equivalent to α0.

The other case, Ψ(α)(x, y) = 0 for all x + y even, contradicts with our assumption
according to Lemma 2.2. �

5. The (∞,m, n) case, Bouw-Möller surfaces

Now we deal with the (∞,m, n) case. Let f1 = f0,0 +g0,0. Points on which f1 is positive
or negative form rectangles, which are separated by columns and rows of zeros, hence
Ψ−1(f1) defines a singular translation structure on M by Lemma 2.2. Figure 9 shows the
sign of f1 when m = 5, n = 3.

By deleting vertices that are assigned 0 width in the 1-skeleton on Ts,t we can get the
grid graph described in [Hoo13], hence due to Lemma 2.1 the metric completion of each
component of (X(Ψ−1(f1))− Σ′)∗ is the (m,n) Bouw-Möller surface.

For example, if we label the squares of FM in the Figure 9 above as in Figure 10, then
one component of X(Ψ−1(f1)) becomes Figure 11, and X(Ψ−1(f1)) is a union of copies of
such translation surfaces glued together at the cone point.
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− 0 + + + + 0 − − − − 0

− 0 + + + + 0 − − − − 0

− 0 + + + + 0 − − − − 0

+ 0 − − − − 0 + + + + 0

+ 0 − − − − 0 + + + + 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

(0, 0)

Figure 9.

0 + + + + 0

0 + + + + 0

0 0 0 0 0 0

0 0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 10.

Also, when m = n, f2 = f0,0 + f1,1 + g0,0 + g1,1 and f3 = f0,1 + f0,1 + g1,0 + g1,0 also
define lattice surfaces. They are affine equivalent to branched covers of the regular n-gon
branched at the midpoints of its sides. Figure 12 shows the sign of f2 for m = n = 5.

Similar to the previous section, we have:

Proposition 5.1. If α ∈ N ′ that satisfies condition (L) such that Ψ(α) ∈ V s/n,t/m, then
up to affine action and the automorphism of M , Ψ(α) is either f1 or f2.

Proof. Due to Lemma 2.1, we can further assume that AΨ(α) = λΨ(α) for some constant
λ. From this and the Peron-Frobenious theorem we know that the sign of Ψ(α) completely
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Figure 11.

− 0 + + + + 0 − − − − 0

− − 0 + + + + 0 − − − −

− − − 0 + + + + 0 − − −

(0, 0)

Figure 12.

determines Ψ(α) up to scaling.

By the formula for fi,j and gi,j , i, j = 0, 1 in Section 3 and the fact that AΨ(α) = λΨ(α),
Ψ(α) = C1 sin(πx/n+A) cos(πy/m) +C2 sin(πx/n+B) sin(πy/m) for some constants C1,
C2, A and B, hence it restricted to any row is a function of the form ψ(x) = C sin(πx/n+a)
for some constants C and a, and it is a function of the form ψ′(x) = C ′ sin(πy/m+ a′) for
some constants C ′ and a′ when restricted to any column. Furthermore, by Lemma 2.2, the
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set of vertices on which Ψ(α) is positive and the set of vertices on which Ψ(α) is negative
have to be separated by vertices on which Ψ(α) is 0, hence Ψ(α) restricted to any row of
vertices must be one of the following cases:

(a) 0.
(b) C sin(π(x− k)/n), k ∈ Z. It reaches 0 2s

n times.

Similarly, Ψ(α) restricted to any column of vertices must be one of the following cases:

(a) 0.
(b) C ′ sin(π(x− k′)/m), k′ ∈ Z. It reaches 0 2t

m times.

Because of Lemma 2.2, at least one row or column will be in case (b). Furthermore, we
have:

Lemma 5.2. If a row or a column of type (a) is next to a row or a column of type (b),
the subgraph spanned of vertices on which Ψ(α) is non-zero is a union of grid graphs as
defined in [Hoo13], hence by Lemma 2.1 it must be a cover of a Bouw-Möller surface.

Proof. If a row of type (a) is next to a row of type (b), without loss of generality we
let the row of type (a) be the 0-th row and the row od type (b) be the 1st. Because
Ψ(α) = C1 sin(πx/n + A) cos(πy/m) + C2 sin(πx/n + B) sin(πy/m) and Ψ(α)(x, y) = 0,
C1 = 0. Furthermore, because the 1st row is of type (b), nB/π ∈ Z. Hence the subgraph
spanned of vertices on which Ψ(α) is non-zero is a union of grid graphs as defined in
[Hoo13]. The argument for columns is the same. �

Now we only need to deal with the case when Ψ(α) restricted to any row or column of
vertices are all of type (b). Because all columns are of type (b) there must be 4st

m zeros,

and because all rows are of type (b) there must be 4st
n zeros. Hence, m = n. The only way

for these zero vertices to separate the other vertices of Ts,t into positive and negative parts
is by aligning in the diagonal direction. In other words, after scaling and relabeling, Ψ(α)
is f0,0 + f1,1 + g0,0 + g1,1 or f0,1 + f0,1 + g1,0 + g1,0. �

Proof of Theorem 1.1. Theorem 1.1 is a corollary of Proposition 4.1 and Proposition 5.1.
�
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